1
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. 3D printed polylactic acid/polyethylene glycol/bredigite nanocomposite scaffold enhances bone tissue regeneration via promoting osteogenesis and angiogenesis. Int J Biol Macromol 2024; 281:136160. [PMID: 39357695 DOI: 10.1016/j.ijbiomac.2024.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, the fabrication of personalized scaffolds with high accuracy has been developed through 3D printing technology. In the current study, polylactic acid/polyethylene glycol (PLA/PEG) composite scaffolds with varied weight percentages (0, 5, 10, 20 and 30 %) of bredigite nanoparticles (B) were fabricated using the 3D printing and then characterized through scanning electron microscopy and Fourier transform infra-red spectroscopy. The addition of B nanoparticles up to 20 wt% to PLA/PEG scaffold increased the compressive strength (from 7.59 to 13.84 MPa) and elastic modulus (from 142.42 to 268.33 MPa). The apatite formation ability as well as inorganic ion release in simulated body fluid were investigated for 28 days. The MG-63 cells viability and adhesion were enhanced by increasing the amount of B in the PLA/PEG scaffold and the osteogenic differentiation of the rat bone marrow mesenchymal stem cells was confirmed by alkaline phosphatase activity test and alizarin red staining. According to chorioallantoic membrane assay, the highest angiogenesis occurred around the PLA/PEG/B30 scaffold. In vivo experiments on a rat calvarial defect model demonstrated an almost complete recovery in the PLA/PEG/B30 group within 8 weeks. Based on the results, the PLA/PEG/B30 composite scaffold is proposed as an optimal scaffold to repair bone defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
2
|
Dahinten A, Kade JC, Soliman S, Krastl G, Gbureck U. Evaluation of baghdadite (Ca 3ZrSi 2O 9) cements for the application as novel endodontic filling materials. Dent Mater 2024; 40:1364-1371. [PMID: 38890091 DOI: 10.1016/j.dental.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Baghdadite (Ca3ZrSi2O9) cements of various composition have been investigated in this study regarding an application as endodontic filling materials. METHODS Cements were either obtained by mixing mechanically activated baghdadite powder with water (maBag) or by subsequently substituting the ß-tricalcium phosphate (ß-TCP) component in a brushite forming calcium phosphate cement. The cements were analyzed for their mechanical performance, injectability, radiopacity, phase composition and antimicrobial properties. RESULTS The cements demonstrated sufficient mechanical performance with a compressive strength of ∼1 MPa (maBag) and 2.3 - 17.4 MPa (substituted calcium phosphate cement), good injectability > 80 % depending on the powder to liquid ratio and an intrinsic radiopacity of 1.13 - 2.05 mm aluminum equivalent. Immersion in artificial saliva proved their bioactivity by the formation of calcium phosphate and calcium silicate precipitates on the cement surface. The bacterial activity of Staphylococcus aureus cultured on the surface of the cements was found to be similar compared to clinical standard ProRoot MTA cement or even reduced by a factor of 3 for Streptococcus mutans. SIGNIFICANCE In combination with their antibacterial properties, baghdadite cements are thought to have the potential to fulfil the clinical requirements for endodontic filling materials.
Collapse
Affiliation(s)
- Anna Dahinten
- Department for Functional Materials in Medicine and Dentistry, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Juliane C Kade
- Department for Functional Materials in Medicine and Dentistry, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Sebastian Soliman
- Department of Conservative Dentistry and Periodontology, Center of Dental Traumatology, Dental School, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany.
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, Center of Dental Traumatology, Dental School, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| |
Collapse
|
3
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Ghiassi SR, Baghaban Eslaminejad M. Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair. Biomater Sci 2024; 12:4194-4210. [PMID: 38980095 DOI: 10.1039/d4bm00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Effective treatment of infected bone defects resulting from multi-drug resistant bacteria (MDR) has emerged as a significant clinical challenge, highlighting the pressing demand for potent antibacterial bone graft substitutes. Mesoporous nanoparticles have been introduced as a promising class of biomaterials offering significant properties for treating bone infections. Herein, we synthesize antibacterial mesoporous hydroxyapatite substituted with zinc and gallium (Zn-Ga:mHA) nanoparticles using a facile sol-gel method. The resulting mesoporous nanoparticles are applied for the controlled release of melatonin (Mel). Zn-Ga:mHA nanoparticles with an average particle size of 36 ± 3 nm and pore size of 10.6 ± 0.4 nm reveal a Mel loading efficiency of 58 ± 1%. Results show that 50% of Mel is released within 20 h and its long-term release is recorded up to 50 h. The Zn-Ga:mHA nanoparticles exhibit highly effective antibacterial performance as reflected by a 19 ± 1% and 8 ± 2% viability reduction in Escherichia coli and Staphylococcus bacteria, respectively. Noticeably, Mel-loaded Zn-Ga:mHA nanoparticles are also cytocompatible and stimulate in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) without any osteoinductive factor. In vivo studies in a rabbit skull also show significant regeneration of bone during 14 days. In summary, Mel-loaded Zn-Ga:mHA nanoparticles provide great potential as an antibacterial and osteogenic component in bone substitutes like hydrogels, scaffolds, and coatings.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Reza Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett 2024; 14:451-464. [PMID: 38645590 PMCID: PMC11026358 DOI: 10.1007/s13534-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
With the graying of the world's population, the morbidity of age-related chronic degenerative bone diseases, such as osteoporosis and osteoarthritis, is increasing yearly, leading to an increased risk of bone defects, while current treatment methods face many problems, such as shortage of grafts and an incomplete repair. Therefore, bone tissue engineering offers an alternative solution for regenerating and repairing bone tissues by constructing bioactive scaffolds with porous structures that provide mechanical support to damaged bone tissue while promoting angiogenesis and cell adhesion, proliferation, and activity. 3D printing technology has become the primary scaffold manufacturing method due to its ability to precisely control the internal pore structure and complex spatial shape of bone scaffolds. In contrast, the fast development of nanotechnology has provided more possibilities for the internal structure and biological function of scaffolds. This review focuses on the application of 3D printing technology in bone tissue engineering and nanotechnology in the field of bone tissue regeneration and repair, and explores the prospects for the integration of the two technologies.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|
5
|
Tavakoli M, Emadi R, Salehi H, Labbaf S, Varshosaz J. Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. Int J Biol Macromol 2023; 253:126510. [PMID: 37625748 DOI: 10.1016/j.ijbiomac.2023.126510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
3D printing fabrication has become a dominant approach for the creation of tissue engineering constructs as it is accurate, fast, reproducible and can produce patient-specific templates. In this study, 3D printing is applied to create nanocomposite scaffold of polylactic acid (PLA)/hardystonite (HT)-graphene oxide (GO). GO is utilized as a coupling agent of alkaline treated HT nanoparticles within PLA matrix. The addition of HT-GO nanoparticles of up to 30 wt% to PLA matrix was found to increase the degradability from 7.33 ± 0.66 to 16.03 ± 1.47 % during 28 days. Also, the addition of 20 wt% of HT-GO nanoparticles to PLA scaffold (PLA/20HTGO sample) significantly increased the compressive strength (from 7.65 ± 0.86 to 14.66 ± 1.01 MPa) and elastic modulus (from 94.46 ± 18.03 to 189.15 ± 10.87 MPa). The apatite formation on the surface of nanocomposite scaffolds in simulated body fluid within 28 days confirmed the excellent bioactivity of nanocomposite scaffolds. The MG63 cell adhesion and proliferation and, also, the rat bone marrow mesenchymal stem cells osteogenic differentiation were highly stimulated on the PLA/20HTGO scaffold. According to the sum of results obtained in the current study, the optimized PLA/20HTGO nanocomposite scaffold is highly promising for hard tissue engineering applications.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Sadreddini S, Jodati H, Evis Z, Keskin D. Novel barium-doped-baghdadite incorporated PHBV-PCL composite fibrous scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2023; 148:106185. [PMID: 37837873 DOI: 10.1016/j.jmbbm.2023.106185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Bioceramic/polymer composites have dragged a lot of attention for treating hard tissue damage in recent years. In this study, we synthesized barium-doped baghdadite (Ba-BAG), as a novel bioceramic, and later developed fibrous composite poly (hydroxybutyrate) co (hydroxyvalerate)- polycaprolactone (PHBV-PCL) scaffolds containing different amounts of baghdadite (BAG) and Ba-BAG, intended to be used in bone regeneration. Our results demonstrated that BAG and Ba-doped BAG powders were synthesized successfully using the sol-gel method and their microstructural, physicochemical, and cytotoxical properties results were evaluated. In the following, PHBV/PCL composite scaffolds containing different amounts of BAG and Ba-BAG (1, 3, and 5 wt%) were produced by the wet electrospinning method. The porosity of scaffolds decreased from 78% to 72% in Ba-BAG-incorporated PHBV/PCL scaffolds. The compressive strength of the scaffolds was between 4.69 and 9.28 kPa, which was increased to their maximum values in the scaffolds with Ba-BAG. The presence of BAG and Ba-BAG in the polymer scaffolds resulted in increasing bioactivity, and it was introduced as a suitable way to control the degradation rate of scaffolds. The presence of the BAG component was a major reason for higher cell proliferation in reinforced PHBV/PCL polymeric scaffolds, while Ba existence played its influential role in the higher osteogenic activity of cells on Ba-BAG incorporated PHBV/PCL scaffolds. Thus, the incorporation of Ba-BAG bioceramic materials into the structure of polymeric PHBV/PCL scaffolds promoted their various properties, and allow these scaffolds to be used as promising candidates in bone tissue engineering applications.
Collapse
Affiliation(s)
- Sanaossadat Sadreddini
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Hossein Jodati
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey.
| | - Dilek Keskin
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
7
|
Biniaś D, Biniaś W, Ślusarczyk C, Machnicka A. Preparation of Bioactive Polyamide Fibres Modified with Acetanilide and Copper Sulphate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6789. [PMID: 37895770 PMCID: PMC10608207 DOI: 10.3390/ma16206789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
This paper presents a simple method of obtaining polyamide 6 fibres modified with acetanilide and copper ions. During the spinning of the fibres with the additives applied, a partial reduction of CuSO4 to Cu2+ and Cu+ ions occurs, which is observed as a change in the blue colour of the prepared polyamide granulate to the grey-brown colour of the formed fibres. CuMPs obtained as a result of the salt reduction should give the obtained fibres bioactive properties. Three types of microorganisms were selected to assess the microbiological activity of the obtained fibres, i.e., Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa and Escherichia coli. The fibres have antibacterial activity against Gram-positive and Gram-negative bacteria. The largest inhibition zones were obtained for the Gram-positive bacteria Staphylococcus aureus, ranging from 1.5 to 4.5 mm, depending on the concentration of CuMPs. The morphology of the fibres' surfaces was examined by means of scanning electron microscopy (SEM) and optical microscopy (OM). The changes in the polymer structure chemistry are studied by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray structure studies (WAXS and SAXS) and an energy-dispersive spectroscopy (EDS) analysis. The newly obtained bioactive polyamide fibres can be used in many areas, including medicine, clothing and environmental protection for the production of filters.
Collapse
Affiliation(s)
- Dorota Biniaś
- Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Włodzimierz Biniaś
- Department of Materials Science, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland; (W.B.); (C.Ś.)
| | - Czesław Ślusarczyk
- Department of Materials Science, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland; (W.B.); (C.Ś.)
| | - Alicja Machnicka
- Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland;
| |
Collapse
|
8
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Jodati H, Evis Z, Tezcaner A, Alshemary AZ, Motameni A. 3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2023; 140:105722. [PMID: 36796253 DOI: 10.1016/j.jmbbm.2023.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties. The incorporation of baghdadite contributed to making more porous scaffolds (over 40%) with larger surface area and micropore volumes. The produced composite scaffolds almost solved the low degradation problem of boron-doped hydroxyapatite through the exhibition of higher biodegradation rates, which matched the degradation rate appropriate for the gradual transfer of loads from implants to newly formed bone tissues. Besides higher bioactivity, enhanced cell proliferation, as well as higher osteogenic differentiation (in scaffolds with baghdadite weight greater than 10%), were observed in composite scaffolds due to both physical and chemical modifications that occurred in composite scaffolds. Although our composite scaffolds were slightly weaker than boron-doped hydroxyapatite, their compressive strengths were higher than almost all composite scaffolds made by baghdadite incorporation in the literature. In fact, boron-doped hydroxyapatite provided a base for baghdadite to show mechanical strength suitable for cancellous bone defect treatments. Eventually, our novel composite scaffolds converged the advantages of both components to satisfy the various requirements needed for bone tissue engineering applications and take us one step forward on the road to fabricating an ideal scaffold.
Collapse
Affiliation(s)
- Hossein Jodati
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey.
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Ammar Z Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325260, China; Biomedical Engineering Department, Al-Mustaqbal University College, Hillah Babil, 51001, Iraq
| | - Ali Motameni
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
10
|
Nasser Atia G, Barai HR, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Nasser Attia HA, Joo SW. Baghdadite: A Novel and Promising Calcium Silicate in Regenerative Dentistry and Medicine. ACS OMEGA 2022; 7:44532-44541. [PMID: 36530225 PMCID: PMC9753547 DOI: 10.1021/acsomega.2c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For several years, ceramic biomaterials have been extensively utilized to rebuild and substitute for body tissues. Calcium silicates have been proven to exhibit excellent bioactivity due to apatite formation and cell proliferation stimulation, in addition to degradability at levels adequate for hard tissue formation. These ceramics' excellent biological characteristics have attracted researchers. Baghdadite is a calcium silicate incorporating zirconium ions that enhances human osteoblast multiplication and development, increasing mineralization, and ossification. It has currently received much interest in academic institutions and has been extensively explored in the form of permeable frameworks, varnishes, bone adhesive and gap fillings, microparticles, and nanospheres, particularly in a wide range of biomedical applications. This review article aims to summarize and analyze the most recent research on baghdadite's mechanical characteristics, apatite-forming capability, dissolution pattern, and physiochemical qualities as a scaffold for dentofacial tissuè regeneration purposes.
Collapse
Affiliation(s)
- Gamal
Abdel Nasser Atia
- Department
of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Hasi Rani Barai
- Department
of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Hany K. Shalaby
- Department
of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department
of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department
of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Mohamed mohamady Ghobashy
- Radiation
Research of Polymer Chemistry Department, National Center for Radiation
Research and Technology (NCRRT), Egyptian
Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department
of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, P.O. Box 21526, Egypt
| | - Sang Woo Joo
- Department
of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
11
|
Sadeghzade S, Liu J, Wang H, Li X, Cao J, Cao H, Tang B, Yuan H. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio 2022; 17:100473. [PMID: 36345364 PMCID: PMC9636580 DOI: 10.1016/j.mtbio.2022.100473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Various artificial bone graft substitutes based on ceramics have been developed over the last 20 years. Among them, calcium-silicate-based ceramics, which are osteoconductive and can attach directly to biological organs, have received great attention for bone tissue engineering applications. However, the degradation rate of calcium-silicate and bone formation is often out of balance, resulting in stress shielding (osteopenia). A new strategy to improve the drawbacks of these ceramics is incorporating trace elements such as Zn, Mg, and Zr into their lattice structures, enhancing their physical and biological properties. Recently, baghdadite (Ca3ZrSi2O9) ceramic, one of the most appealing calcium-silicate-based ceramics, has demonstrated high bioactivity, biocompatibility, biodegradability, and cell interaction. Because of its physical, mechanical, and biological properties and ability to be shaped using various fabrication techniques, baghdadite has found high potential in various biomedical applications such as coatings, fillers, cement, scaffolds, and drug delivery systems. Undoubtedly, there is a high potential for this newly developed ceramic to contribute significantly to therapies to provide a tremendous clinical outcome. This review paper aims to summarize and discuss the most relevant studies performed on baghdadite-based ceramics and composites by focusing on their behavior in vivo and in vitro.
Collapse
|
12
|
Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rafael Lemos
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- Centre of Physics (CFUM) University of Minho Campus de Gualtar 4710-057 Braga Portugal
| | - F. Raquel Maia
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
13
|
Mechanical
and biological performance of rainbow trout collagen‐boron nitride nanocomposite scaffolds for soft tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.50664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Venkatesan J, Anil S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0359-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Jiang Y, Wang H, Wang X, Yu X, Li H, Tang K, Li Q. Preparation of gelatin-based hydrogels with tunable mechanical properties and modulation on cell-matrix interactions. J Biomater Appl 2021; 36:902-911. [PMID: 34053306 DOI: 10.1177/08853282211018567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural polymer material-based hydrogels normally show inferior mechanical stability and strength to bear large deformation and cyclic loading, therefore their applications in food, biomedical and tissue engineering fields are greatly limited. In this study, gelatin-based hydrogels with remarkable stability, as well as tunable mechanical properties, were prepared via a facile method known as the Hofmeister effect. The higher concentration of potassium sulfatesolution resulted in more dehydration and molecular chain folding, thus the treated hydrogels showed significantly improved tensile and compressive modulus, and decreased equilibrium swelling ratio, as revealed by scanning electron microscopy (SEM), Fourier transform infraredspectroscopy (FTIR), and mechanical tests, etc. Additionally, the reinforced hydrogels were recoverable and biocompatible to modulate the proliferation behavior of human umbilical vein endothelial cells. In conclusion, this paper provides a facile reference for tuning mechanical properties of gelatin-based hydrogels and cell-hydrogel interactions, which show potential capacity in tissue engineering and biomedical fields.
Collapse
Affiliation(s)
- Yongchao Jiang
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| | - Haonan Wang
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Wang
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| | - Xueke Yu
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| | - Haojie Li
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| | - Keyong Tang
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| | - Qian Li
- School of Materials Science and Engineering, 12636Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Shakiba M, Rezvani Ghomi E, Khosravi F, Jouybar S, Bigham A, Zare M, Abdouss M, Moaref R, Ramakrishna S. Nylon—A material introduction and overview for biomedical applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering Faculty of Engineering, National University of Singapore Singapore Singapore
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering Faculty of Engineering, National University of Singapore Singapore Singapore
| | - Shirzad Jouybar
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB‐CNR) Naples Italy
| | - Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering Faculty of Engineering, National University of Singapore Singapore Singapore
| | - Majid Abdouss
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| | - Roxana Moaref
- Department of Polymer Engineering Amirkabir University of Technology Tehran Iran
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering Faculty of Engineering, National University of Singapore Singapore Singapore
| |
Collapse
|
17
|
Jiang Y, Li G, Liu J, Li M, Li Q, Tang K. Gelatin/Oxidized Konjac Glucomannan Composite Hydrogels with High Resistance to Large Deformation for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:1536-1543. [DOI: 10.1021/acsabm.0c01400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiying Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Fatahian R, Mirjalili M, Khajavi R, Rahimi MK, Nasirizadeh N. Fabrication of antibacterial and hemostatic electrospun PVA nanofibers for wound healing. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3084-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|