1
|
Pal S, Keten S. Micro-ballistic response of thin film polymer grafted nanoparticle monolayers. SOFT MATTER 2024; 20:7926-7935. [PMID: 39331362 DOI: 10.1039/d4sm00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Self-assembled polymer grafted nanoparticles (PGNs) are of great interest for their potential to enhance mechanical properties compared to neat polymers and nanocomposites. Apart from volume fraction of nanoparticles, recent experiments have suggested that nanoscale phenomena such as nanoconfinement of grafted chains, altered dynamics and relaxation behavior at the segmental and colloidal scales, and cohesive energy between neighboring coronas are important factors that influence mechanical and rheological properties. How these factors influence the mechanics of thin films subject to micro-ballistic impact remains to be fully understood. Here we examine the micro-ballistic impact resistance of PGN thin films with polymethyl methacrylate (PMMA) grafts using coarse-grained molecular dynamics simulations. The grafted chain length and nanoparticle core densities are systematically varied to understand the influences of interparticle spacing, cohesion, and momentum transfer effects under high-velocity impact. Our findings show that the inter-PGN cohesive energy density (γPGN) is an important parameter for energy absorption. Cohesion energy density is low for short grafts but quickly saturates around entanglement length as adjacent coronas interpenetrate fully. The response of γPGN positively influences specific penetration energy, , which peaks before chain entanglement starts (
Collapse
Affiliation(s)
- Subhadeep Pal
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Sinan Keten
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Pang J, Ke Z, Jiang T, Tang F, Zhang S, He K. Synthesis and catalytic performance of wood cellulose nanofibers grafted with polylactic acid in rare-earth complexes based on tetrazole carboxylic acids. Int J Biol Macromol 2023; 253:127218. [PMID: 37793529 DOI: 10.1016/j.ijbiomac.2023.127218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Stannous octanoate [Sn(Oct)2] and 4-dimethylamino pyridine (DMAP) were used to catalyze the synthesis of amphiphilic cellulose-based graft copolymers, but the acute toxicity of tin ions and DMAP prompts the need for the application of less harmful catalysts. Herein, green catalyst complexes 1-3 [M(H0.5L)2(H2O)5]·2(H2O) (M = Sm, 1; M = Nd, 2; M = Eu, 3; H2L = 4-(3-(tetrazol-5-yl)pyridin-5-yl)benzoic acid) were synthesized, and their properties were systematically investigated. Single-crystal X-ray diffraction showed that the complexes possessed a zero-dimensional structure, while the thermogravimetry and scanning electron microscopy results confirmed their stability after heating at 110 °C for 10 h. Using complexes 1-3 and DMAP as the catalysts, CNFs were grafted with l-lactide via homogeneous ring-opening polymerization to form wood cellulose nanofibers grafted with l-lactide (WGLAs), and the effects of the ratio of wood cellulose nanofibers (WCNFs) to l-lactide ([AGU]/[LA]) and catalyst dosage were studied. The polymerization followed the coordination-insertion mechanism. Under comparable reaction conditions, the grafting ratio of WGLA-1 reached 84.7 %, and the grafting ratio of complex 1 was found to be higher than those achieved using DMAP. WGLAs demonstrated good thermal stability without cytotoxicity, and the residual catalysts in the WGLAs exhibited fluorescence characteristics. Overall, amphiphilic cellulose-based materials with fluorescence emission offered a promising modification strategy to prepare high-performance polymer composites for agriculture and biomedical application.
Collapse
Affiliation(s)
- Jinying Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhilin Ke
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Tanlin Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Fushun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shuhua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Kunhuan He
- College of petroleum and chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
3
|
Pang J, Jiang T, Ke Z, Xiao Y, Li W, Zhang S, Guo P. Wood Cellulose Nanofibers Grafted with Poly(ε-caprolactone) Catalyzed by ZnEu-MOF for Functionalization and Surface Modification of PCL Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1904. [PMID: 37446420 DOI: 10.3390/nano13131904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Renewable cellulose nanofiber (CNF)-reinforced biodegradable polymers (such as polycaprolactone (PCL)) are used in agriculture, food packaging, and sustained drug release. However, the interfacial incompatibility between hydrophilic CNFs and hydrophobic PCL has limited further application as high-performance biomaterials. In this work, using a novel ZnEu-MOF as the catalyst, graft copolymers (GCL) with CNFs were grafted with poly(ε-caprolactone) (ε-CL) via homogeneous ring-opening polymerization (ROP), and used as strengthening/toughening nanofillers for PCL to fabricate light composite films (LCFs). The results showed that the ZnEu-MOF ([ZnEu(L)2(HL)(H2O)0.39(CH3OH)0.61]·H2O, H2L is 5-(1H-imidazol-1-yl)-1,3-benzenedicarboxylic acids) was an efficient catalyst, with low toxicity, good stability, and fluorescence emissions, and the GCL could efficiently promote the dispersion of CNFs and improve the compatibility of the CNFs and PCL. Due to the synergistic effect of the ZnEu-MOF and CNFs, considerable improvements in the mechanical properties and high-intensity fluorescence were obtained in the LCFs. The 4 wt% GCL provided the LCF with the highest strength and elastic modulus, which increased by 247.75% and 109.94% compared to CNF/PCL, respectively, showing the best elongation at break of 917%, which was 33-fold higher than CNF/PCL. Therefore, the ZnEu-MOF represented a novel bifunctional material for ROP reactions and offered a promising modification strategy for preparing high-performance polymer composites for agriculture and biomedical applications.
Collapse
Affiliation(s)
- Jinying Pang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Tanlin Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yu Xiao
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Weizhou Li
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Penghu Guo
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control (College of Chemistry), Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
4
|
Serri C, Cruz-Maya I, Bonadies I, Rassu G, Giunchedi P, Gavini E, Guarino V. Green Routes for Bio-Fabrication in Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:1744. [PMID: 37376192 PMCID: PMC10300741 DOI: 10.3390/pharmaceutics15061744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
5
|
Gao QF, Jiang TL, Li WZ, Tan DF, Zhang XH, Pang JY, Zhang SH. Porous and Stable Zn-Series Metal-Organic Frameworks as Efficient Catalysts for Grafting Wood Nanofibers with Polycaprolactone via a Copolymerization Approach. Inorg Chem 2023; 62:3464-3473. [PMID: 36791390 DOI: 10.1021/acs.inorgchem.2c03721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A hydrothermal method was used to synthesize two highly stable Zn(II) metal-organic frameworks (MOFs), namely, [Zn2(L)2(HIPA)]n (1) and [Zn9(L)6(BTEC)3(H2O)4·6H2O]n (2) (HL = 3-amino-1H-1,2,4-triazole, H2HIPA = 5-hydroxyisophthalic acid, H4BTEC = benzene-1,2,4,5-tetracarboxylic acid). The physicochemical properties of 1 and 2 were characterized using a range of analytical techniques. The scanning electron microscopy images confirmed the stability of the MOFs under heating at 120 °C for 12 h. Following their preparation, the two MOFs were used as catalysts in the grafting of poly(ε-caprolactone) on wood nanofibers (WNFs) by means of a homogeneous ring-opening polymerization protocol in an ionic liquid. The grafting ratio achieved using catalyst 1 was higher than that achieved for catalyst 2, wherein a maximum of 92.43% was obtained using the former. Under comparable reaction conditions, the grafting ratio of 1 was found to be significantly higher than those achieved using 4-dimethylamino pyridine, Sn(Oct)2, and UiO-67 catalysts. In addition, fluorescence emission was detected from the residual catalysts present in the products. The calculated electrostatic potentials and average local ionization energies indicated that the grafting of ε-caprolactone on the WNFs follows a "coordination-insertion" mechanism. Overall, these two new and efficient MOF catalysts have the potential to replace highly toxic traditional catalysts in polymerization reactions. The grafted cellulose material with fluorescence emission may also be suitable for use in biomedical applications.
Collapse
Affiliation(s)
- Qi-Feng Gao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China.,Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning, Guangxi 530000, P. R. China
| | - Tan-Lin Jiang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China.,Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning, Guangxi 530000, P. R. China
| | - Wei-Zhou Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China.,School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, P. R. China
| | - Deng-Feng Tan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning, Guangxi 530000, P. R. China
| | - Xiu-Hai Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jin-Ying Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning, Guangxi 530000, P. R. China.,College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, P. R. China.,College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
6
|
Fuster MG, Moulefera I, Muñoz MN, Montalbán MG, Víllora G. Synthesis of Cellulose Nanoparticles from Ionic Liquid Solutions for Biomedical Applications. Polymers (Basel) 2023; 15:polym15020382. [PMID: 36679262 PMCID: PMC9867531 DOI: 10.3390/polym15020382] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine. The obtained cellulose nanoparticles have been characterised by Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DTA). Finally, cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). These have shown that the cellulose nanoparticles obtained are not cytotoxic in the concentration range of the studied nanoparticles. The results obtained in this work constitute a starting point for future studies on the use of cellulose nanoparticles, synthesised from ionic liquids, for biomedical applications such as targeted drug release or controlled drug release.
Collapse
|
7
|
Cruz-Maya I, Zuppolini S, Zarrelli M, Mazzotta E, Borriello A, Malitesta C, Guarino V. Polydopamine-Coated Alginate Microgels: Process Optimization and In Vitro Validation. J Funct Biomater 2022; 14:jfb14010002. [PMID: 36662049 PMCID: PMC9865381 DOI: 10.3390/jfb14010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In the last decade, alginate-based microgels have gained relevant interest as three-dimensional analogues of extracellular matrix, being able to support cell growth and functions. In this study, core-shell microgels were fabricated by self-polymerization of dopamine (DA) molecules under mild oxidation and in situ precipitation of polydopamine (PDA) onto alginate microbeads, processed by electro fluid dynamic atomization. Morphological (optical, SEM) and chemical analyses (ATR-FTIR, XPS) confirmed the presence of PDA macromolecules, distributed onto the microgel surface. Nanoindentation tests also indicated that the PDA coating can influence the biomechanical properties of the microgel surfaces-i.e., σmaxALG = 0.45 mN vs. σmaxALG@PDA = 0.30 mN-thus improving the interface with hMSCs as confirmed by in vitro tests; in particular, protein adsorption and viability tests show a significant increase in adhesion and cell proliferation, strictly related to the presence of PDA. Hence, we concluded that PDA coating contributes to the formation of a friendly interface able to efficiently support cells' activities. In this perspective, core-shell microgels may be suggested as a novel symmetric 3D model to study in vitro cell interactions.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Mauro Zarrelli
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
- Correspondence: (A.B.); (V.G.)
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, V.le J.F. Kennedy 54, 80125 Naples, Italy
- Correspondence: (A.B.); (V.G.)
| |
Collapse
|
8
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
9
|
Non‑isothermal crystallization kinetics of polycaprolactone-based composite membranes. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Renkler NZ, Cruz-Maya I, Bonadies I, Guarino V. Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications. Polymers (Basel) 2022; 14:polym14194249. [PMID: 36236197 PMCID: PMC9572386 DOI: 10.3390/polym14194249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
In the last two decades, several processes have been explored for the development of micro and/or nanostructured substrates by sagely physically and/or chemically manipulating polymer materials. These processes have to be designed to overcome some of the limitations of the traditional ones in terms of feasibility, reproducibility, and sustainability. Herein, the primary aim of this work is to focus on the enormous potential of using a high voltage electric field to manipulate polymers from synthetic and/or natural sources for the fabrication of different devices based on elementary units, i.e., fibers or particles, with different characteristic sizes—from micro to nanoscale. Firstly, basic principles and working mechanisms will be introduced in order to correlate the effect of selected process parameters (i.e., an applied voltage) on the dimensional features of the structures. Secondly, a comprehensive overview of the recent trends and potential uses of these processes will be proposed for different biomedical and bio-sustainable application areas.
Collapse
|
11
|
Synthesis and catalytic performance of banana cellulose nanofibres grafted with poly(ε-caprolactone) in a novel two-dimensional zinc(II) metal-organic framework. Int J Biol Macromol 2022; 224:568-577. [DOI: 10.1016/j.ijbiomac.2022.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
12
|
Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics 2022; 14:pharmaceutics14020386. [PMID: 35214120 PMCID: PMC8878053 DOI: 10.3390/pharmaceutics14020386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In the last decade, amphiphilic cellulose (AC) is emerging as attractive biomaterial for different therapeutic use, due to its unique chemical and physical properties. Using it as alternative to synthetic polymers, AC opens up new avenues to prepare new bio-sustainable materials with low impact in the cellular environment. Herein, most recent methods to synthesize and processing AC materials from different sources—i.e., cellulose nanofibers, bacterial cellulose, cellulose derivatives—will be discussed. By an accurate optimization of morphology and surface chemistry, it is possible to develop innovative amphiphilic platforms, promising for a wide range of biomedical applications, from drug delivery to molecular/particle adsorption.
Collapse
|
13
|
Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents. Polym Chem 2022. [DOI: 10.1039/d1py00879j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical modification of cellulose in "green" solvents.
Collapse
Affiliation(s)
- Wenjiao Ge
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianbo Shuai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuyuan Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxi Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Fan Y, Liu Y, Wu Y, Dai F, Yuan M, Wang F, Bai Y, Deng H. Natural polysaccharides based self-assembled nanoparticles for biomedical applications - A review. Int J Biol Macromol 2021; 192:1240-1255. [PMID: 34678381 DOI: 10.1016/j.ijbiomac.2021.10.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
In recent years, nanoparticles (NPs) derived from the self-assembly of natural polysaccharides have shown great potential in the biomedical field. Here, we described several self-assembly modes of natural polysaccharides in detail, summarized the natural polysaccharides mostly used for self-assembly, and provided insights into the current applications and achievements of these self-assembled NPs. As one of the most widespread substances in nature, most natural polysaccharides exhibit advantages of biodegradability, low immunogenicity, low toxicity, and degradable properties. Therefore, they have been fully explored, and the application of chitosan, hyaluronic acid, alginate, starch, and their derivatives has been extensively studied, especially in the fields of biomedical. Polysaccharides based NPs were proved to improve the solubility of insoluble drugs, enhance tissue target ability and realize the controlled and sustained release of drugs. When modified by hydrophobic groups, the amphiphilic polysaccharides can self-assemble into NPs. Other driven forces of self-assembly include electrostatic interaction and hydrogen bonds. Up to the present, polysaccharides-based nanoparticles have been widely applied for tumor treatment, antibacterial application, gene therapy, photodynamic therapy and transporting insulin.
Collapse
Affiliation(s)
- Yaqi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yang Wu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Feiyan Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
15
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
16
|
Ribeiro IS, Pontes FJG, Carneiro MJM, Sousa NA, Pinto VPT, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Paula HCB, Feitosa JPA, de Paula RCM. Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. Int J Biol Macromol 2021; 179:314-323. [PMID: 33675833 DOI: 10.1016/j.ijbiomac.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
Polysaccharide based copolymers have been the focus of several research, particularly for the development of drug delivery systems. This study reports on the preparation of nanoparticles from an amphiphilic copolymer obtained by the poly(ε-caprolactone) graft in the structure of cashew gum, via ring-opening polymerization. The synthesis of copolymers was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The copolymers exhibit self-organization capability in water, with critical association concentration of 42 and 50 μg mL-1. The nanoparticle hydrodynamic diameters (212 and 202 nm) revealed a decreasing trend with increasing poly(ε-caprolactone) graft percentage. Epirubicin was used as an anticancer drug model and incorporated into the nanoparticles. The encapsulation efficiency reached 50% and 5.0% drug load. Nanoparticles showed an epirubicin controlled release profile, with maximum release of 93.0 ± 4.0% in 72 h, as well as excellent biocompatibility, according to hemolysis and cytotoxicity assays.
Collapse
Affiliation(s)
- Irisvan S Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco J G Pontes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Maria J M Carneiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Nayara A Sousa
- Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Vicente P T Pinto
- Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Fábio O S Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Gisele S Araújo
- Cell Culture Laboratory of the Delta, LCC Delta, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - José D B Marinho Filho
- Cell Culture Laboratory of the Delta, LCC Delta, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ana J Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Haroldo C B Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Judith P A Feitosa
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
17
|
Öztürk AA, Namlı İ, Güleç K, Kıyan HT. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc Res 2020; 130:103991. [PMID: 32105668 DOI: 10.1016/j.mvr.2020.103991] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
The development of a new drug active substance is not only time-consuming and expensive, but also a chain of operations that often fails. However, increasing the bioavailability, effectiveness, safety, or targeting the drugs used in clinic by various methods, such as nanoparticles (NPs), may be a more effective way of using them in clinic. In addition, NP formulations are becoming increasingly popular in modern medical treatments. Angiogenesis, formation of new capillaries from a pre-existing one, fundamentally occurs in physiological processes such as wound healing, embryogenesis and menstrual cycle, also has a vital role in pathology of cancer, psoriasis, diabetic retinopathy and chronic inflammation. The Hen's Egg Test on the Chorioallantoic Membrane (HET-CAM) assay is a useful, well established and animal alternative in vivo procedure for evaluation of anti-inflammatory potentials and anti-irritant properties of nano drug delivery systems. In this study, diclofenac sodium (DS) loaded PLGA NPs were prepared and characterized. The particle size (PS) of DS-loaded PLGA NPs was between 114.7 and 124.8 nm and all NPs were monodisperse with negative zeta potential values. The encapsulation efficiency was in range of 41.4-77.8%. In vitro dissolution studies of NPs showed up to 24 h of DS release after the first 3 h of burst effect. The 3 h burst effect and 24 h release kinetics studied with DDSolver were found to be predominantly driven not only by one mechanism, by a combined mechanism of Fickian and non-Fickian. Solid state structures of formulations were clarified by DSC and FT-IR analysis. PS, EE% and release rates were found to be affected by the amount of DS added to the formulations. Increasing the amount of DS added to the formulations increased PS, while the EE% decreased. The release rates were affected by PS and the formulation with the lowest PS value showed slower release. The anti-inflammatory activity of optimum formulation (NP-1) was examined using in vivo HET-CAM assay. The anti-inflammatory activity results indicated that NP-1 coded NP formulation showed significantly good anti-inflammatory potential at low dose. As a result, a low dose high anti-inflammatory effect was achieved with the NP structure of DS. To the best of our knowledge this is the first study on in vivo anti-inflammatory activities of DS loaded PLGA NPs by HET-CAM.
Collapse
Affiliation(s)
- A Alper Öztürk
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 26470 Eskişehir, Turkey.
| | - İrem Namlı
- Anadolu University, Graduate School of Health Sciences, Department of Pharmaceutical Technology, 26470 Eskişehir, Turkey
| | - Kadri Güleç
- Anadolu University, Graduate School of Health Sciences, Department of Analytical Chemistry, 26470 Eskişehir, Turkey
| | - H Tuba Kıyan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Eskişehir, Turkey
| |
Collapse
|