1
|
Kim G, Won J, Kim CW, Park JR, Park D. Fabrication and Evaluation of Ultrasound-Responsive Emulsion Loading Paclitaxel for Targeted Chemotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:91-99. [PMID: 38146661 DOI: 10.1021/acs.langmuir.3c02005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Chemotherapy is the most widely used cancer treatment, but it has several drawbacks such as adverse side effects and low bioavailability. To address these limitations, various drug delivery systems have been investigated, including liposomes, micelles, and emulsions. These drug delivery technologies have been improving the efficacy and safety of conventional chemotherapy. This study presents an emerging drug delivery technology for targeted chemotherapy using drug-loaded ultrasound-responsive emulsion (URE) as a drug carrier and ultrasound technology for external activation. URE was designed to be responsive to ultrasound energy and fabricated by using an emulsification technique. To investigate this technology, paclitaxel, as a model drug, was used and encapsulated into URE. The size distribution, morphology, and drug release behavior of paclitaxel-loaded URE (PTX-URE) were characterized, and the echogenicity of PTX-URE was assessed by using ultrasound imaging equipment. The cellular uptake and cytotoxicity of PTX-URE with ultrasound were evaluated in breast cancer cells (MDA-MB-231). Our in vitro results indicate that the combination of PTX-URE and ultrasound significantly enhanced cellular uptake by 10.6-fold and improved cytotoxicity by 24.1% compared to PTX alone. These findings suggest that the URE platform combined with ultrasound is a promising technology to improve the drug delivery efficiency for chemotherapy.
Collapse
Affiliation(s)
- Gayoung Kim
- Bioinfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, South Korea
| | - Jongho Won
- Bioinfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, South Korea
| | - Chul-Woo Kim
- Bioinfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, South Korea
| | - Jong-Ryul Park
- Bioinfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, South Korea
| | - Donghee Park
- Bioinfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, South Korea
| |
Collapse
|
2
|
Zhou Y, Wang P, Wan F, Zhu L, Wang Z, Fan G, Wang P, Luo H, Liao S, Yang Y, Chen S, Zhang J. Further Improvement Based on Traditional Nanocapsule Preparation Methods: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3125. [PMID: 38133022 PMCID: PMC10745493 DOI: 10.3390/nano13243125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Nanocapsule preparation technology, as an emerging technology with great development prospects, has uniqueness and superiority in various industries. In this paper, the preparation technology of nanocapsules was systematically divided into three categories: physical methods, chemical methods, and physicochemical methods. The technological innovation of different methods in recent years was reviewed, and the mechanisms of nanocapsules prepared via emulsion polymerization, interface polymerization, layer-by-layer self-assembly technology, nanoprecipitation, supercritical fluid, and nano spray drying was summarized in detail. Different from previous reviews, the renewal iteration of core-shell structural materials was highlighted, and relevant illustrations of their representative and latest research results were reviewed. With the continuous progress of nanocapsule technology, especially the continuous development of new wall materials and catalysts, new preparation technology, and new production equipment, nanocapsule technology will be used more widely in medicine, food, cosmetics, pesticides, petroleum products, and many other fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shangxing Chen
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| | - Ji Zhang
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| |
Collapse
|
3
|
Grijalvo S, Rodriguez-Abreu C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:339-350. [PMID: 36959976 PMCID: PMC10028572 DOI: 10.3762/bjnano.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The formulation of nanoemulsions by low-energy strategies, particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution, nanoparticle concentration, surface functionalization, and the type of polymers that can be processed.
Collapse
Affiliation(s)
| | - Carlos Rodriguez-Abreu
- CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain
- Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Hong L, Wang J, Zhou Y, Shang G, Guo T, Tang H, Li J, Luo Y, Zeng X, Zeng Z, Hu Z. Orthogonal Optimization, Characterization, and In Vitro Anticancer Activity Evaluation of a Hydrogen Peroxide-Responsive and Oxygen-Reserving Nanoemulsion for Hypoxic Tumor Photodynamic Therapy. Cancers (Basel) 2023; 15:cancers15051576. [PMID: 36900370 PMCID: PMC10000418 DOI: 10.3390/cancers15051576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor hypoxia can seriously impede the effectiveness of photodynamic therapy (PDT). To address this issue, two approaches, termed in situ oxygen generation and oxygen delivery, were developed. The in situ oxygen generation method uses catalysts such as catalase to decompose excess H2O2 produced by tumors. It offers specificity for tumors, but its effectiveness is limited by the low H2O2 concentration often present in tumors. The oxygen delivery strategy relies on the high oxygen solubility of perfluorocarbon, etc., to transport oxygen. It is effective, but lacks tumor specificity. In an effort to integrate the merits of the two approaches, we designed a multifunctional nanoemulsion system named CCIPN and prepared it using a sonication-phase inversion composition-sonication method with orthogonal optimization. CCIPN included catalase, the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me), photosensitizer IR780, and perfluoropolyether. Perfluoropolyether may reserve the oxygen generated by catalase within the same nanoformulation for PDT. CCIPN contained spherical droplets below 100 nm and showed reasonable cytocompatibility. It presented a stronger ability to generate cytotoxic reactive oxygen species and consequently destroy tumor cells upon light irradiation, in comparison with its counterpart without catalase or perfluoropolyether. This study contributes to the design and preparation of oxygen-supplementing PDT nanomaterials.
Collapse
Affiliation(s)
- Liang Hong
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jianman Wang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
| | - Yi Zhou
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Guofu Shang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
| | - Tao Guo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Hailong Tang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
| | - Jiangmin Li
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yali Luo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiangyu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Correspondence: (Z.Z.); (Z.H.)
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of China, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (Z.Z.); (Z.H.)
| |
Collapse
|
5
|
Abd El Hady WE, El-Emam GA, Saleh NE, Hamouda MM, Motawea A. The Idiosyncratic Efficacy of Spironolactone-Loaded PLGA Nanoparticles Against Murine Intestinal Schistosomiasis. Int J Nanomedicine 2023; 18:987-1005. [PMID: 36860210 PMCID: PMC9968784 DOI: 10.2147/ijn.s389449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
Background Schistosomiasis is a chronic debilitating parasitic disease accompanied with severe mortality rates. Although praziquantel (PZQ) acts as the sole drug for the management of this disease, it has many limitations that restrict the use of this treatment approach. Repurposing of spironolactone (SPL) and nanomedicine represents a promising approach to improve anti-schistosomal therapy. We have developed SPL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to enhance the solubility, efficacy, and drug delivery and hence decrease the frequency of administration, which is of great clinical value. Methods The physico-chemical assessment was performed starting with particle size analysis and confirmed using TEM, FT-IR, DSC, and XRD. The antischistosomal effect of the SPL-loaded PLGA NPs against Schistosoma mansoni (S. mansoni)-induced infection in mice was also estimated. Results Our results manifested that the optimized prepared NPs had particle size of 238.00 ± 7.21 nm, and the zeta potential was -19.66 ± 0.98 nm, effective encapsulation 90.43±8.81%. Other physico-chemical features emphasized that nanoparticles were completely encapsulated inside the polymer matrix. The in vitro dissolution studies revealed that SPL-loaded PLGA NPs showed sustained biphasic release pattern and followed Korsmeyer-Peppas kinetics corresponding to Fickian diffusion (n<0.45). The used regimen was efficient against S. mansoni infection and induced significant reduction in spleen, liver indices, and total worm count (ρ<0.05). Besides, when targeting the adult stages, it induced decline in the hepatic egg load and the small intestinal egg load by 57.75% and 54.17%, respectively, when compared to the control group. SPL-loaded PLGA NPs caused extensive damage to adult worms on tegument and suckers, leading to the death of the parasites in less time, plus marked improvement in liver pathology. Conclusion Collectively, these findings provided proof-of-evidence that the developed SPL-loaded PLGA NPs could be potentially used as a promising candidate for new antischistosomal drug development.
Collapse
Affiliation(s)
| | - Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nora E Saleh
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa M Hamouda
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,Correspondence: Amira Motawea, Email
| |
Collapse
|
6
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
7
|
Boerner P, Nevozhay D, Hatamimoslehabadi M, Chawla HS, Zvietcovich F, Aglyamov S, Larin KV, Sokolov KV. Repetitive optical coherence elastography measurements with blinking nanobombs. BIOMEDICAL OPTICS EXPRESS 2020; 11:6659-6673. [PMID: 33282515 PMCID: PMC7687956 DOI: 10.1364/boe.401734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 05/04/2023]
Abstract
Excitation of dye-loaded perfluorocarbon nanoparticles (nanobombs) can generate highly localized axially propagating longitudinal shear waves (LSW) that can be used to quantify tissue mechanical properties without transversal scanning of the imaging beam. In this study, we used repetitive excitations of dodecafluoropentane (C5) and tetradecafluorohexane (C6) nanobombs by a nanosecond-pulsed laser to produce multiple LSWs from a single spot in a phantom. A 1.5 MHz Fourier-domain mode-locked laser in combination with a phase correction algorithm was used to perform elastography. Multiple nanobomb activations were also monitored by detecting photoacoustic signals. Our results demonstrate that C6 nanobombs can be used for repetitive generation of LSW from a single spot for the purpose of material elasticity assessment. This study opens new avenues for continuous quantification of tissue mechanical properties using single delivery of the nanoparticles.
Collapse
Affiliation(s)
- Paul Boerner
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Equal contribution
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Equal contribution
| | | | | | - Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Konstantin V Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, Texas 78712, USA
| |
Collapse
|
8
|
|