1
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
2
|
Lv J, Tian H, Pan L, Chen Z, Li M, Ghiladi RA, Qin Z, Yin X. Biomass derived carbon dots with antibacterial and anti-inflammatory properties for the treatment of wound healing. Chem Eng Sci 2024; 295:120084. [DOI: 10.1016/j.ces.2024.120084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Li S, Zhang L, Liu Y, Zhang E, Li X, Chen Z, Yu Z, Zhou H, Li Y. Non-soluble antibacterial polyurethane based on cation mechanism and functionalized by chitosan and heparin azide. Biomed Mater 2024; 19:045043. [PMID: 38901421 DOI: 10.1088/1748-605x/ad5a5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Nowadays, medical polyurethanes with favorable and durable antibacterial properties received more attention, because of avoiding repeated replacement of interventional materials and reducing patients' pain. In this thesis, non-soluble antibacterial polyurethane (NAPU) based on cation antibacterial mechanism was prepared by photo-grafting chitosan azide and heparin azide into polyurethane (PU). -NH3+of chitosan azide absorbed bacteria, inhibiting and breaking their mobility and structures. Heparin azide prevented cations from penetrating bacteria's membranes and inhibited their growth. The results showed that chitosan azide and heparin azide were successfully grafted into PU. The highest antibacterial rate was 92.07%, cytotoxicity grade ranging from 0-1 (RGR standard) and water contact angle exhibiting 60°, attributing to cation antibacterial effect and -OH existing. Tensile strength was up to 23.91 MPa and was suitable for using as medical materials. NAPU with long-lasting coating both possessed antibacterial properties and persistence, which can solve the problem of medical catheters' long-term using.
Collapse
Affiliation(s)
- Shuaishuai Li
- Department of Medical Equipment, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Liang Zhang
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yicheng Liu
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Enke Zhang
- Department of Medical Equipment, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Xinyu Li
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Zichi Chen
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Zihan Yu
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Haoyuan Zhou
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Ying Li
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| |
Collapse
|
4
|
Wang B, He L, Zhou F, Huang J, Yu W, Chen H, Gan J, Song M, Yang X, Zhu R. Exploiting the advantages of cationic copolymers and AgBr nanoparticles to optimize the antibacterial activity of chitosan. Int J Biol Macromol 2024; 270:132209. [PMID: 38729471 DOI: 10.1016/j.ijbiomac.2024.132209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Recently, the chitosan (CS)-based composites have attracted increasing attention for controlling and preventing the spread of pathogenic microorganisms. Herein, an amphiphilic copolymer containing epoxy and quaternary ammonium groups (PBGDBr) was synthesized via three common acrylate monomers. The epoxy groups of this copolymer were then crosslinked with the amino groups of CS to synthesize a natural/synthetic (PBGDBr-C) composite to increase the water solubility of CS under alkaline conditions and enhance its antibacterial activity based on chemical contact-type modes. Moreover, silver bromide nanoparticles (AgBr NPs)-decorated PBGDBr-C (AgBr@PBGDBr-C) composite was prepared, which aimed to endow the final AgBr@PBGDBr-C composite with a photodynamic antibacterial mode relying on the formation of Ag/AgBr nanostructures catalyzed by visible light on AgBr NPs. The results showed that the final composite possessed satisfactory bactericidal effects at concentrations higher than 64 and 128 μg/mL against Escherichia coli and Staphylococcus aureus, respectively. Additionally, The L929 cells treated with the final composite retained high cell viability (>80 %) at a concentration of 128 μg/mL, indicating its low toxicity to L929 cells. Overall, our synthetic strategy exploits a multi-modal system that enables chemical-photodynamic synergies to treat infections caused by pathogenic bacteria while delaying the development of bacterial resistance.
Collapse
Affiliation(s)
- Bin Wang
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China.
| | - Lei He
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Fujun Zhou
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Wenjie Yu
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Hongjun Chen
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Jiyuan Gan
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Meng Song
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Xingyue Yang
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Rongxian Zhu
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| |
Collapse
|
5
|
da Costa Rodrigues K, da Silva Neto MR, Dos Santos Barboza V, Hass SE, de Almeida Vaucher R, Giongo JL, Schumacher RF, Wilhelm EA, Luchese C. New curcumin-loaded nanocapsules as a therapeutic alternative in an amnesia model. Metab Brain Dis 2024; 39:589-609. [PMID: 38351421 DOI: 10.1007/s11011-023-01329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/22/2023] [Indexed: 04/23/2024]
Abstract
This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (ɛ-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.
Collapse
Affiliation(s)
- Karline da Costa Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Manoel Rodrigues da Silva Neto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, RS, 97500-970, Brazil
| | - Victor Dos Santos Barboza
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos (LaPeBBioM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Sandra Elisa Hass
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, RS, 97500-970, Brazil
| | - Rodrigo de Almeida Vaucher
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos (LaPeBBioM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Janice Luehring Giongo
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos (LaPeBBioM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | | | - Ethel Antunes Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
6
|
Li J, Pan G, Zyryanov GV, Peng Y, Zhang G, Ma L, Li S, Chen P, Wang Z. Positively Charged Semiconductor Conjugated Polymer Nanomaterials with Photothermal Activity for Antibacterial and Antibiofilm Activities In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40864-40876. [PMID: 37603418 DOI: 10.1021/acsami.3c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Biofilm infections are associated with most human bacterial infections and are prone to bacterial multidrug resistance. There is an urgent need to develop an alternative approach to antibacterial and antibiofilm agents. Herein, two positively charged semiconductor conjugated polymer nanoparticles (SPPD and SPND) were prepared for additive antibacterial and antibiofilm activities with the aid of positive charge and photothermal therapy (PTT). The positive charge of SPPD and SPND was helpful in adhering to the surface of bacteria. With an 808 nm laser irradiation, the photothermal activity of SPPD and SPND could be effectively transferred to bacteria and biofilms. Under the additive effect of positive charge and PTT, the inhibition rate of Staphylococcus aureus (S. aureus) treated with SPPD and SPND (40 μg/mL) could reach more than 99.2%, and the antibacterial activities of SPPD and SPND against S. aureus biofilms were 93.5 and 95.8%. SPPD presented better biocompatibility than SPND and exhibited good antibiofilm properties in biofilm-infected mice. Overall, this additive treatment strategy of positive charge and PTT provided an optional approach to combat biofilms.
Collapse
Affiliation(s)
- Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Chemical Experimental Teaching Demonstration Center, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Guoyong Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Grigory V Zyryanov
- Russia Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ural Federal University, Yekaterinburg 620219, Russia
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Parcheta M, Sobiesiak M. Preparation and Functionalization of Polymers with Antibacterial Properties-Review of the Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4411. [PMID: 37374596 PMCID: PMC10304131 DOI: 10.3390/ma16124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| | - Magdalena Sobiesiak
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| |
Collapse
|
8
|
Zhen G, Mu Y, Yuan P, Li Y, Li X. One-Step Synthesis of Self-Stratification Core-Shell Latex for Antimicrobial Coating. Molecules 2023; 28:molecules28062795. [PMID: 36985769 PMCID: PMC10052133 DOI: 10.3390/molecules28062795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, we describe a one-step method for synthesizing cationic acrylate-based core-shell latex (CACS latex), which is used to prepare architectural coatings with excellent antimicrobial properties. Firstly, a polymerizable water-soluble quaternary ammonium salt (QAS-BN) was synthesized using 2-(Dimethylamine) ethyl methacrylate (DMAEMA) and benzyl bromide by the Hoffman alkylation reaction. Then QAS-BN, butyl acrylate (BA), methyl methacrylate (MMA), and vinyltriethoxysilane (VTES) as reactants and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA) as a water-soluble initiator were used to synthesize the CACS latex. The effect of the QAS-BN dosage on the properties of the emulsion and latex film was systematically investigated. The TGA results showed that using QAS-BN reduced the latex film's initial degradation temperature but improved its thermal stability. In the transmission electron microscopy (TEM) photographs, the self-stratification of latex particles with a high dosage of QAS-BN was observed, forming a core-shell structure of latex particles. The DSC, TGA, XPS, SEM, and performance tests confirmed the core-shell structure of the latex particles. The relationship between the formation of the core-shell structure and the content of QAS-BN was proved. The formation of the core-shell structure was due to the preferential reaction of water-soluble monomers in the aqueous phase, which led to the aggregation of hydrophilic groups, resulting in the formation of soft-core and hard-shell latex particles. However, the water resistance of the films formed by CACS latex was greatly reduced. We introduced a p-chloromethyl styrene and n-hexane diamine (p-CMS/EDA) crosslinking system, effectively improving the water resistance in this study. Finally, the antimicrobial coating was prepared with a CACS emulsion of 7 wt.% QAS-BN and 2 wt.% p-CMS/EDA. The antibacterial activity rates of this antimicrobial coating against E. coli and S. aureus were 99.99%. The antiviral activity rates against H3N2, HCoV-229E, and EV71 were 99.4%, 99.2%, and 97.9%, respectively. This study provides a novel idea for the morphological design of latex particles. A new architectural coating with broad-spectrum antimicrobial properties was obtained, which has important public health and safety applications.
Collapse
Affiliation(s)
- Guanzhou Zhen
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanchun Mu
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peichen Yuan
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yankun Li
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Li
- Beijing Engineering Research Center of Synthesis and Application of Waterborne Polymer, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Zhou Z, Zhou S, Zhang X, Zeng S, Xu Y, Nie W, Zhou Y, Xu T, Chen P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug Chem 2023; 34:302-325. [PMID: 36748912 DOI: 10.1021/acs.bioconjchem.2c00598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Zhenyang Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 236000, China
| | - Xiran Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
10
|
Elgamal AM, Abu Elella MH, Saad GR, Abd El-Ghany NA. Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. MATERIALS TODAY COMMUNICATIONS 2022; 33:104209. [DOI: 10.1016/j.mtcomm.2022.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Agbe H, Sarkar DK, Chen XG, Dodoo-Arhin D. Silver-Polymethylhydrosiloxane-Quaternary Ammonium Coating on Anodized Aluminum with Excellent Antibacterial Property. ACS APPLIED BIO MATERIALS 2022; 5:4760-4769. [PMID: 36103507 DOI: 10.1021/acsabm.2c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug-resistant bacteria are known to survive on high-touch surfaces for days, weeks, and months, contributing to the rise in nosocomial infections. Inducing antibacterial property in such surfaces can presumably reduce the overall microbial burden and subsequent nosocomial infections in hygiene critical environments. In the present study, a one-pot sol-gel process has been deployed to incorporate silver (Ag) and quaternary ammonium salt (QUAT) bactericides in a polymethylhydrosiloxane (PMHS) matrix. The Ag-PMHS-QUAT nanocomposite was coated on anodized aluminum (AAO/Al) by a simple ultrasound-assisted deposition process. The morphological features and chemical composition of the Ag-PMHS-QUAT nanocomposite have been characterized using SEM, XRD spectroscopy, and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) to confirm the formation of Ag-QUAT nanocomposites within the polymeric network of PMHS. The Ag-PMHS-QUAT nanocomposite coating on anodized aluminum oxide (AAO/Al) coupon exhibited superior antibacterial property with a 6-log bacterial reduction compared to the 5-log reduction for the commercially available antimicrobial copper coupon.
Collapse
Affiliation(s)
- Henry Agbe
- Laboratory for Biomaterials and Bioengineering - LBB, Canada Research Chair Tier I for the Innovation in Surgery, Dept Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center Laval University, Quebec, 10 rue de l'Espinay, Quebec City, QC G1L 3L5, Canada
| | - Dilip Kumar Sarkar
- Department of Applied Science, University of Québec at Chicoutimi, Aluminum Research Center - REGAL, Chicoutimi, QC G7H 2B1, Canada
| | - X-Grant Chen
- Department of Applied Science, University of Québec at Chicoutimi, Aluminum Research Center - REGAL, Chicoutimi, QC G7H 2B1, Canada
| | - David Dodoo-Arhin
- Department of Materials Science and Engineering, University of Ghana, P.O. Box LG 77, Legon-Accra, Ghana
| |
Collapse
|
12
|
Li L, Wang Y, Huang T, He X, Zhang K, Kang ET, Xu L. Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomater Sci 2022; 10:3006-3016. [PMID: 35522076 DOI: 10.1039/d2bm00265e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of antibiotic drug resistance has undermined the efficacy of antibiotics, and is becoming a severe threat to public health. To combat antibiotic drug resistance and to replace traditional antibiotic treatment, an alternative strategy based on antibacterial photodynamic therapy (APDT), which has broad applicability, high efficiency and less potential of developing antibiotic drug resistance, has been developed. In this work, the cationic porphyrin-based nanoparticles (NPs) were prepared by epoxy-amine chain extension polymerization of diepoxy-terminated poly(ethylene glycol) (PEG) and tetraamino-containing porphyrin, followed by quaternization with methyl iodine and butyl bromide. The as-obtained cationic porphyrin NPs preserved the photophysical properties of porphyrin derivatives, and can efficiently generate singlet oxygen (1O2) under 635 nm laser irradiation. The cationic porphyrin-based NPs displayed intrinsic antibacterial properties, and exhibited strong APDT effect on Gram-positive bacteria by destroying the bacterial cell membranes. Upon incubation with different bacterial strains, it was found that they could be utilized to identify Gram-positive bacteria by observing the sedimentation behavior of their mixtures, and visualizing their co-cultured and centrifugal bacteria cakes. In addition, the cationic porphyrin-based NPs had good hemocompatibility and low dark cytotoxicity.
Collapse
Affiliation(s)
- Lin Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Tao Huang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715. .,Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China 571158
| |
Collapse
|
13
|
Synthesis of Polymer Nanospheres Conjugated Ce (IV) Complexes for Constructing Double Antibacterial Centers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wang L, Zhu W, Zhou Y, Li Q, Jiao L, Qiu H, Bing W, Zhang Z. A biodegradable and near-infrared light-activatable photothermal nanoconvertor for bacterial inactivation. J Mater Chem B 2021; 10:3834-3840. [PMID: 34779465 DOI: 10.1039/d1tb01781k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of biodegradable nanomaterials for near-infrared photothermal antibacterial is of great significance to improve the biosafety of nano-antibacterial strategies in clinical application. In this study, a new nano-antibacterial strategy was developed, in which a biodegradable charge-transfer nanocomplex acted as a high-efficiency near-infrared light-activatable photothermal nanoconvertor. The charge-transfer nanocomplex was synthesized through oxidation-induced self-assembly of 3,3',5,5'-tetramethylbenzidine molecules. This nanocomplex can efficiently convert light energy around 900 nm into heat energy, with a photothermal conversion efficiency of up to 30%. More importantly, the nanocomplex can spontaneously degrade under physiological conditions within 12 hours. Utilizing the photothermal effect of this nanocomplex, both Gram-positive bacteria and Gram-negative bacteria can be inactivated within 2 minutes. In addition, the inactivation mechanism was systematically discussed and the results indicated that the photothermal effect induced bacterial cell membrane damage was probably responsible for the antibacterial effect.
Collapse
Affiliation(s)
- Luyao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, China.
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 44200, China.,College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Qisi Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lizhi Jiao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hao Qiu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Guo J, Cao G, Wang X, Tang W, Diwu W, Yan M, Yang M, Bi L, Han Y. Coating CoCrMo Alloy with Graphene Oxide and ε-Poly-L-Lysine Enhances Its Antibacterial and Antibiofilm Properties. Int J Nanomedicine 2021; 16:7249-7268. [PMID: 34737563 PMCID: PMC8560011 DOI: 10.2147/ijn.s321800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION With increases in implant infections, the search for antibacterial and biofilm coatings has become a new interest for orthopaedists and dentists. In recent years, graphene oxide (GO) has been extensively studied for its superior antibacterial properties. However, most of these studies have focused on solutions and there are few antibacterial studies on metal surfaces, especially the surfaces of cobalt-chromium-molybdenum (CoCrMo) alloys. ε-Poly-L-lysine (ε-PLL), as a novel food preservative, has a spectrum of antimicrobial activity; however, its antimicrobial activity after coating an implant surface is not clear. METHODS In this study, for the first time, a two-step electrodeposition method was used to coat GO and ε-PLL on the surface of a CoCrMo alloy. Its antibacterial and antibiofilm properties against S. aureus and E. coli were then studied. RESULTS The results show that the formation of bacteria and biofilms on the coating surface was significantly inhibited, GO and ε-PLL composite coatings had the best antibacterial and antibiofilm effects, followed by ε-PLL and GO coatings. In terms of classification, the coatings are anti-adhesive and contact-killing/inhibitory surfaces. In addition to oxidative stress, physical damage to GO and electrostatic osmosis of ε-PLL are the main antibacterial and antibiofilm mechanisms. DISCUSSION This is the first study that GO and ε-PLL coatings were successfully prepared on the surface of CoCrMo alloy by electrodeposition. It provides a promising new approach to the problem of implant infection in orthopedics and stomatology.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Wenhao Tang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
16
|
Dong Y, Liu L, Sun J, Peng W, Dong X, Gu Y, Ma Z, Gan D, Liu P. Phosphonate/quaternary ammonium copolymers as high-efficiency antibacterial coating for metallic substrates. J Mater Chem B 2021; 9:8321-8329. [PMID: 34522945 DOI: 10.1039/d1tb01676h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Designing a coating material with efficient bactericidal property to cope with bacterial associated infections is highly desirable for metallic implants and devices. Here, we report phosphonate/quaternary ammonium copolymers, p(DEMMP-co-TMAEMA), as the new type of metal anchorable high-efficiency antibacterial coating. Seven p(DEMMP-co-TMAEMA) polymers with varied cationic components were precisely prepared via random radical polymerization. Copolymers were constructed on titanium alloy (TC4) substrates based on strong covalent bonding between the phosphonate group and metallic substrates through a one-step process as evidenced by XPS and water contact angle tests. A robust relationship between the composition of the copolymers and the bactericidal ability endowed to TC4 substrates was established. Results showed that the copolymer, with the pDEMMP content even as low as 6.3%, was able to anchor onto TC4 substrates. With the increase of cationic pTMAEMA content from 4.0 to 93.7% in the coating copolymer, the bactericidal ability endowed to the TC4 substrates was steadily increased from 39.4 to 98.8% for S. aureus and from 70.0 to 99.4% for E. coli after 8 h's of contacting. All p(DEMMP-co-TMAEMA) coating on TC4 substrates showed limited cytotoxicity to C2C12 cells. Notably, the phosphonate/quaternary amine copolymers can be easily constructed on diverse biomedical metals such as titanium (Ti), stainless steel (SS), and Ni/Cr alloys with significantly increased antibacterial performance, demonstrating the potency of the copolymer as the general high-efficiency antibacterial coating for diverse bio-metals.
Collapse
Affiliation(s)
- Yaning Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Li Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiaohan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yahui Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Zhuangzhuang Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
17
|
Badura A, Krysiński J, Nowaczyk A, Buciński A. Prediction of the antimicrobial activity of quaternary ammonium salts against Staphylococcus aureus using artificial neural networks. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules 2021; 26:molecules26113310. [PMID: 34072932 PMCID: PMC8199157 DOI: 10.3390/molecules26113310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.
Collapse
|
19
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
20
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
21
|
Yu J, Wang L, Zhao Y, Zhou C. Preparation, characterization, and antibacterial property of carboxymethyl cellulose derivatives bearing tetrabutylammonium salt. Int J Biol Macromol 2021; 176:72-77. [PMID: 33577813 DOI: 10.1016/j.ijbiomac.2021.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Carboxymethyl cellulose derivatives bearing tetrabutylammonium moieties (CMC-TBA) were synthesized by the acidification of carboxymethyl cellulose (CMC) followed by acid-base neutralization with tetrabutylammonium hydroxide. The products were identified by Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR) spectroscopy and the degrees of substitution (DS) values were also quantified according to the integral area values in 1H NMR spectra. It was revealed that DS values had a positive relationship with the molar ratios of TBAOH to CMC. The antibacterial behaviors against gram-positive bacteria S. aureus and gram-negative bacteria E. coli were investigated using serial two-fold dilution method (MIC and MBC) and the disc diffusion method (inhibition zone). The results showed that comparison with CMC, all new CMC-TBA derivatives exhibited high antibacterial activity that depends on bacteria type and their degrees of cationization. The antibacterial action was more effective against S. aureus than E. coli, which could be attributed to the fact that the latter has a complicated bilayer structure of cell wall. Besides, an apparent tendency that the antibacterial activity of CMC-TBA derivatives enhanced with an increase in the degrees of cationization was found. This work suggests that these new derivatives can be introduced as efficient antibacterial biomaterials for biomedical purposes.
Collapse
Affiliation(s)
- Jing Yu
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lingjiao Wang
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yuanyuan Zhao
- First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Chunhua Zhou
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
22
|
Kanth S, Nagaraja A, Puttaiahgowda YM. Polymeric approach to combat drug-resistant methicillin-resistant Staphylococcus aureus. JOURNAL OF MATERIALS SCIENCE 2021; 56:7265-7285. [PMID: 33518799 PMCID: PMC7831626 DOI: 10.1007/s10853-021-05776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/03/2021] [Indexed: 05/10/2023]
Abstract
ABSTRACT The current global death rate has threatened humans due to increase in deadly unknown infections caused by pathogenic microorganisms. On the contrary, the emergence of multidrug-resistant bacteria is also increasing which is leading to elevated lethality rate worldwide. Development of drug-resistant bacteria has become one of the daunting global challenges due to failure in approaching to combat against them. Methicillin-resistant Staphylococcus aureus (MRSA) is one of those drug-resistant bacteria which has led to increase in global mortality rate causing various lethal infections. Polymer synthesis can be one of the significant approaches to combat MRSA by fabricating polymeric coatings to prevent the spread of infections. This review provides last decade information in the development of various polymers against MRSA. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
23
|
Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids Surf B Biointerfaces 2021; 200:111588. [PMID: 33529928 DOI: 10.1016/j.colsurfb.2021.111588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Infections resulting from bacteria and biofilms have become a huge problem threatening human health. In recent years, the antibacterial and antibiofilm effects of graphene and its derivatives have been extensively studied. However, there continues to be some controversy over whether graphene and its derivatives can resist infection and biofilms. Moreover, the antibacterial mechanism and cytotoxicity of graphene and its derivatives are unclear. In the present review, antibacterial and antibiofilm abilities of graphene and its derivatives in solution, on the surface are reviewed, and their toxicity and possible mechanisms are also reviewed. Furthermore, we propose possible future development directions for graphene and its derivatives in antibacterial and antibiofilm applications.
Collapse
|
24
|
Lin J, Bi S, Fan Z, Fu Z, Meng Z, Hou Z, Zhang F. A metal-free approach to bipyridinium salt-based conjugated porous polymers with olefin linkages. Polym Chem 2021. [DOI: 10.1039/d0py01743d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free bipyridinium salt-activated Knoevenagel condensation strategy was developed to synthesize olefin-linked conjugated porous polymers with π-extended networks, positively charged skeletons, high stability and antibacterial activity.
Collapse
Affiliation(s)
- Jiawei Lin
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome
- Xiamen University
- Xiamen 361005
- China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Electrochemical Energy Devices Research Center
- Shanghai Jiao Tong University
- 200240 Shanghai
| | - Zhongxiong Fan
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome
- Xiamen University
- Xiamen 361005
- China
| | - Zhenzhen Fu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Electrochemical Energy Devices Research Center
- Shanghai Jiao Tong University
- 200240 Shanghai
| | - Zhaohui Meng
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome
- Xiamen University
- Xiamen 361005
- China
| | - Zhenqing Hou
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome
- Xiamen University
- Xiamen 361005
- China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Electrochemical Energy Devices Research Center
- Shanghai Jiao Tong University
- 200240 Shanghai
| |
Collapse
|
25
|
Tunable Superhydrophobic Aluminum Surfaces with Anti-Biofouling and Antibacterial Properties. COATINGS 2020. [DOI: 10.3390/coatings10100982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surfaces in a hygiene critical environment can become potential reservoirs for transmission of pathogenic infections. Engineering surfaces with the tunable anti-biofouling and antibacterial properties could reduce infections particularly in hospitals and public transport hubs. In the present work, a facile two-step process has been deployed to fabricate a superhydrophobic and antibacterial aluminum surface by chemical etching, followed by passivation with low surface energy octyltriethoxysilane (OTES) molecules. The wettability and antibacterial properties of the OTES passivated aluminum was monotonically tuned by adding quaternary ammonium (QUATs) molecules. An anti-biofouling property of 99.9% against Staphylococcus aureus, 99% against Pseudomonas aeruginosa and 99% against E. coli bacteria, was achieved.
Collapse
|
26
|
Cui J, Duan M, Sun Q, Fan W. Simvastatin decreases the silver resistance of E. faecalis through compromising the entrapping function of extracellular polymeric substances against silver. World J Microbiol Biotechnol 2020; 36:54. [PMID: 32172435 DOI: 10.1007/s11274-020-02830-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive bacterium closely related to many refractory infections of human and shows the resistant ability against the antibacterial effects of silver. Simvastatin is a semisynthetic compound derived from lovastatin and a hydroxymethyl glutaryl coenzyme A(HMG-COA) reductase inhibitor showing certain inhibitive effects on bacteria. The main purpose of this study was to establish and characterize the Ag+/silver nanoparticles (AgNPs)-resistant E. faecalis, and further evaluate the function of extracellular polymeric substances (EPS) in the silver resistance and the effect of simvastatin on the silver-resistance of E. faecalis. The results showed that the established silver-resistant E. faecalis had strong resistance against both Ag+ and AgNPs and simvastatin could decrease the silver-resistance of both original and Ag+/AgNPs-resistant E. faecalis. The Transmission electron microscopy (TEM), High-angle annular dark-field (HAADF) and mapping images showed that the silver ions or particles aggregated and confined in the EPS on surface areas of the cell membrane when the silver-resistant E. faecalis were incubated with Ag+ or AgNPs. When the simvastatin was added, the silver element was not confined in the EPS and entered the bacteria. These findings may indicate that the silver resistance of E. faecalis was derived from the entrapping function of EPS, but simvastatin could compromise the function of EPS to decrease the silver resistant ability of E. faecalis.
Collapse
Affiliation(s)
- Jingwen Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Mengting Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|