1
|
Li H, Yang X. Effect of Surface Morphologies on the In Vitro and In Vivo Properties of Biomedical Metallic Materials. ACS Biomater Sci Eng 2024; 10:6017-6028. [PMID: 39269725 DOI: 10.1021/acsbiomaterials.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Metallic biomaterials, including traditional bioinert materials (such as stainless steel, cobalt-chromium alloys, pure titanium, and titanium alloys), novel biodegradable metals (such as pure magnesium and magnesium alloys, pure zinc and zinc alloys, and pure iron and iron alloys), and biomedical metallic glasses, have been widely used and studied as various biomedical implants and devices. Many scientists and researchers have investigated their superior biomechanical properties, corrosion behavior, and biocompatibility. However, their surface characteristics are of extreme importance due to continuing interactions between the surface/interface of an implanted metallic biomaterial and the surrounding physiological environment. Surface morphologies on these metallic biomaterials can modulate their in vitro and in vivo biological responses. In this review, we have summarized and investigated the effect of various surface morphologies on the corrosion behavior, cellular response, antibacterial activity, and osteogenesis of biomedical metallic materials. In addition, future research directions and challenges of surface morphologies on biomedical metallic materials have been elaborated. This review can lay a theoretical and practical foundation for further research and development on biomedical metallic materials.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Yin B, Luo X, Gao PY, Jiao ZS, Piao JJ, Zhao AS, Yang P. Copper and Zinc Co-doped Titanium Dioxide Nanotubes Arrays on Controlling Nitric Oxide Releasing and Regulating the Inflammatory Responses for Cardiovascular Biomaterials. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:165-172. [PMID: 34607553 DOI: 10.2174/1872210515666211004103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Titanium dioxide (TiO2) nanotubes arrays have shown tremendous application foreground due to their unique characters of structure and performance. However, the single bio-function is still the limit on cardiovascular biomaterials. METHODS The loadability function provides the possibility for the TiO2 nanotubes arrays to realize composite multifunction. The copper can catalyze the release of nitric oxide to promote the proliferation of endothelium cells and improve the anticoagulant. Also, zinc can adjust the inflammatory responses to improve anti-inflammation. RESULTS In this patent work, we co-doped the copper and zinc onto TiO2 nanotubes arrays to estimate the hemocompatibility, cytocompatibility and responses of inflammation. The results showed that copper and zinc could introduce better multi-biofunctions to the TiO2 nanotubes arrays for the application in cardiovascular biomaterials. CONCLUSION In summary, the NTs@Cu/Zn sample as a new composite material in this study had significant biocompatibility in vascular implantation and can be used as a potential material for polymer- free drug-eluting stents.
Collapse
Affiliation(s)
- Benli Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Xiao Luo
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Peng Yu Gao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Zhi Sha Jiao
- Nanyang Grain and Oil Quality Inspection Center, Nanyang, Henan, PR China
| | - Jun Ji Piao
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, South Korea
| | - An Sha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| |
Collapse
|
3
|
Gao P, Luo X, Yin B, Jiao Z, Piao J, Zhao A, Yang P. Effects of Coupled-/soluble-Copper, Generating from Copper-doped Titanium Dioxide Nanotubes on Cell Response. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:150-158. [PMID: 35034600 DOI: 10.2174/1872210516666220114120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/24/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Endothelialization in vitro is a very common method for surface modification of cardiovascular materials. However, mature endothelial cells are not suitable because of the difficulty in obtaining and immunogenicity. METHODS In this patent work, we determined the appropriate amount of copper by constructing a copper- loaded titanium dioxide nanotube array that can catalyze the release of nitric oxide, compared the effects of coupled-/soluble-copper on stem cells, and then induced stem cells to differentiate into endothelial cells. RESULTS The results showed that it had a strong promotion effect on the differentiation of stem cells into endothelial cells, which might be used for endothelialization in vitro. CONCLUSION SEM and EDS results prove that a high content of copper ions are indeed doped onto the surface of nanotubes with small amounts of Cu release. The release of NO confirms that the release of several samples within a period of time is within the physiological concentration.
Collapse
Affiliation(s)
- Pengyu Gao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China
| | - Xiao Luo
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China
| | - Benli Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China
| | - Zhisha Jiao
- Nanyang Grain and Oil Quality Inspection Center, Nanyang, Henan, P.R. China
| | - JunJi Piao
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, South Korea
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
4
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Li Y, Sun W, Zhang A, Jin S, Liang X, Tang Z, Liu X, Chen H. Vascular cell behavior on heparin-like polymers modified silicone surfaces: The prominent role of the lotus leaf-like topography. J Colloid Interface Sci 2021; 603:501-510. [PMID: 34197993 DOI: 10.1016/j.jcis.2021.06.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Vascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers and lotus leaf-like topography on surface vascular cell behavior are considered. By combining multicomponent thermo-curing and replica molding, a polydimethylsiloxane surface containing bromine (PDMS-Br) with lotus leaf-like topography is obtained. Heparin-like polymers with different chemical compositions are grafted onto PDMS-Br surfaces using visible-light-induced graft polymerization. Compared with unmodified PDMS-Br, surfaces modified by sulfonate-containing polymers are more friendly to vascular cells, while those modified by a glyco-polymer are much more resistant to vascular cells. The introduction of lotus leaf-like topography results in different degrees of decrease in cell density on different heparin-like polymer-modified surfaces. In addition, the combination of heparin-like polymers and lotus leaf-like topography results in the change in protein adsorption, indicating that the two factors may affect the surface vascular cell behavior by affecting the adsorption of relative proteins. The combination of bionic surface topography and different chemical components of heparin-like polymers on material surfaces suggests a new way of engineering cell-material interactions.
Collapse
Affiliation(s)
- Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Zengchao Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China; Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing industrial square, No.1, Jintian Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| |
Collapse
|