1
|
Sivakumar G, Gupta A, Babu A, Sasmal PK, Maji S. Nitrodopamine modified MnO 2 NS-MoS 2QDs hybrid nanocomposite for the extracellular and intracellular detection of glutathione. J Mater Chem B 2024; 12:4724-4735. [PMID: 38655674 DOI: 10.1039/d3tb03068g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We have developed a highly sensitive and reliable fluorescence resonance energy transfer (FRET) probe using nitro-dopamine (ND) and dopamine (DA) coated MnO2 nanosheet (ND@MnO2 NS and DA@MnO2 NS) as an energy acceptor and MoS2 quantum dots (QDs) as an energy donor. By employing surface-modified MnO2 NS, we can effectively reduce the fluorescence intensity of MoS2 QDs through FRET. It can reduce MnO2 NS to Mn2+ and facilitate the fluorescence recovery of the MoS2 QDs. This ND@MnO2 NS@MoS2 QD-based nanoprobe demonstrates excellent sensitivity to GSH, achieving an LOD of 22.7 nM in an aqueous medium while exhibiting minimal cytotoxicity and good biocompatibility. Moreover, our sensing platform shows high selectivity to GSH towards various common biomolecules and electrolytes. Confocal fluorescence imaging revealed that the nanoprobe can image GSH in A549 cells. Interestingly, the ND@MnO2 NS nanoprobe demonstrates no cytotoxicity in living cancer cells, even at concentrations up to 100 μg mL-1. Moreover, the easy fabrication and eco-friendliness of ND@MnO2 NS make it a rapid and simple method for detecting GSH. We envision the developed nanoprobe as an incredible platform for real-time monitoring of GSH levels in both extracellular and intracellular mediums, proving valuable for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Gomathi Sivakumar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu-603203, India.
| | - Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Anashwara Babu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu-603203, India.
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Samarendra Maji
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
2
|
Qian Z, Jiang C, Liu C, Liu X, Zhang X, Leng Y, Li K, Chen Z. A dual-channel sensor array for discrimination of biothiols based on manganese dioxide nanosheets. Mikrochim Acta 2023; 190:294. [PMID: 37458860 DOI: 10.1007/s00604-023-05883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
A dual-signal sensor array for highly sensitive identification of biothiols is reported based on different optical responses of MnO2/curcumin (CUR) system to different biothiols. The addition of MnO2 nanosheets (MnO2 NSs) quenches the fluorescence of CUR, and the color of the mixture changes from yellow to brown. In the presence of reductive biothiols, MnO2 NSs are etched and lose their fluorescence quenching ability, resulting in an increase in the fluorescence intensity of CUR at 540 nm and a decrease in the absorbance at 430 nm. The sensor array generates specific response modes based on the varying reduction abilities of different biothiols, which can be distinguished by linear discriminant analysis (LDA). The sensor array successfully distinguished five biothiols (glutathione (GSH), dithiothreitol (DTT), cysteine (Cys), mercaptoethanol (ME), and homocysteine (Hcy)) across a wide concentration range (1 μM-100 μM) and biothiol mixtures with varing molar ratios.
Collapse
Affiliation(s)
- Zhenni Qian
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chenyue Jiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chang Liu
- College of Chemistry, University of California, CA, 94720, Berkeley, Berkeley, USA
| | - Xinyu Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xinyu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yumin Leng
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Baranov O, Bazaka K, Belmonte T, Riccardi C, Roman HE, Mohandas M, Xu S, Cvelbar U, Levchenko I. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. NANOSCALE HORIZONS 2023; 8:568-602. [PMID: 36928662 DOI: 10.1039/d2nh00546h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.
Collapse
Affiliation(s)
- Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine.
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Kateryna Bazaka
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Claudia Riccardi
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - H Eduardo Roman
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - Mandhakini Mohandas
- Center for Nanoscience and Technology, Anna University, Chennai, 600 025, India
| | - Shuyan Xu
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| | - Uroš Cvelbar
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| |
Collapse
|
4
|
Han K, Jiang B, Tong Y, Zhang W, Zou X, Shi J, Su X. Flexible-fabricated sensor module with programmable magnetic actuators coupled to L-cysteine functionalized Ag@Fe 3O 4 complexes for Cu 2+ detection in fish tissues. Biomed Microdevices 2023; 25:15. [PMID: 37036608 DOI: 10.1007/s10544-023-00654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
Heavy metal contamination for seafood, particularly fish, is arising great concerns, and consequentially it is necessary to develop a simple and direct detection method. In this work, Ag@Fe3O4 is successfully prepared by simple solvothermal method, and we present a flexible-fabricated sensor module with assembled programmable magnetic actuators. The resulting sensor integrates a three-electrode system with two programmable magnetic actuators at the bottom of the device, which regulates the amount of current by adjusting the brake to control the adsorption force and vibration. The L-Cysteine functionalized Ag@Fe3O4 is coated on the surface of the electrode, then the Cu2+ is dropped into the reaction tank. Its performance is studied by cyclic voltammetry and electrochemical impedance spectroscopy, and the key experimental conditions such as deposition potential, deposition time, and electrolyte pH are gradually optimized. Under optimal conditions, Cu2+ can be detected over a wide linear range (0.01 ~ 4 μM) and at a low LOD (0.34 nM). The results show that the proposed method has a good application prospect in the detection of Cu2+. This method is successfully applied to Cu2+ analysis in fish samples with an acceptable recovery of 93 ~ 102%.
Collapse
Grants
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- 32102080,31801631,31671844,1601360061 National Natural Science Foundation of China
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- BK20160506,bk20180865 Natural Science Foundation of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
- KYCX21_3395 Post-graduate Research&Practice Innovation Program of Jiangsu Province
Collapse
Affiliation(s)
- Kuiguo Han
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Jiang
- Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yanqun Tong
- Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiyong Shi
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyu Su
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
5
|
Peng Z, Chang Q, Liu X, Chen D, Lu F, Chen X. Polydopamine-assisted tranilast immobilization on a PLA chamber to enhance fat flaps regeneration by reducing tissue fibrosis. RSC Adv 2023; 13:9195-9207. [PMID: 36950704 PMCID: PMC10025940 DOI: 10.1039/d2ra05237g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/22/2023] [Indexed: 03/22/2023] Open
Abstract
Tissue engineering chambers (TECs) have been shown to be useful in regenerating adipose tissue. However, tissue fibrosis caused by the chambers compromises the final volume of the newly formed adipose tissue. Surface modifications can compensate for the lack of biocompatibility of an implant. Tranilast (Tra) is an antifibrotic drug used to treat fibrotic pathologies, including keloids and scleroderma. In this study, a polydopamine-assisted tranilast coating (pDA + Tra) was prepared on a polylactic acid (PLA) chamber to minimize tissue fibrosis and achieve a large volume of fat flap regeneration. The in vitro results showed that, in contrast to a PLA chamber, roughness increased, and the fibroblast adhesion and smooth muscle antibody-positive immunoreactivity decreased in the PLA + pDA + Tra chamber. In addition, pedicled adipose tissue flaps were separated from the back of the rabbit and inserted into each chamber using the classic TEC procedure. After 16 weeks, the marked attenuation of fibrosis and promotion of fat regeneration was observed in the PLA + pDA + Tra chamber in contrast to the PLA chamber. Moreover, in contrast to the PLA chamber, Q-PCR results showed that fibrotic factor TGF-β was significantly reduced, associated with a remarkable increase in adipogenic differentiation transcription factors PPAR-γ and C/EBPα in the PLA + pDA + Tra chamber after 16 weeks (p < 0.05). Thus, PLA chambers loaded with pDA + Tra on the surface have good biocompatibility, and chemical anti-fibrosis reagents can synergistically reduce fibrosis formation while excellently promoting adipose tissue regeneration.
Collapse
Affiliation(s)
- Zhangsong Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Xilong Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University Guangzhou China
| | - Danni Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 1838 Guangzhou North Road Guangzhou Guangdong 510515 China +86 (020) 61641869 +86 (020) 61641869
| |
Collapse
|
6
|
Zinc oxide-copper sulfide semiconductor nano-heterostructure for low-level electrochemical detection of 4-nitrotoluene. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Ilgar M, Baytemir G, Taşaltın N, Güllülü S, Yeşilyurt İS, Karakuş S. Multifunctional maca extract coated CuO nanoparticles with antimicrobial and dopamine sensing activities: A dual electrochemical – Smartphone colorimetric detection system. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS OMEGA 2022; 7:22073-22088. [PMID: 35811879 PMCID: PMC9260923 DOI: 10.1021/acsomega.2c01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 10/04/2023]
Abstract
Advances in nanotechnology over the past decade have emerged as a substitute for conventional therapies and have facilitated the development of economically viable biosensors. Next-generation biosensors can play a significant role in curbing the spread of various viruses, including HCoV-2, and controlling morbidity and mortality. Pertaining to the impact of the current pandemic, there is a need for point-of-care biosensor-based testing as a detection method to accelerate the detection process. Integrating biosensors with nanostructures could be a substitute for ultrasensitive label-free biosensors to amplify sensing and miniaturization. Notably, next-generation biosensors could expedite the detection process. An elaborate description of various types of functionalized nanomaterials and their synthetic aspects is presented. The utility of the functionalized nanostructured materials for fabricating nanobiosensors to detect several types of viral infections is described in this review. This review also discusses the choice of appropriate nanomaterials, as well as challenges and opportunities in the field of nanobiosensors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
- Department
of Chemistry, Kirori Mal College, University
of Delhi, New Delhi, Delhi 110007, India
| | - Ritika Sharma
- Department
of Biochemistry, University of Delhi, New Delhi, Delhi 110021, India
| | - Bhawna
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, Delhi 110021, India
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, Delhi 110021, India
| | - Susheel Kalia
- Department
of Chemistry, Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Pankaj Thakur
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| |
Collapse
|
9
|
Sharma D, Chaudhary A. Synthesis of Quercetin Functionalized Silver Nanoparticles and Their Application for the Colorimetric Detection of L‐Cysteine in Biologically Complex Fluids. ChemistrySelect 2022. [DOI: 10.1002/slct.202104147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Deepak Sharma
- Department of Biotechnology and Bioinformatics Jaypee University of Information Technology Waknaghat Solan India
| | - Abhishek Chaudhary
- Department of Biotechnology and Bioinformatics Jaypee University of Information Technology Waknaghat Solan India
| |
Collapse
|
10
|
Kaur B, Tanwar R, Mandal UK. Effect of calcination and surface functionalization of nanoparticles on structural, magnetic and electrical properties of polyaniline Ni0.5Zn0.5Fe2O4 nanocomposites. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
O WY, Chan WC, Xu C, Deng JR, Ko BCB, Wong MK. A highly selective quinolizinium-based fluorescent probe for cysteine detection. RSC Adv 2021; 11:33294-33299. [PMID: 35497514 PMCID: PMC9042279 DOI: 10.1039/d1ra06104f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 01/23/2023] Open
Abstract
A novel fluorescent quinolizinium-based turn-off probe has been developed for selective detection of cysteine. The probe showed high selectivity and sensitivity towards cysteine over other amino acids including the similarly structured homocysteine and glutathione with a detection limit of 0.18 μM (S/N = 3). It was successfully applied to cysteine detection in living cells with low cytotoxicity and quantitative analysis of spiked mouse serum samples with moderate to good recovery (96-109%).
Collapse
Affiliation(s)
- Wa-Yi O
- The Hong Kong Polytechnic University, Shenzhen Research Institute Shenzhen P. R. China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Wing-Cheung Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Caifeng Xu
- The Hong Kong Polytechnic University, Shenzhen Research Institute Shenzhen P. R. China
| | - Jie-Ren Deng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Ben Chi-Bun Ko
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University, Shenzhen Research Institute Shenzhen P. R. China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| |
Collapse
|
12
|
Rohilla D, Kaur N, Shanavas A, Chaudhary S. Microwave mediated synthesis of dopamine functionalized copper sulphide nanoparticles: An effective catalyst for visible light driven degradation of methlyene blue dye. CHEMOSPHERE 2021; 277:130202. [PMID: 33774243 DOI: 10.1016/j.chemosphere.2021.130202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The current work highlights the potential aptitude of copper sulphide (CuS) nanoparticles as cost and energy-effective photo-catalyst for degrading methlyene blue dye under visible light. The surface modified CuS nanoparticles with dopamine (DOP) were prepared by using fast and cost effective microwave assisted methodology. Here, DOP act as biological ligand for the reduction and capping of CuS nanoparticles. The structural and morphological analyses revealed the size controlled synthesis of CuS in presence of DOP with higher thermal stability. The bio-compatibility and non-toxic behaviour of CuS@DOP nanoparticles was evaluated against L929 cell lines and on E. coli and S. aureus strains. The visible light driven photocatalytic activity of the synthesized CuS@DOP was scrutinized for the degradation of methylene blue (MB) dyes, as a model of water contaminants. The photocatalytic degradation of MB by CuS@DOP attained 97% after 10 min of visible light irradiation. The effect of catalyst dose, pH, initial concentration of MB dye, electrolytes, contact time, synergic effect of photolysis and catalysis were studied in detail for optimizing the degradation efficiency of CuS@DOP. The mechanism of CuS@DOP photocatalysis and the formed degraded products were analyzed by using LC/MS technique. The reusability and stability of photocatalyst was confirmed by reusing the catalyst for six successive runs with catalytic performance as high as 80%. Thus, CuS@DOP NPs acted as cost effective, non-toxic visible light driven photo-catalyst for the degradation of organic dye from waste water.
Collapse
Affiliation(s)
- Deepak Rohilla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Zhu W, Zhou Y, Liu S, Luo M, Du J, Fan J, Xiong H, Peng H. A novel magnetic fluorescent molecularly imprinted sensor for highly selective and sensitive detection of 4-nitrophenol in food samples through a dual-recognition mechanism. Food Chem 2021; 348:129126. [PMID: 33515947 DOI: 10.1016/j.foodchem.2021.129126] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
In this study, surface imprinting, magnetic separation, and fluorescent detection were integrated to develop a dual-recognition sensor (MF-MIPs), which was used for highly selective and sensitive detection of 4-nitrophenol (4-NP) in food samples. Silane-functionalized carbon dots (Si-CDs) participated in the imprinting process and were uniformly distributed into the MIPs layers. MF-MIPs sensor exhibited a high fluorescence response and selectivity based on the dual-recognition mechanism of imprinting recognition and fluorescence identification. The relative fluorescence intensity of MF-MIPs sensor presented a good linear relationship in the range of 0.08-10 μmol·L-1 with a low limit of detection (23.45 nmol·L1) for 4NP. MF-MIPs sensor showed high anti-interference, as well as excellent stability and reusability. The 4-NP recovery from spiked food samples ranged from 93.20 to 102.15%, and the relative standard deviation was lower than 5.0%. Therefore, MF-MIPs sensor may be a promising method for 4-NP detection in food samples.
Collapse
Affiliation(s)
- Wenting Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yushun Zhou
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shuai Liu
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Mei Luo
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Du
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jieping Fan
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Hailong Peng
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
14
|
Saha A, Khalkho BR, Deb MK. Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for l-cysteine detection in Lens culinaris (lentils). RSC Adv 2021; 11:20380-20390. [PMID: 35479888 PMCID: PMC9034027 DOI: 10.1039/d1ra01824h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
The present work reported is a simple and selective method for the colorimetrical detection of l-cysteine in Lens culinaris (or lentils) using Au–Ag core–shell (Au core Ag shell) composite nanoparticles as a chemical probe.
Collapse
Affiliation(s)
- Anushree Saha
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Beeta Rani Khalkho
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| | - Manas Kanti Deb
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492 010
- India
| |
Collapse
|
15
|
Lian J, Yin D, Zhao S, Zhu X, Liu Q, Zhang X, Zhang X. Core-shell structured Ag-CoO nanoparticles with superior peroxidase-like activity for colorimetric sensing hydrogen peroxide and o-phenylenediamine. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|