1
|
Jiang C, Hu F, Zhang H, Tang Y, Shu J, Yue C. Supramolecular channels via crown ether functionalized polyaniline for proton-self-doped cathode in aqueous zinc-ion battery. J Colloid Interface Sci 2024; 669:637-646. [PMID: 38733875 DOI: 10.1016/j.jcis.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyaniline (PANI) has been widely used as a cathode in aqueous zinc-ion batteries (AZIBs) because of its attractive conductivity and energy storage capability. However, the extensive application of PANI is limited by spontaneous deprotonation and slow diffusion kinetics. Herein, an 18-crown-6-functionalised PANI pseudorotaxane (18C6@PANI) cathode is successfully developed through a facile template-directed polymerisation reaction. The 18C6@PANI cathode exhibits a high specific capacity of 256 mAh g-1 at 0.2 A/g, excellent rate performance of 134 mAh g-1 at 6 A/g and outstanding cycle stability at a high current density of 3 A/g over 10,000 cycles. Experimental and theoretical analyses demonstrate the formation of the -N-Zn-O- structure. The abundant supramolecular channels in pseudorotaxane, induced by crown ether functional groups, are beneficial for achieving superior cyclability and rate capability. These encouraging results highlight the potential for designing more efficient PANI-based cathodes for high-performance AZIBs.
Collapse
Affiliation(s)
- Chaoyan Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Fang Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xian 710054, PR China.
| | - Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yixin Tang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Chuang Yue
- Department of Microelectronics Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361000, PR China.
| |
Collapse
|
2
|
Dhanda A, Raj R, Sathe SM, Dubey BK, Ghangrekar MM. Graphene and biochar-based cathode catalysts for microbial fuel cell: Performance evaluation, economic comparison, environmental and future perspectives. ENVIRONMENTAL RESEARCH 2023; 231:116143. [PMID: 37187304 DOI: 10.1016/j.envres.2023.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cells (MFCs) have been the prime focus of research in recent years because of their distinctive feature of concomitantly treating and producing electricity from wastewater. Nevertheless, the electrical performance of MFCs is hindered by a protracted oxygen reduction reaction (ORR), and often a catalyst is required to boost the cathodic reactions. Conventional transition metals-based catalysts are expensive and infeasible for field-scale usage. In this regard, carbon-based electrocatalysts like waste-derived biochar and graphene are used to enhance the commercialisation prospects of MFC technology. These carbon-catalysts possess unique properties like superior electrocatalytic activity, higher surface area, and high porosity conducive to ORR. Theoretically, graphene-based cathode catalysts yield superior results than a biochar-derived catalyst, though at a higher cost. In contrast, the synthesis of waste-extracted biochar is economical; however, its ability to catalyse ORR is debatable. Therefore, this review aims to make a side-by-side techno-economic assessment of biochar and graphene-based cathode catalyst used in MFC to predict the relative performance and typical cost of power recovery. Additionally, the life cycle analysis of the graphene and biochar-based materials has been briefly discussed to comprehend the associated environmental impacts and overall sustainability of these carbo-catalysts.
Collapse
Affiliation(s)
- Anil Dhanda
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
3
|
Dhillon SK, Chaturvedi A, Gupta D, Nagaiah TC, Kundu PP. Copper nanoparticles embedded in polyaniline derived nitrogen-doped carbon as electrocatalyst for bio-energy generation in microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80787-80804. [PMID: 35729378 DOI: 10.1007/s11356-022-21437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (SC-MFCs) have emerged as green energy devices to resolve the growing energy and environmental crisis. However, the technology's application depends on the sluggish oxygen reduction reaction (ORR) kinetics. Among the electrocatalysts explored, transition metal-nitrogen-carbon composites exhibit satisfactory ORR activity. Herein, we investigate the performance of copper-nitrogen-carbon (Cu/NC) electrocatalysts for ORR, highlighting the effect of temperature, role of nitrogen functionalities, and Cu-Nx sites in catalyst performance. Cu/NC-700 demonstrated satisfactory ORR activity with an onset potential of 0.7 V (vs. RHE) and a limiting current density of 3.4 mA cm-2. Cu/NC-700 modified MFC exhibited a maximum power density of 489.2 mW m-2, higher than NC-700 (107.3 mW m-2). These observations could result from synergistic interaction between copper and nitrogen atoms, high density of Cu-Nx sites, and high pyridinic-N content. Moreover, the catalyst exhibited superior stability, implying its use in long-term operations. The electrocatalytic performance of the catalyst suggests that copper-doped carbon catalysts could be potential metal-nitrogen-carbon material for scaled-up MFC applications.
Collapse
Affiliation(s)
- Simran Kaur Dhillon
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Amit Chaturvedi
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology, Ropar, 140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology, Ropar, 140001, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
4
|
Zhou Q, Li R, Zhang X, Li T. Innovative Cost-Effective Nano-NiCo 2O 4 Cathode Catalysts for Oxygen Reduction in Air-Cathode Microbial Electrochemical Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811609. [PMID: 36141886 PMCID: PMC9517631 DOI: 10.3390/ijerph191811609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 05/26/2023]
Abstract
Microbial electrochemical systems (MESs) can harvest bioelectricity from varieties of organic matter in wastewater through electroactive microorganisms. Oxygen reduction reaction (ORR) in a cathode plays an important role in guaranteeing high power generation, which can be enhanced by cathode catalysts. Herein, the tiny crystalline grain nanocrystal NiCo2O4 is prepared via the economic method and utilized as an effective catalyst in air-cathode MESs. The linear sweep voltammetry results indicate that the current density of 2% nano-NiCo2O4/AC cathode (5.05 A/m2) at 0 V increases by 20% compared to the control (4.21 A/m2). The cyclic voltammetries (CVs) and the electrochemical impedance spectroscopy (EIS) showed that the addition of nano-NiCo2O4 (2%) is efficient in boosting the redox activity. The polarization curves showed that the MESs with 2% nano-NiCo2O4/AC achieved the highest maximum power density (1661 ± 28 mW/m2), which was 1.11 and 1.22 times as much as that of AC and 5% nano-NiCo2O4. Moreover, the adulteration of nano-NiCo2O4 with a content of 2% can not only enable the electrical activity of the electrode to be more stable, but also reduce the cost for the same power generation in MESs. The synthetic nano-NiCo2O4 undoubtedly has great benefits for large-scale MESs in wastewater treatment.
Collapse
|
5
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Surface smoothening and formation of nano-channels improved mono-selectivity and antifouling property in TiO2 incorporated cation exchange membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Chaturvedi A, Kundu PP. Co-Doped Zeolite-GO Nanocomposite as a High-Performance ORR Catalyst for Sustainable Bioelectricity Generation in Air-Cathode Single-Chambered Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33219-33233. [PMID: 35839174 DOI: 10.1021/acsami.2c07638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-performance cobalt (Co) nanoparticles supported on a zeolite-graphene oxide (1:2) matrix (catalyst Z2) are synthesized through a facile reduction method. In multipoint Brunauer-Emmett-Teller (MBET) surface area analysis, catalyst Z2 demonstrates a higher surface area compared with other synthesized catalysts, indicating the presence of a larger number of catalytic active sites, and supports outstanding ORR performance due to an improved electron-transfer rate and a higher number of redox-active sites. Furthermore, it is observed that catalyst Z2 is an excellent electrocatalytic material due to its low charge-transfer resistance and higher oxygen reduction reaction (ORR) activity. Herein, the electrocatalytic investigation suggests that catalyst Z2 at a potential of 483 mV and a reduction current of -0.382 mA displays a higher electrocatalytic performance and higher stability toward ORR compared with other synthesized catalysts and even the standard Pt/C catalyst. Also, when catalyst Z2 is applied as an air-cathode ORR electrocatalyst for a single-chambered microbial fuel cell (SC-MFC), the SC-MFC coated with catalyst Z2 generates the maximum power density of 416.78 mW/m2, which is 306% higher than that of SC-MFC coated with Pt/C (102.67 mW/m2). In fact, the longer stability and electronic conductivity have contributed to an outstanding ORR activity of the nanocomposite due to its porous surface morphology and the presence of the functional groups in the zeolite-GO support matrix. In brief, Co (cobalt) nanoparticles doped on a zeolite-GO (1:2) support matrix are promising cathode electrocatalysts in the practical application of MFCs and other related devices.
Collapse
Affiliation(s)
- Amit Chaturvedi
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247 667, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247 667, India
| |
Collapse
|
8
|
Priya AK, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, Soto-Moscoso M. Advancements on sustainable microbial fuel cells and their future prospects: A review. ENVIRONMENTAL RESEARCH 2022; 210:112930. [PMID: 35182595 DOI: 10.1016/j.envres.2022.112930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A microbial fuel cell (MFC) is a sustainable device that produces electricity. The main components of MFC are electrodes (anode & cathode) and separators. The MFC's performance is ascertained by measuring its power density. Its components and other parameters, such as cell design and configuration, operation parameters (pH, salinity, and temperature), substrate characteristics, and microbes present in the substrate, all influence its performance. MFC can be scaled up and commercialized using low-cost materials without affecting its performance. Hence the choice of materials plays a significant role. In the past, precious and non-precious metals were mostly used. These were replaced by a variety of low-cost carbonaceous and non-carbonaceous materials. Nano materials, activated compounds, composite materials, have also found their way as components of MFC materials. This review describes the recently reported modified electrodes (anode and cathode), their improvisation, their merits, pollutant removal efficiency, and associated power density.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - C Subha
- Department of Civil Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, avenida Collao 1202, casilla 15-C, Concepción, Chile
| |
Collapse
|
9
|
Murugasamy J, Ramalakshmi N, Pandiyan R, Ayyaru S, Jayaraman V, Ahn YH. Synthesis and characterization of sulfonated hafnium oxide nanoparticles for energy storage devices. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Li C, Mei T, Song TS, Xie J. Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes. Bioprocess Biosyst Eng 2022; 45:1137-1147. [PMID: 35624323 DOI: 10.1007/s00449-022-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Solid-phase microbial fuel cell (SMFC) can accelerate the removal of organic pollutants through the electrons transfer between microorganisms and anodes in the process of generating electricity. Thus, the characteristics of the anode material will affect the performance of SMFCs. In this study, corn stem (CS) is first calcined into a 3D macroporous electrode, and then modified with carbon nanotubes (CNTs) through electrochemical deposition method. Scanning electron microscope analysis showed the CS/CNT anode could increase the contact area on the surface. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry analysis indicated the electrochemical double-layer capacitance of the CS/CNT anode increased while its internal resistance decreased significantly. These characteristics are crucial for increasing bacterial adhesion capability and electron transfer rate. The maximum output voltage of the SMFC with CS/CNT anode was 158.42 mV, and the removal rate of petroleum hydrocarbon (PH) reached 42.17%, 2.72 times that of unmodified CS. In conclusion, CNT-modified CS is conducive to improve electron transfer rate and microbial attachment, enhancing the removal efficiency of PH in soil.
Collapse
Affiliation(s)
- Chenrong Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ting Mei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, People's Republic of China.
| |
Collapse
|
11
|
Design and assembly of supercapacitor based on reduced graphene oxide/TiO2/polyaniline ternary nanocomposite and its application in electrical circuit. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers. MEMBRANES 2022; 12:membranes12030344. [PMID: 35323819 PMCID: PMC8951258 DOI: 10.3390/membranes12030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide (GO) and its acid-functionalized form are known to be effective in enhancing the proton transport properties of phosphoric-acid doped polybenzimidazole (PA-doped PBI) membranes utilized in high-temperature proton exchange membrane fuel cells (HTPEMFC) owing to the presence of proton-conducting functional groups. This work aims to provide a comparison between the different effects of GO with the sulfonated GO (SGO) and phosphonated GO (PGO) on the properties of PA-doped PBI, with emphasis given on proton conductivity to understand which functional groups are suitable for proton transfer under high temperature and anhydrous conditions. Each filler was synthesized following existing methods and introduced into PBI at loadings of 0.25, 0.5, and 1 wt.%. Characterizations were carried out on the overall thermal stability, acid doping level (ADL), dimensional swelling, and proton conductivity. SGO and PGO-containing PBI exhibit better conductivity than those with GO at 180 °C under anhydrous conditions, despite a slight reduction in ADL. PBI with 0.5 wt.% SGO exhibits the highest conductivity at 23.8 mS/cm, followed by PBI with 0.5 wt.% PGO at 19.6 mS/cm. However, the membrane with PGO required a smaller activation energy for proton conduction, thus less energy was needed to initiate fast proton transfer. Additionally, the PGO-containing membrane also displayed an advantage in its thermal stability aspect. Therefore, considering these properties, it is shown that PGO is a potential filler for improving PBI properties for HTPEMFC applications.
Collapse
|
13
|
Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. CHEMOSPHERE 2022; 290:133184. [PMID: 34890618 DOI: 10.1016/j.chemosphere.2021.133184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity. This flow of electrons is greatly influenced by the electrode properties and thus, much effort has been made towards electrode modification to improve the MFC performance. Different semiconductors, nanostructured metal oxides and their composite materials have been used to modify the anode as they possess high specific surface area, good biocompatibility, chemical stability and conductive properties. The cathode materials have also been modified using metals like platinum and nano-composites for increasing the redox potential, electrical conductivity and surface area. Therefore, this paper reviews the recent developments in the modification of electrodes towards improving the power generation capacity of MFCs.
Collapse
Affiliation(s)
- Roma Agrahari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India
| | - Büşra Bayar
- Faculty of Sciences, University of A Coruña, E-15008, A Coruña, Spain
| | | | - Balendu Shekher Giri
- Aquatic Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, Uttar Pradesh, 226001, India
| | - Eldon R Rene
- Department of Water Supply Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest, 2601DA Delft 7, Delft, the Netherlands
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
14
|
Gao J, Sun Z, Wang J, Fan C, Cui X, Liu J, Jiang L. An interconnected-graphene enveloped titanium dioxide flower as a robust support for proton exchange membrane fuel cells. Dalton Trans 2022; 51:9167-9174. [DOI: 10.1039/d2dt01219g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-dimensional (3D) interconnected-graphene enveloped titanium dioxide flower (TiO2@RGO) as a robust support for the oxygen reduction reaction (ORR) is reported.
Collapse
Affiliation(s)
- Jie Gao
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| | - Zhongyin Sun
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| | - Jie Wang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| | - Chaohua Fan
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| | - Xuejing Cui
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| | - Jing Liu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| | - Luhua Jiang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao, 266042, P.R. China
| |
Collapse
|
15
|
Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13148057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we reported the fabrication, characterization, and application of carbon nanotube (CNT)-platinum nanocomposite as a novel generation of cathode catalyst in microbial fuel cells (MFCs) for sustainable energy production and wastewater treatment. The efficiency of the carbon nanocomposites was compared by platinum (Pt), which is the most effective and common cathode catalyst. This nanocomposite is utilized to benefit from the catalytic properties of CNTs and reduce the amount of required Pt, as it is an expensive catalyst. The CNT/Pt nanocomposites were synthesized via a chemical reduction technique and the electrodes were characterized by field emission scanning electron microscopy, electronic dispersive X-Ray analysis, and transmission electron microscopy. The nanocomposites were applied as cathode catalysts in the MFC to obtain polarization curve and coulombic efficiency (CE) results. The catalytic properties of electrodes were tested by linear sweep voltammetry. The CNT/Pt at the concentration of 0.3 mg/cm2 had the highest performance in terms of CE (47.16%), internal resistance (551 Ω), COD removal (88.9%), and power generation (143 mW/m2). In contrast, for the electrode with 0.5 mg/L of Pt catalyst, CE, internal resistance, COD removal, and power generation were 19%, 810 Ω, 96%, and 84.1 mW/m2, respectively. So, it has been found that carbon nanocomposite cathode electrodes had better performance for sustainable clean energy production and COD removal by MFC.
Collapse
|
16
|
Priyadarshini M, Ahmad A, Das S, Ghangrekar MM. Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1007/s13762-021-03499-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Eco-Friendly Colloidal Aqueous Sol-Gel Process for TiO2 Synthesis: The Peptization Method to Obtain Crystalline and Photoactive Materials at Low Temperature. Catalysts 2021. [DOI: 10.3390/catal11070768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This work reviews an eco-friendly process for producing TiO2 via colloidal aqueous sol–gel synthesis, resulting in crystalline materials without a calcination step. Three types of colloidal aqueous TiO2 are reviewed: the as-synthesized type obtained directly after synthesis, without any specific treatment; the calcined, obtained after a subsequent calcination step; and the hydrothermal, obtained after a specific autoclave treatment. This eco-friendly process is based on the hydrolysis of a Ti precursor in excess of water, followed by the peptization of the precipitated TiO2. Compared to classical TiO2 synthesis, this method results in crystalline TiO2 nanoparticles without any thermal treatment and uses only small amounts of organic chemicals. Depending on the synthesis parameters, the three crystalline phases of TiO2 (anatase, brookite, and rutile) can be obtained. The morphology of the nanoparticles can also be tailored by the synthesis parameters. The most important parameter is the peptizing agent. Indeed, depending on its acidic or basic character and also on its amount, it can modulate the crystallinity and morphology of TiO2. Colloidal aqueous TiO2 photocatalysts are mainly being used in various photocatalytic reactions for organic pollutant degradation. The as-synthesized materials seem to have equivalent photocatalytic efficiency to the photocatalysts post-treated with thermal treatments and the commercial Evonik Aeroxide P25, which is produced by a high-temperature process. Indeed, as-prepared, the TiO2 photocatalysts present a high specific surface area and crystalline phases. Emerging applications are also referenced, such as elaborating catalysts for fuel cells, nanocomposite drug delivery systems, or the inkjet printing of microstructures. Only a few works have explored these new properties, giving a lot of potential avenues for studying this eco-friendly TiO2 synthesis method for innovative implementations.
Collapse
|
18
|
Qiu S, Guo Z, Naz F, Yang Z, Yu C. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 2021; 141:107834. [PMID: 34022579 DOI: 10.1016/j.bioelechem.2021.107834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
Since the high cost and low power generation hinder the overall practical application of microbial fuel cells (MFCs), numerous attempts have been made in the field of cathode materials to enhance the electrical performance of MFCs because they directly catalyze the oxygen reduction reactions (ORR). To choose a proper cathode material, following principles such as ORR activity, conductivity, cost-efficiency, durability, surface area, and accessibility should be taken into consideration. In preparation of cathode materials, versatile materials have been chosen, synthesized, or modified to achieve an improvement in power generation of MFCs. The most widely applied cathode materials could be categorized into three classes, namely carbon-base materials, metal-based materials, and biocatalysts. This review summarizes the utilization, development, and the cost of cathode materials applied in MFCs and tries to highlight the effective modification methods of cathode materials which have helped in achieving enhanced power generation of MFCs in recent years.
Collapse
Affiliation(s)
- Song Qiu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenyu Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science, Engineering Laboratory of South Xinjiang Chemical Resources Utilization of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Performance evaluation of poly(aniline-co-pyrrole) wrapped titanium dioxide nanocomposite as an air-cathode catalyst material for microbial fuel cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111492. [PMID: 33255059 DOI: 10.1016/j.msec.2020.111492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022]
Abstract
A simple, inexpensive in situ oxidative polymerization of aniline and pyrrole using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant has been used to synthesize a hybrid (PAni-Co-PPy)@TiO2 nanocomposite with titanium oxide (TiO2) nanoparticles (NPs) wrapped into (PAni-Co-PPy) copolymer. The synthesized nanocomposite has been shown with higher oxygen reduction reactions (ORR) as an excellent cathode material for higher performance in the complex of (PAni-Co-PPy)+/TiO2(O-). The charge transport phenomenon between TiO2 and (PAni-Co-PPy)+ were found adequate with subsequent delocalization of electron/s at PAni and PPy. The self-doping nature of TiO2 (O-) played a vital role in oxygen adsorption and desorption process. With higher electrical conductivity and surface area, these were tested in microbial fuel cells (MFCs) for ORRs at cathode. This yielded a relatively higher current and power density output as compared to PAni@TiO2, PPy@TiO2, and commercially available Pt/C cathode catalysts in MFC system. In overall, the prepared (PAni-Co-PPy)@TiO2 nano-hybrid cathode delivered ~2.03 fold higher power density as compared to Pt/C catalyst, i.e. ~987.36 ± 49 mW/m2 against ~481.02 ± 24 mW/m2. The properties of electro-catalysts established an improved synergetic effect between TiO2 NPs and (PAni-Co-PPy). In effect, the enhanced surface area and electrochemical properties of the prepared (PAni-Co-PPy)@TiO2 nano-hybrid system is depicted here as an effective cathode catalyst in MFCs for improved performance.
Collapse
|
20
|
Chakraborty I, Sathe S, Dubey B, Ghangrekar M. Waste-derived biochar: Applications and future perspective in microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 312:123587. [PMID: 32480350 DOI: 10.1016/j.biortech.2020.123587] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
|
21
|
Das I, Das S, Ghangrekar M. Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|