1
|
Bakare A, Mohanadas HP, Tucker N, Ahmed W, Manikandan A, Faudzi AAM, Mohamaddan S, Jaganathan SK. Advancements in textile techniques for cardiovascular tissue replacement and repair. APL Bioeng 2024; 8:041503. [PMID: 39431050 PMCID: PMC11488978 DOI: 10.1063/5.0231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
In cardiovascular therapeutics, procedures such as heart transplants and coronary artery bypass graft are pivotal. However, an acute shortage of organ donors increases waiting times of patients, which is reflected in negative effects on the outcome for the patient. Post-procedural complications such as thrombotic events and atherosclerotic developments may also have grave clinical implications. To address these challenges, tissue engineering is emerging as a solution, using textile technologies to synthesize biomimetic scaffolds resembling natural tissues. This comprehensive analysis explains methodologies including electrospinning, electrostatic flocking, and advanced textile techniques developed from weaving, knitting, and braiding. These techniques are evaluated in the context of fabricating cardiac patches, vascular graft constructs, stent designs, and state-of-the-art wearable sensors. We also closely examine the interaction of distinct process parameters with the biomechanical and morphological attributes of the resultant scaffolds. The research concludes by combining current findings and recommendations for subsequent investigation.
Collapse
Affiliation(s)
- Abiola Bakare
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | | | - Nick Tucker
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - A. Manikandan
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shahrol Mohamaddan
- Innovative Global Program College of Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
2
|
Xiao Y, Cai Z, Xing Y, Fang Z, Ye L, Geng X, Zhang AY, Gu Y, Feng ZG. Fabrication of small-diameter in situ tissue engineered vascular grafts with core/shell fibrous structure and a one-year evaluation via rat abdominal vessel replacement model. BIOMATERIALS ADVANCES 2024; 165:214018. [PMID: 39226677 DOI: 10.1016/j.bioadv.2024.214018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
A high vascular patency was realized in the bulk or surface heparinized small-diameter in situ tissue-engineered vascular grafts (TEVGs) via a rabbit carotid artery replacement model in our previous studies. Those surface heparinized TEVGs could reduce the occurrence of aneurysms, but with a low level of the remodeled elastin, whereas those bulk heparinized TEVGs displayed a faster degradation and an increasing occurrence of aneurysms, but with a high level of the regenerated elastin. To combine the advantages of the bulk and surface graft heparinization to boost the remodeling of elastin and defer the occurrence of aneurysms, a coaxial electro-spinning technique was used to fabricate a kind of small-diameter core/shell fibrous structural in situ TEVGs with a faster degradable poly(lactic-co-glycolic acid) (PLGA) as a core layer and a relatively lower degradable poly(ε-caprolactone) (PCL) as a shell layer followed by the surface heparinization. The in vitro mechanical performance and enzymatic degradation tests revealed the resulting PLGA@PCL-Hep in situ TEVGs possessing not only a faster degradation rate, but also the mechanical properties comparable to those of human saphenous veins. After implanted in the rat abdominal aorta for 12 months, the good endothelialization, low inflammation, and no calcification were evidenced. Furthermore, the neointima layer of regenerated new blood vessels was basically constructed with a well-organized arrangement of elastin and collagen proteins. The results showed the great potential of these in situ TEVGs to be used as a novel type of long-term small-diameter vascular grafts.
Collapse
Affiliation(s)
- Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China; Department of Vascular Surgery, Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuehao Xing
- Department of Vascular Surgery, Tongren Hospital, Capital Medical University, Beijing, China; Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China.
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
3
|
Jiang X, Zuo X, Wang H, Zhu P, Kang YJ. Fabrication of Vascular Grafts Using Poly(ε-Caprolactone) and Collagen-Encapsuled ADSCs for Interposition Implantation of Abdominal Aorta in Rhesus Monkeys. ACS Biomater Sci Eng 2024; 10:3120-3135. [PMID: 38624019 DOI: 10.1021/acsbiomaterials.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The production of small-diameter artificial vascular grafts continues to encounter numerous challenges, with concerns regarding the degradation rate and endothelialization being particularly critical. In this study, porous PCL scaffolds were prepared, and PCL vascular grafts were fabricated by 3D bioprinting of collagen materials containing adipose-derived mesenchymal stem cells (ADSCs) on the internal wall of the porous PCL scaffold. The PCL vascular grafts were then implanted in the abdominal aorta of Rhesus monkeys for up to 640 days to analyze the degradation of the scaffolds and regeneration of the aorta. Changes in surface morphology, mechanical properties, crystallization property, and molecular weight of porous PCL revealed a similar degradation process of PCL in PBS at pH 7.4 containing Thermomyces lanuginosus lipase and in situ in the abdominal aorta of rhesus monkeys. The contrast of in vitro and in vivo degradation provided valuable reference data for predicting in vivo degradation based on in vitro enzymatic degradation of PCL for further optimization of PCL vascular graft fabrication. Histological analysis through hematoxylin and eosin (HE) staining and fluorescence immunostaining demonstrated that the PCL vascular grafts successfully induced vascular regeneration in the abdominal aorta over the 640-day period. These findings provided valuable insights into the regeneration processes of the implanted vascular grafts. Overall, this study highlights the significant potential of PCL vascular grafts for the regeneration of small-diameter blood vessels.
Collapse
Affiliation(s)
- Xia Jiang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Zuo
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tasly Stem Cell Biology Laboratory, Tianjin 300410, China
| | - Hongge Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Tasly Stem Cell Biology Laboratory, Tianjin 300410, China
| |
Collapse
|
4
|
Virijević K, Živanović MN, Nikolić D, Milivojević N, Pavić J, Morić I, Šenerović L, Dragačević L, Thurner PJ, Rufin M, Andriotis OG, Ljujić B, Miletić Kovačević M, Papić M, Filipović N. AI-Driven Optimization of PCL/PEG Electrospun Scaffolds for Enhanced In Vivo Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659385 DOI: 10.1021/acsami.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Here, an artificial intelligence (AI)-based approach was employed to optimize the production of electrospun scaffolds for in vivo wound healing applications. By combining polycaprolactone (PCL) and poly(ethylene glycol) (PEG) in various concentration ratios, dissolved in chloroform (CHCl3) and dimethylformamide (DMF), 125 different polymer combinations were created. From these polymer combinations, electrospun nanofiber meshes were produced and characterized structurally and mechanically via microscopic techniques, including chemical composition and fiber diameter determination. Subsequently, these data were used to train a neural network, creating an AI model to predict the optimal scaffold production solution. Guided by the predictions and experimental outcomes of the AI model, the most promising scaffold for further in vitro analyses was identified. Moreover, we enriched this selected polymer combination by incorporating antibiotics, aiming to develop electrospun nanofiber scaffolds tailored for in vivo wound healing applications. Our study underscores three noteworthy conclusions: (i) the application of AI is pivotal in the fields of material and biomedical sciences, (ii) our methodology provides an effective blueprint for the initial screening of biomedical materials, and (iii) electrospun PCL/PEG antibiotic-bearing scaffolds exhibit outstanding results in promoting neoangiogenesis and facilitating in vivo wound treatment.
Collapse
Affiliation(s)
- Katarina Virijević
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Marko N Živanović
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Dalibor Nikolić
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Nevena Milivojević
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Jelena Pavić
- Institute for Information Technologies, University of Kragujevac, 34000Kragujevac ,Serbia
| | - Ivana Morić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000Belgrade, Serbia
| | - Lidija Šenerović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000Belgrade, Serbia
| | - Luka Dragačević
- Institute of Virology, Vaccines and Sera "Torlak″, 11000Belgrade ,Serbia
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Wien, Austria
| | - Manuel Rufin
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Wien, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060 Wien, Austria
| | - Biljana Ljujić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000Kragujevac, Serbia
| | - Marina Miletić Kovačević
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000Kragujevac, Serbia
| | - Miloš Papić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000Kragujevac, Serbia
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, 34000Kragujevac, Serbia
- BioIRC─Bioengineering Research and Development Center, 34000Kragujevac,Serbia
| |
Collapse
|
5
|
Serpelloni S, Williams ME, Caserta S, Sharma S, Rahimi M, Taraballi F. Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS OMEGA 2024; 9:11701-11717. [PMID: 38496925 PMCID: PMC10938330 DOI: 10.1021/acsomega.3c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
As the population ages, the number of vascular surgery procedures performed increases. Older adults often have multiple comorbidities, such as diabetes and hypertension, that increase the risk of complications from vascular surgery including vascular graft infection (VGI). VGI is a serious complication with significant morbidity, mortality, and healthcare costs. Here, we aimed to develop a nanofibrous chitosan-based coating for vascular grafts loaded with different concentrations of the vancomycin antibiotic vancomycin (VAN). Blending chitosan with poly(vinyl alcohol) or poly(ethylene oxide) copolymers improved solubility and ease of spinning. Thermal gravimetric analysis and Fourier transform infrared spectroscopy confirmed the presence of VAN in the nanofibrous membranes. Kinetics of VAN release from the nanofibrous mats were evaluated using high-performance liquid chromatography, showing a burst followed by sustained release over 24 h. To achieve longer sustained release, a poly(lactic-co-glycolic acid) coating was applied, resulting in extended release of up to 7 days. Biocompatibility assessment using human umbilical vein endothelial cells demonstrated successful attachment and viability of the nanofiber patches. Our study provides insights into the development of a drug delivery system for vascular grafts aimed at preventing infection during implantation, highlighting the potential of electrospinning as a promising technique in the field of vascular surgery.
Collapse
Affiliation(s)
- Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| | - Michael Ellis Williams
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Reproductive
Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8QA, U.K.
| | - Sergio Caserta
- Department
of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80138, Italy
| | - Shashank Sharma
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Maham Rahimi
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| |
Collapse
|
6
|
Uiterwijk M, Coolen B, Rijswijk van JW, Söntjens S, van Houtem M, Szymczyk W, Rijns L, Janssen H, Wal van der A, Mol de B, Bouten C, Strijkers G, Dankers P, Kluin J. BALANCING SCAFFOLD DEGRADATION AND NEO-TISSUE FORMATION IN IN-SITU TISSUE ENGINEERED VASCULAR GRAFTS. Tissue Eng Part A 2024. [PMID: 38420632 DOI: 10.1089/ten.tea.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
An essential aspect of cardiovascular in situ tissue engineering (TE) is to ensure balance between scaffold degradation and neo-tissue formation. We evaluated the degradation velocity and neo-tissue formation of three electrospun supramolecular bisurea-based biodegradable scaffolds that differ in their soft-block backbone compositions only. Scaffolds were implanted as interposition grafts in the abdominal aorta in rats, and evaluated at different time points (t = 1, 6, 12, 24 and 40 weeks) on function, tissue formation, strength and scaffold degradation. The fully carbonate-based biomaterial showed minor degradation after 40 weeks in vivo, while the other two ester-containing biomaterials showed (near) complete degradation within 6 to 12 weeks. Local dilatation was only observed in these faster degrading scaffolds. All materials showed to some extent calcifications, at early as well as late time points. Histological evaluation showed equal and non-native like neo-tissue formation after total degradation. The fully carbonate based scaffolds lagged in neo-tissue formation, presumably as its degradation was (far from) complete at 40 weeks. A significant difference in vessel wall contrast enhancement was observed by MRI between grafts with total compared to minimal degraded scaffolds.
Collapse
Affiliation(s)
- Marcelle Uiterwijk
- Amsterdam UMC Location AMC, 26066, Cardiothoracic surgery, Meibergdreef 9, Amsterdam, Netherlands, 1105 AZ;
| | - Bram Coolen
- Amsterdam UMC Locatie AMC, 26066, Department of Biomedical Engineering & Physics, Amsterdam, Netherlands;
| | | | - Serge Söntjens
- Eindhoven University of Technology, 3169, Symochem b.v., Eindhoven, Netherlands;
| | - Michel van Houtem
- Eindhoven University of Technology, 3169, Symochem b.v. , Eindhoven, Netherlands;
| | - Wojciech Szymczyk
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Netherlands;
| | - Laura Rijns
- Eindhoven University of Technology, 3169, Biomedical Engineering, Eindhoven, Netherlands
- Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Netherlands;
| | - Henk Janssen
- Eindhoven University of Technology, 3169, Symochem b.v. , Eindhoven, Noord-Brabant, Netherlands;
| | | | - Bas Mol de
- Amsterdam UMC Location AMC, 26066, Cardiothoracic surgery, Amsterdam, Netherlands;
| | - Carlijn Bouten
- Eindhoven University of Technology, 3169, Biomedical Engineering, Eindhoven, Netherlands
- Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Netherlands;
| | - Gustav Strijkers
- Amsterdam UMC Locatie AMC, 26066, Biomedical Engineering and Physics, Amsterdam, Netherlands;
| | - Patricia Dankers
- Eindhoven University of Technology, 3169, Biomedical Engineering, Eindhoven, Netherlands
- Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Netherlands;
| | - Jolanda Kluin
- Erasmus Medical Center, 6993, Cardiothoracic surgery, Rotterdam, Netherlands;
| |
Collapse
|
7
|
Nichay NR, Dokuchaeva AA, Kulyabin YY, Boyarkin EV, Kuznetsova EV, Rusakova YL, Murashov IS, Vaver AA, Bogachev-Prokophiev AV, Zhuravleva IY. Epoxy- versus Glutaraldehyde-Treated Bovine Jugular Vein Conduit for Pulmonary Valve Replacement: A Comparison of Morphological Changes in a Pig Model. Biomedicines 2023; 11:3101. [PMID: 38002101 PMCID: PMC10669752 DOI: 10.3390/biomedicines11113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Valved conduits are often required to replace pulmonary arteries (PA). A widely used Contegra device is made of bovine jugular vein (BJV), preserved with glutaraldehyde (GA) and iso-propanol. However, it has several drawbacks that may be attributed to its chemical treatment. We hypothesized that the use of an alternative preservation compound may significantly improve BJV conduit performance. This study aimed to compare the macroscopic and microscopic properties of the BJV treated with diepoxide (DE) and GA in a porcine model. Twelve DE-BJVs and four Contegra conduits were used for PA replacement in minipigs. To assess the isolated influence of GA, we included an additional control group-BJV treated with 0.625% GA (n = 4). The animals were withdrawn after 6 months of follow-up and the conduits were examined. Explanted DE-BJV had a soft elastic wall with no signs of thrombosis or calcification and good conduit integration, including myofibroblast germination, an ingrowth of soft connective tissue formations and remarkable neoangiogenesis. The inner surface of DE-BJVs was covered by a thin neointimal layer with a solid endothelium. Contegra grafts had a stiffer wall with thrombosis on the leaflets. Calcified foci, chondroid metaplasia, and hyalinosis were observed within the wall. The distal anastomotic sites had hyperplastic neointima, partially covered with the endothelium. The wall of GA-BJV was stiff and rigid with degenerative changes, a substantial amount of calcium deposits and dense fibrotic formations in adventitia. An irregular neointimal layer was presented in the anastomotic sites without endothelial cover in the GA BJV wall. These results demonstrate that DE treatment improves conduit integration and the endothelialization of the inner surface while preventing the mineralization of the BJV, which may reduce the risk of early conduit dysfunction.
Collapse
Affiliation(s)
- Nataliya R. Nichay
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
- Cardiovascular Department, Novosibirsk State Medical University, Ministry of Health of Russian Federation, 52 Krasny Prospect, Novosibirsk 630091, Russia
| | - Anna A. Dokuchaeva
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Yuriy Yu. Kulyabin
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Evgeniy V. Boyarkin
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Elena V. Kuznetsova
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Yanina L. Rusakova
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Ivan S. Murashov
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Andrey A. Vaver
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Alexander V. Bogachev-Prokophiev
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| | - Irina Yu. Zhuravleva
- E. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.D.); (Y.Y.K.); (E.V.B.); (E.V.K.); (Y.L.R.); (I.S.M.); (A.A.V.); (A.V.B.-P.); (I.Y.Z.)
| |
Collapse
|
8
|
Atari M, Saroukhani A, Manshaei M, Bateni P, Zargar Kharazi A, Vatankhah E, Haghjooy Javanmard S. Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model. Biomater Sci 2023; 11:6871-6880. [PMID: 37646468 DOI: 10.1039/d3bm00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tissue-engineered vascular grafts (TEVGs) are promising alternatives to existing prosthetic grafts. The objective of this study is to evaluate the clinical feasibility of a novel multi-layered small-diameter vascular graft that has a hierarchical structure. Vascular grafts with elaborately designed composition and architecture were prepared by 3D printing and electrospinning and were implanted into the femoral artery of 5 dogs. The patency of the grafts was assessed using Doppler ultrasonography. After 6 months, the grafts were retrieved and histological and SEM examinations were conducted. During implantation, the grafts exhibited resistance to kinking and no blood seepage thanks to the helical structure of the innermost and outermost layers. The grafts showed a high patency rate and remodelling ability. At 6 months post-implantation, the lumen was endothelialized and middle layers were regenerated by infiltration of smooth muscle cells (SMCs) and deposition of extracellular matrix (ECM). These results suggest that the multi-layered vascular graft may be a promising candidate for small-diameter blood vessel tissue engineering in clinical practice.
Collapse
Affiliation(s)
- Mehdi Atari
- Applied Physiology Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81686-55477, Iran.
| | - Abbas Saroukhani
- Department of Surgery, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Maziar Manshaei
- Animal Laboratory and Dental Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Peiman Bateni
- Animal Laboratory and Dental Research Centre, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Anousheh Zargar Kharazi
- Applied Physiology Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81686-55477, Iran.
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vatankhah
- Department of Biosystems, Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81686-55477, Iran.
| |
Collapse
|
9
|
Liu D, Meng Q, Hu J. Bacterial Nanocellulose Hydrogel: A Promising Alternative Material for the Fabrication of Engineered Vascular Grafts. Polymers (Basel) 2023; 15:3812. [PMID: 37765666 PMCID: PMC10534661 DOI: 10.3390/polym15183812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Blood vessels are crucial in the human body, providing essential nutrients to all tissues while facilitating waste removal. As the incidence of cardiovascular disease rises, the demand for efficient treatments increases concurrently. Currently, the predominant interventions for cardiovascular disease are autografts and allografts. Although effective, they present limitations including high costs and inconsistent success rates. Recently, synthetic vascular grafts, made from artificial materials, have emerged as promising alternatives to traditional methods. Among these materials, bacterial cellulose hydrogel exhibits significant potential for tissue engineering applications, particularly in developing nanoscale platforms that regulate cell behavior and promote tissue regeneration, attributed to its notable physicochemical and biocompatible properties. This study reviews recent progress in fabricating engineered vascular grafts using bacterial nanocellulose, demonstrating the efficacy of bacterial cellulose hydrogel as a biomaterial for synthetic vascular grafts, specifically for stimulating angiogenesis and neovascularization.
Collapse
Affiliation(s)
| | | | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada; (D.L.); (Q.M.)
| |
Collapse
|
10
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
11
|
Changizi S, Sameti M, Bazemore GL, Chen H, Bashur CA. Epsin Mimetic UPI Peptide Delivery Strategies to Improve Endothelization of Vascular Grafts. Macromol Biosci 2023; 23:e2300073. [PMID: 37117010 DOI: 10.1002/mabi.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 04/30/2023]
Abstract
Endothelialization of engineered vascular grafts for replacement of small-diameter coronary arteries remains a critical challenge. The ability for an acellular vascular graft to promote endothelial cell (EC) recruitment in the body would be very beneficial. This study investigated epsins as a target since they are involved in internalization of vascular endothelial growth factor receptor 2. Specifically, epsin-mimetic UPI peptides are delivered locally from vascular grafts to block epsin activity and promote endothelialization. The peptide delivery from fibrin coatings allowed for controlled loading and provided a significant improvement in EC attachment, migration, and growth in vitro. The peptides have even more important impacts after grafting into rat abdominal aortae. The peptides prevented graft thrombosis and failure that is observed with a fibrin coating alone. They also modulated the in vivo remodeling. The grafts are able to remodel without the formation of a thick fibrous capsule on the adventitia with the 100 µg mL-1 peptide-loaded condition, and this condition enabled the formation of a functional EC monolayer in the graft lumen after only 1 week. Overall, this study demonstrated that the local delivery of UPI peptides is a promising strategy to improve the performance of vascular grafts.
Collapse
Affiliation(s)
- Shirin Changizi
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mahyar Sameti
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Gabrielle L Bazemore
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chris A Bashur
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| |
Collapse
|
12
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
14
|
Lee DY, Jang Y, Kim E, Li T, Kim SJ. Tissue-engineered vascular graft based on a bioresorbable tubular knit scaffold with flexibility, durability, and suturability for implantation. J Mater Chem B 2023; 11:1108-1114. [PMID: 36629739 DOI: 10.1039/d2tb01891h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tissue-engineered vascular graft (TEVG) is a technology used to recreate a blood vessel by using vascular cells (endothelial cells and smooth muscle cells) and their scaffolds, and is a promising approach as a clinically feasible alternative for small-diameter blood vessel replacement. Since mechanical damage occurs during/after implantation, it needs flexibility and durability to withstand the mechanical damage to be applied. To achieve this, we applied a bioresorbable polyglycolic acid (PGA) fiber-knitted tubular scaffold for vascular endothelial and smooth muscle cell layers. Similar to the native rat aorta, the knitted tubular scaffold (130 μm-thick PGA fiber) exhibited mechanical performance at 150 mN for up to 40% strain for axial stress and at 90 mN for up to 5% strain for circumferential stress. After co-culturing, a vascular barrier comprised of an inner layer of endothelial cells and an outer layer of smooth muscle cells between tubular knits was observed. Up to 93.6% of the co-cultured cells were retained even after bending 50 times, and the suturability to flow liquid without any leakage in various shapes, such as an L-shape or a Y-shape, was acceptable. Taken together, these results support that the PGA tubular knit plays multifunctional roles, such as a porous three-dimensional matrix to attach and grow the vascular cells, and as a flexible and durable scaffold for the suture. Therefore, we suggest that the bioresorbable PGA tubular knit scaffold is a promising scaffold for TEVGs.
Collapse
Affiliation(s)
- Dong Yeop Lee
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang university, Seoul 04763, Korea.
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang university, Seoul 04763, Korea
| | - Eunyoung Kim
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang university, Seoul 04763, Korea.
| | - Tao Li
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang university, Seoul 04763, Korea.
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang university, Seoul 04763, Korea.
| |
Collapse
|
15
|
Lee JW, Song KH. Fibrous hydrogels by electrospinning: Novel platforms for biomedical applications. J Tissue Eng 2023; 14:20417314231191881. [PMID: 37581121 PMCID: PMC10423451 DOI: 10.1177/20417314231191881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
Hydrogels, hydrophilic and biocompatible polymeric networks, have been used for numerous biomedical applications because they have exhibited abilities to mimic features of extracellular matrix (ECM). In particular, the hydrogels engineered with electrospinning techniques have shown great performances in biomedical applications. Electrospinning techniques are to generate polymeric micro/nanofibers that can mimic geometries of natural ECM by drawing micro/nanofibers from polymer precursors with electrical forces, followed by structural stabilization of them. By exploiting the electrospinning techniques, the fibrous hydrogels have been fabricated and utilized as 2D/3D cell culture platforms, implantable scaffolds, and wound dressings. In addition, some hydrogels that respond to external stimuli have been used to develop biosensors. For comprehensive understanding, this review covers electrospinning processes, hydrogel precursors used for electrospinning, characteristics of fibrous hydrogels and specific biomedical applications of electrospun fibrous hydrogels and highlight their potential to promote use in biomedical applications.
Collapse
Affiliation(s)
- Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
16
|
Sun L, Li X, Yang T, Lu T, Du P, Jing C, Chen Z, Lin F, Zhao G, Zhao L. Construction of spider silk protein small-caliber tissue engineering vascular grafts based on dynamic culture and its performance evaluation. J Biomed Mater Res A 2023; 111:71-87. [PMID: 36129207 DOI: 10.1002/jbm.a.37447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
Tissue engineering is an alternative method for preparing small-caliber (<6 mm) vascular grafts. Dynamic mechanical conditioning is being researched as a method to improve mechanical properties of tissue engineered blood vessels. This method attempts to induce unique reaction in implanted cells that regenerate the matrix around them, thereby improving the overall mechanical stability of the grafts. In this study, we used a bioreactor to seed endothelial cells and smooth muscle cells into the inner and outer layers of the electrospun spider silk protein scaffold respectively to construct vascular grafts. The cell proliferation, mechanical properties, blood compatibility and other indicators of the vascular grafts were characterized in vitro. Furthermore, the vascular grafts were implanted in Sprague Dawley rats, and the vascular grafts' patency, extracellular matrix formation, and inflammatory response were evaluated in vivo. We aimed to construct spider silk protein vascular grafts with the potential for in vivo implantation by using a pulsating flow bioreactor. The results showed that, when compared with the static culture condition, the dynamic culture condition improved cell proliferation on vascular scaffolds and enhanced mechanical function of vascular scaffolds. In vivo experiments also showed that the dynamic culture of vascular grafts was more beneficial for the extracellular matrix deposition and anti-thrombogenesis, as well as reducing the inflammatory response of vascular grafts. In conclusion, dynamic mechanical conditioning aid in the resolution of challenges impeding the application of electrospun scaffolds and have the potential to construct small-caliber blood vessels with regenerative function for cardiovascular tissue repair.
Collapse
Affiliation(s)
- Lulu Sun
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Tuo Yang
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Tian Lu
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Pengchong Du
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Changqin Jing
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Zhigang Chen
- Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Fei Lin
- Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Guoan Zhao
- Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Liang Zhao
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,The Central Lab, The Third People Hospital of Datong, Datong, China
| |
Collapse
|
17
|
PCL/Collagen/UA Composite Biomedical Dressing with Ordered Microfiberous Structure Fabricated by a 3D Near-Field Electrospinning Process. Polymers (Basel) 2022; 15:polym15010223. [PMID: 36616572 PMCID: PMC9824864 DOI: 10.3390/polym15010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In this work, a functionalized polycaprolactone (PCL) composite fiber combining calf-type I collagen (CO) and natural drug usnic acid (UA) was prepared, in which UA was used as an antibacterial agent. Through 3D near-field electrospinning, the mixed solution was prepared into PCL/CO/UA composite fibers (PCUCF), which has a well-defined perfect arrangement structure. The influence of electrospinning process parameters on fiber diameter was investigated, the optimal electrospinning parameters were determined, and the electric field simulation was conducted to verify the optimal parameters. The addition of 20% collagen made the composite fiber have good hydrophilicity and water absorption property. In the presence of PCUCF, 1% UA content significantly inhibited the growth rate of Gram-positive and negative bacteria in the plate culture. The AC-PCUCF (after crosslinking PCUCF) prepared by crosslinking collagen with genipin showed stronger mechanical properties, water absorption property, thermal stability, and drug release performance. Cell proliferation experiments showed that PCUCF and AC-PCUCF had no cytotoxicity and could promote cell proliferation and adhesion. The results show that PCL/CO/UA composite fiber has potential application prospects in biomedical dressing.
Collapse
|
18
|
Salimbeigi G, Cahill PA, McGuinness GB. Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models. J Mech Behav Biomed Mater 2022; 136:105493. [PMID: 36252423 DOI: 10.1016/j.jmbbm.2022.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Mechanical properties are among the key considerations for the design and fabrication of complex tissue models and implants. In addition to the choice of material and the processing technique, the solvent system can significantly influence the mechanical properties of scaffolds. Poly(ε-caprolactone) (PCL) has been abundantly used to develop constructs, fibrous in particular, for pharmaceutical and biomedical research due to the flexibility offered by PCL-based fibrous matrices. The effect of solvent type on the morphological features of electrospun fibres has been extensively studied. Nevertheless, comprehensive studies on the impact of the solvent system on the mechanical properties of electrospun PCL fibres are lacking. This study elucidates the relationship between topographical, physical and mechanical properties of electrospun PCL fibrous meshes upon using various solvent systems. The results of the mechanical investigation highlight the significance of inter-fibre bonds on the mechanical properties of the bulk membranes and that the option of altering the solvent system composition could be considered for tuning the mechanical properties of the PCL scaffolds to serve specific biomedical application requirements. The applicability of the developed membranes as artificial ECM (Extracellular matrix) in the lung will then be investigated and compared to the commercial Polycarbonate (PC) membranes that are often used for in vitro lung models.
Collapse
Affiliation(s)
- G Salimbeigi
- Centre for Medical Engineering Research, School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - P A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - G B McGuinness
- Centre for Medical Engineering Research, School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
19
|
Antonova L, Kutikhin A, Sevostianova V, Lobov A, Repkin E, Krivkina E, Velikanova E, Mironov A, Mukhamadiyarov R, Senokosova E, Khanova M, Shishkova D, Markova V, Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel) 2022; 14:polym14235149. [PMID: 36501545 PMCID: PMC9736446 DOI: 10.3390/polym14235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Implementation of small-diameter tissue-engineered vascular grafts (TEVGs) into clinical practice is still delayed due to the frequent complications, including thrombosis, aneurysms, neointimal hyperplasia, calcification, atherosclerosis, and infection. Here, we conjugated a vasodilator/platelet inhibitor, iloprost, and an antimicrobial cationic amphiphilic drug, 1,5-bis-(4-tetradecyl-1,4-diazoniabicyclo [2.2.2]octan-1-yl) pentane tetrabromide, to the luminal surface of electrospun poly(ε-caprolactone) (PCL) TEVGs for preventing thrombosis and infection, additionally enveloped such TEVGs into the PCL sheath to preclude aneurysms, and implanted PCLIlo/CAD TEVGs into the ovine carotid artery (n = 12) for 6 months. The primary patency was 50% (6/12 animals). TEVGs were completely replaced with the vascular tissue, free from aneurysms, calcification, atherosclerosis and infection, completely endothelialised, and had clearly distinguishable medial and adventitial layers. Comparative proteomic profiling of TEVGs and contralateral carotid arteries found that TEVGs lacked contractile vascular smooth muscle cell markers, basement membrane components, and proteins mediating antioxidant defense, concurrently showing the protein signatures of upregulated protein synthesis, folding and assembly, enhanced energy metabolism, and macrophage-driven inflammation. Collectively, these results suggested a synchronised replacement of PCL with a newly formed vascular tissue but insufficient compliance of PCLIlo/CAD TEVGs, demanding their testing in the muscular artery position or stimulation of vascular smooth muscle cell specification after the implantation.
Collapse
Affiliation(s)
- Larisa Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
- Correspondence: ; Tel.: +7-9609077067
| | - Viktoriia Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, Saint Petersburg 194064, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, Saint Petersburg 199034, Russia
| | - Evgenia Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Rinat Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|
20
|
Cuenca JP, Kang HJ, Fahad MAA, Park M, Choi M, Lee HY, Lee BT. Physico-mechanical and biological evaluation of heparin/VEGF-loaded electrospun polycaprolactone/decellularized rat aorta extracellular matrix for small-diameter vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1664-1684. [PMID: 35446751 DOI: 10.1080/09205063.2022.2069398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Although the continuous development of small-diameter vascular grafts (SDVGs) (D < 5 mm) continues, most vascular grafts are made from synthetic polymers, which lead to serious complications from arteriosclerosis, thrombosis, and vascular ischemia. Here, to address these shortcomings, we combine synthetic polymers with natural decellularized small-diameter vessels and loaded with growth factor. We fabricated vascular grafts by electrospinning polycaprolactone (PCL) to decellularized rat aorta matrix (ECM) followed by heparin and vascular endothelial growth factor (VEGF) loading. In- vitro studies showed that PCL/ECM/VEGF vascular grafts, showed excellent hemocompatibility and biocompatibility properties. The vascular grafts implanted into the rat aorta revealed that the PCL/ECM/VEGF grafts promotes endothelial cells and smooth-muscle cells infiltration with a rate of FLK-1, ICAM1, and a-SMA distribution higher than that of the PCL and PCL/ECM vascular grafts at 2 weeks and 4 weeks after implantation. The PCL/ECM/VEGF vascular graft should be considered for potential small-diameter vascular grafts in clinical fields.
Collapse
Affiliation(s)
- John Patrick Cuenca
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hoe-Jin Kang
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
21
|
In Vivo Evaluation of PCL Vascular Grafts Implanted in Rat Abdominal Aorta. Polymers (Basel) 2022; 14:polym14163313. [PMID: 36015570 PMCID: PMC9412484 DOI: 10.3390/polym14163313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun tissue-engineered grafts made of biodegradable materials have become a perspective search field in terms of vascular replacement, and more research is required to describe their in vivo transformation. This study aimed to give a detailed observation of hemodynamic and structural properties of electrospun, monolayered poly-ε-caprolactone (PCL) grafts in an in vivo experiment using a rat aorta replacement model at 10, 30, 60 and 90 implantation days. It was shown using ultrasound diagnostic and X-ray tomography that PCL grafts maintain patency throughout the entire follow-up period, without stenosis or thrombosis. Vascular compliance, assessed by the resistance index (RI), remains at the stable level from the 10th to the 90th day. A histological study using hematoxylin-eosin (H&E), von Kossa and Russell–Movat pentachrome staining demonstrated the dynamics of tissue response to the implant. By the 10th day, an endothelial monolayer was forming on the graft luminal surface, followed by the gradual growth and compaction of the neointima up to the 90th day. The intense inflammatory cellular reaction observed on the 10th day in the thickness of the scaffold was changed by the fibroblast and myofibroblast penetration by the 30th day. The cellularity maximum was reached on the 60th day, but by the 90th day the cellularity significantly (p = 0.02) decreased. From the 60th day, in some samples, the calcium phosphate depositions were revealed at the scaffold-neointima interface. Scanning electron microscopy showed that the scaffolds retained their fibrillar structure up to the 90th day. Thus, we have shown that the advantages of PCL scaffolds are excellent endothelialization and good surgical outcome. The disadvantages include their slow biodegradation, ineffective cellularization, and risks for mineralization and intimal hyperplasia.
Collapse
|
22
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
23
|
Oztemur J, Ozdemir S, Yalcin-Enis I. Effect of blending ratio on morphological, chemical, and thermal characteristics of PLA/PCL and PLLA/PCL electrospun fibrous webs. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Suzan Ozdemir
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
24
|
Ren Y, Han S, Chen J, Li J, Zhou M, He Z, He Z. Polyethylene glycol derivant crosslink and modify chitosan for tympanic membrane repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yangjing Ren
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuying Han
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Chen
- The Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
25
|
Zhang T, Nie M, Li Y. Current Advances and Future Perspectives of Advanced Polymer Processing for Bone and Tissue Engineering: Morphological Control and Applications. Front Bioeng Biotechnol 2022; 10:895766. [PMID: 35694231 PMCID: PMC9178098 DOI: 10.3389/fbioe.2022.895766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/13/2023] Open
Abstract
Advanced polymer processing has received extensive attention due to its unique control of complex force fields and customizability, and has been widely applied in various fields, especially in preparation of functional devices for bioengineering and biotechnology. This review aims to provide an overview of various advanced polymer processing techniques including rotation extrusion, electrospinning, micro injection molding, 3D printing and their recent progresses in the field of cell proliferation, bone repair, and artificial blood vessels. This review dose not only attempts to provide a comprehensive understanding of advanced polymer processing, but also aims to guide for design and fabrication of next-generation device for biomedical engineering.
Collapse
|
26
|
Zhang Z, Zhou F, Zhang J, Mu J, Bo P, You B. Preparation of myocardial patches from DiI-labeled rat bone marrow mesenchymal stem cells and neonatal rat cardiomyocytes contact co-cultured on polycaprolactone film. Biomed Mater 2022; 17. [PMID: 35551116 DOI: 10.1088/1748-605x/ac6f38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
DiI-labeled BMSCs were contact co-cultured with CMs on PCL film to prepare myocardial patches. BMSCs were labeled with DiI dye. DiI-labeled BMSCs were co-cultured with CMs on PCL film in the experimental group, while CMs were replaced with the same amount of unlabeled BMSCs in the control group. After 24 h, cell growth was observed by light microscopy and cells were fixed for scanning electron microscopy. After 7 days of co-culture, cells were stained for immunofluorescence detection of myocardial markers cardiac troponin T (cTnT) and α-actin. Differentiation of BMSCs on PCL was observed by fluorescence microscopy. The efficiency of BMSC differentiation into CMs was analyzed by flow cytometry on the first and seventh days of co-culture. CMs were stained with calcein alone and contact co-cultured with DiI-labeled BMSCs on PCL film to observe intercellular dye transfer. Finally, cells were stained for immunofluorescence detection of connexin 43 (Cx43) expression and to observe the relationship between gap junctions and contact co-culture. After co-culture for 24 h, cells were observed to have attached to PCL by light microscopy. Upon appropriate excitation, DiI-labeled BMSCs exhibited red fluorescence, while unlabeled CMs did not. Scanning electron microscopy revealed a large number of cells on the PCL membrane and their cell state appeared normal. On the seventh day, some DiI-labeled BMSCs expressed cTnT and α-actin. Flow cytometry showed that the rate of stem cell differentiation in the experimental group was significantly higher than the control group on the seven day (20.12% > 3.49%, P < 0.05). From the second day of co-culture, immunofluorescence staining for Cx43 revealed green fluorescent puncta in some BMSCs; from the third day of co-culture, a portion of BMSCs exhibited green fluorescence in dye transfer tests. Contact co-culture of DiI-labeled BMSCs and CMs on PCL film successfully generated myocardial patches.
Collapse
Affiliation(s)
- Zichang Zhang
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China., Chaoyang-qu, Beijing, 100029, CHINA
| | - Fan Zhou
- The Third Medical Center of PLA General Hospital, Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing 100039, China, beijing , 100039, CHINA
| | - Jianwei Zhang
- sunshine union hospital, Heart center of sunshine union hospital, Weifang 261205, China, weifang, 261205, CHINA
| | - Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China, beijing, 100029, CHINA
| | - Ping Bo
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, Chaoyang-qu, Beijing, 100029, CHINA
| | - Bin You
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China., Chaoyang-qu, Beijing, 100029, CHINA
| |
Collapse
|
27
|
Xie C, Guo T, Wang W, Li G, Cai Z, Chen S, Wang X, Liu Z, Wang Z. Scaffold Engineering with Flavone-Modified Biomimetic Architecture for Vascular Tissue Engineering Applications. Tissue Eng Regen Med 2022; 19:755-767. [PMID: 35482210 PMCID: PMC9294089 DOI: 10.1007/s13770-022-00448-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vascular intimal hyperplasia (IH) is one of the key challenges in the clinical application of small-diameter vascular grafts. Current tissue engineering strategies focus on vascularization and antithrombotics, yet few approaches have been developed to treat IH. Here, we designed a tissue-engineered vascular scaffold with portulaca flavonoid (PTF) composition and biomimetic architecture. METHOD By electrospinning, PTF is integrated with biodegradable poly(ε-caprolactone) (PCL) into a bionic vascular scaffold. The structure and functions of the scaffolds were evaluated based on material characterization and cellular biocompatibility. Human vascular smooth muscle cells (HVSMCs) were cultured on scaffolds for up to 14 days. RESULTS The incorporation of PTF and preparation parameters during fabrication influences the morphology of the scaffold, including fibre diameter, structure, and orientation. Compared to the PCL scaffold, the scaffolds integrated with bioactive PTF show better hydrophilicity and degradability. HVSMCs seeded on the scaffold alongside the fibres exhibit fusiform-like shapes, indicating that the scaffold can provide contact guidance for cell morphology alterations. This study demonstrates that the PCL/PTF (9.1%) scaffold inhibits the excessive proliferation of HVSMCs without causing cytotoxicity. CONCLUSION The study provides insights into the problem of restenosis caused by IH. This engineered vascular scaffold with complex function and preparation is expected to be applied as a substitute for small-diameter vascular grafts.
Collapse
Affiliation(s)
- Chao Xie
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Ting Guo
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Wei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhou Cai
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Shen Chen
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Xianwei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| | - Ziyu Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China.
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
| |
Collapse
|
28
|
Liu L, Ji X, Mao L, Wang L, Chen K, Shi Z, Ahmed AAQ, Thomas S, Vasilievich RV, Xiao L, Li X, Yang G. Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydr Polym 2022; 281:119034. [DOI: 10.1016/j.carbpol.2021.119034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/17/2023]
|
29
|
A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model. Tissue Eng Regen Med 2022; 19:537-551. [PMID: 35167044 PMCID: PMC9130378 DOI: 10.1007/s13770-021-00422-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background: We have designed a reinforced drug-loaded vascular graft composed of polycaprolactone (PCL) and polydioxanone (PDO) via a combination of electrospinning/3D printing approaches. To evaluate its potential for clinical application, we compared the in vivo blood compatibility and performance of PCL/PDO + 10%DY grafts doped with an antithrombotic drug (dipyridamole) with a commercial expanded polytetrafluoroethylene (e-PTFE) graft in a porcine model. Methods: A total of 10 pigs (weight: 25–35 kg) were used in this study. We made a new 5-mm graft with PCL/PDO composite nanofiber via the electrospinning technique. We simultaneously implanted a commercially available e-PTFE graft (n = 5) and our PCL/PDO + 10%DY graft (n = 5) into the carotid arteries of the pigs. No anticoagulant/antiplatelet agent was administered during the follow-up period, and ultrasonography was performed weekly to confirm the patency of the two grafts in vivo. Four weeks later, we explanted and compared the performance of the two grafts by histological analysis and scanning electron microscopy (SEM). Results: No complications, such as sweating on the graft or significant bleeding from the needle hole site, were seen in the PCL/PDO + 10%DY graft immediately after implantation. Serial ultrasonographic examination and immunohistochemical analysis demonstrated that PCL/PDO + 10%DY grafts showed normal physiological blood flow and minimal lumen reduction, and pulsed synchronously with the native artery at 4 weeks after implantation. However, all e-PTFE grafts occluded within the study period. The luminal surface of the PCL/PDO + 10%DY graft in the transitional zone was fully covered with endothelial cells as observed by SEM. Conclusion: The PCL/PDO + 10%DY graft was well tolerated, and no adverse tissue reaction was observed in porcine carotid models during the short-term follow-up. Colonization of the graft by host endothelial and smooth muscle cells coupled with substantial extracellular matrix production marked the regenerative capability. Thus, this material may be an ideal substitute for vascular reconstruction and bypass surgeries. Long-term observations will be necessary to determine the anti-thrombotic and remodeling potential of this device. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00422-4.
Collapse
|
30
|
Xia W, Peng G, Hu Y, Dou G. Desired properties and corresponding improvement measures of electrospun nanofibers for membrane distillation, reinforcement, and self‐healing applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weihai Xia
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Guangjian Peng
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Yahao Hu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| | - Guijing Dou
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou China
| |
Collapse
|
31
|
Zichang Z, Fan Z, Jianwei Z, Junsheng M, Ping B, Bin Y. Experimental study on co-culture of DiI labeled rat bone marrow mesenchymal stem cells and polycaprolactone film in vitro to make a cell patch. Biomed Mater Eng 2022; 33:269-277. [PMID: 34719477 DOI: 10.3233/bme-211312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In stem cell therapy, due to the lack of an effective carrier, a large number of transplanted stem cells are lost and die. Therefore, finding a suitable carrier has become a further direction of stem cell therapy. OBJECTIVE In research on the co-culture of polycaprolactone (PCL) with 1,1'-Dioctadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiI) labeled bone marrow mesenchymal stem cells (BMSCs), we observe the effect of materials on the growth and proliferation of DiI labeled stem cells, and the effect of DiI labeling on patch preparation, so as to find a kind of biomaterial suitable for the growth and proliferation of BMSCs, and find a suitable cell carrier for stem cell therapy of myocardial infarction and in vivo tracing. METHODS Clean grade Sprague Dawley rats were selected as experimental objects, BMSCs were isolated and cultured, and the surface markers were identified by flow cytometry. After the BMSCs were cultured for 3 passages, the BMSCs were stained with DiI dye, and the BMSCs DiI and PCL biomaterial film were co-cultured. After 24 hours, the cell growth was observed under fluorescence microscope, and fixed for scanning under electron microscope. The cell proliferation was detected by CCK-8 at 1, 4, 7, 10 days of culture. The measurement data conforming to normal distribution are expressed in the form of mean ± standard deviation (X¯± s). One way ANOVA was used for comparison among groups, LSD analysis was used for pairwise comparison. The difference was statistically significant (P < 0.05). RESULTS BMSCs were strongly positive for CD90, CD44H, but negative for CD11b/c, CD45. Under fluorescence microscope, BMSCs DiI showed red light, fusiform or polygonal. Under the scanning electron microscope, the cell patch formed by co-culture of PCL film and DiI-BMSCs had a large number of cells on the surface and normal cell state. CCK-8 assay showed that the OD value on the first day was 0.330 ± 0.025; The OD value was 0.620 ± 0.012 on the 4th day, 1.033 ± 0.144 on the 7th day and 1.223 ± 0.133 on the 10th day. There was significant difference among the time points (P < 0.05). CONCLUSIONS The cell patch made of PCL film and DiI labeled BMSCs can survive and proliferate on the surface, so it can be used as a scaffold material for stem cell therapy in vivo.
Collapse
Affiliation(s)
- Zhang Zichang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Fan
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zheng Jianwei
- Heart Center of Sunshine Fusion Hospital, Weifang, China
| | - Mu Junsheng
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bo Ping
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - You Bin
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Zhao P, Fang Q, Gao D, Wang Q, Cheng Y, Ao Q, Wang X, Tian X, Zhang Y, Tong H, Yan N, Hu X, Fan J. Klotho functionalization on vascular graft for improved patency and endothelialization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112630. [DOI: 10.1016/j.msec.2021.112630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
|
33
|
Feng ZG, Fang Z, Xing Y, Wang H, Geng X, Ye L, Zhang A, Gu Y. Remodeling of Structurally Reinforced (TPU+PCL/PCL)-Hep Electro-spun Small Diameter Bilayer Vascular Grafts Interposed in Rat Ab-dominal Aorta. Biomater Sci 2022; 10:4257-4270. [DOI: 10.1039/d1bm01653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the thermoplastic polyurethane (TPU) elastomer possesses good biocompatibility and mechanical properties similar to native vascular tissues as well, it is intended to co-electrospin with poly(ε-caprolactone) (PCL) onto the outer...
Collapse
|
34
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
35
|
Li C, Chen J, Lv Y, Liu Y, Guo Q, Wang J, Wang C, Hu P, Liu Y. Recent Progress in Electrospun Nanofiber-Based Degenerated Intervertebral Disc Repair. ACS Biomater Sci Eng 2021; 8:16-31. [PMID: 34913688 DOI: 10.1021/acsbiomaterials.1c00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Annulus fibrosus fissure and fibrosis of nucleus pulposus are severe morphological characteristics of intervertebral disc degeneration. Currently, surgery or drugs are used to relieve pain in such cases. Tissue engineering is a new multidisciplinary strategy with great potential for use in joint replacement and organ regeneration. Based on the natural anatomy of intervertebral discs, intervertebral disc scaffolds are fabricated by exploiting the special arrangement of extracellular matrix fibers. Electrospun nanofibers possess clear advantages in repairing degenerated intervertebral discs. This article reviews and summarizes recently developed methods for improving and fabricating electrospun nanofiber annulus fibrosus scaffolds in terms of nanofiber alignment, material selection, loading additives, and the progress made in combining other advanced technologies with electrospun nanofibers. In addition, the improvement in mechanical properties and biocompatibility of nucleus pulposus scaffolds by electrospun nanofiber-reinforced hydrogels is discussed. Finally, complete intervertebral disc scaffolds can be fabricated using the disc-like angle-ply structure and other emerging fabrication methods. Taken together, electrospun nanofiber intervertebral disc scaffolds are promising for clinical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yarong Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yueqi Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanyi Guo
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Division of Breast Surgery, Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, Jilin 130012, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
Khalil TH, Zoabi A, Falah M, Nseir N, David DB, Laevsky I, Zussman E, Ronen O, Redenski I, Srouji S. Micro-Osteo Tubular Scaffolds: a Method for Induction of Bone Tissue Constructs. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
38
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Wolfe JT, Shradhanjali A, Tefft BJ. Strategies for improving endothelial cell adhesion to blood-contacting medical devices. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1067-1092. [PMID: 34693761 DOI: 10.1089/ten.teb.2021.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices including stents, vascular grafts, heart valves, and left ventricular assist devices are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term anti-platelet or anti-coagulation therapy. Although ECs have been seeded onto or recruited to these blood-contacting surfaces, most ECs are lost upon exposure to shear stress due to circulating blood. Many investigators have attempted to generate a stable EC monolayer by improving EC adhesion using surface modifications, material coatings, nanofiber topology, and modifications to the cells. Despite some success with enhanced EC retention in vitro and in animal models, no studies to date have proven efficacious for routinely creating a stable endothelium in the clinical setting. This review summarizes past and present techniques directed at improving the adhesion of ECs to blood-contacting devices.
Collapse
Affiliation(s)
- Jayne Taylor Wolfe
- Medical College of Wisconsin, 5506, Biomedical Engineering, 8701 Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226-0509;
| | - Akankshya Shradhanjali
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| | - Brandon J Tefft
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| |
Collapse
|
40
|
Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112375. [PMID: 34579894 PMCID: PMC8505756 DOI: 10.1016/j.msec.2021.112375] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a general term for conditions which are the leading cause of death in the world. Quick restoration of tissue perfusion is a key factor to combat these diseases and improve the quality and duration of patients' life. Revascularization techniques include angioplasty, placement of a stent, or surgical bypass grafting. For the latter technique, autologous vessels remain the best clinical option; however, many patients lack suitable autogenous due to previous operations and they are often unsuitable. Therefore, synthetic vascular grafts providing antithrombosis, neointimal hyperplasia inhibition and fast endothelialization are still needed. To address these limitations, 3D printed dipyridamole (DIP) loaded biodegradable vascular grafts were developed. Polycaprolactone (PCL) and DIP were successfully mixed without solvents and then vascular grafts were 3D printed. A mixture of high and low molecular weight PCL was used to better ensure the integration of DIP, which would offer the biological functions required above. Moreover, 3D printing technology provides the ability to fabricate structures of precise geometries from a 3D model, enabling to customize the vascular grafts' shape or size. The produced vascular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet effect and cytocompatibility. The results suggested that DIP was properly mixed and integrated within the PCL matrix. Moreover, these materials can provide a sustained and linear drug release without any obvious burst release, or any faster initial release rates for 30 days. Compared to PCL alone, a clear reduced platelet deposition in all the DIP-loaded vascular grafts was evidenced. The hemolysis percentage of both materials PCL alone and PCL containing 20% DIP were lower than 4%. Moreover, PCL and 20% DIP loaded grafts were able to provide a supportive environment for cellular attachment, viability, and growth.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Tingjun Shen
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
41
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
42
|
Malik S, Sundarrajan S, Hussain T, Nazir A, Ramakrishna S. Fabrication of Highly Oriented Cylindrical Polyacrylonitrile, Poly(lactide- co-glycolide), Polycaprolactone and Poly(vinyl acetate) Nanofibers for Vascular Graft Applications. Polymers (Basel) 2021; 13:2075. [PMID: 34202499 PMCID: PMC8271820 DOI: 10.3390/polym13132075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Small-diameter vascular grafts fabricated from synthetic polymers have found limited applications so far in vascular surgeries, owing to their poor mechanical properties. In this study, cylindrical nanofibrous structures of highly oriented nanofibers made from polyacrylonitrile, poly (lactide-co-glycolide) (PLGA), polycaprolactone (PCL) and poly(vinyl acetate) (PVAc) were investigated. Cylindrical collectors with alternate conductive and non-conductive segments were used to obtain highly oriented nanofibrous structures at the same time with better mechanical properties. The surface morphology (orientation), mechanical properties and suture retention of the nanofibrous structures were characterized using SEM, mechanical tester and universal testing machine, respectively. The PLGA nanofibrous cylindrical structure exhibited excellent properties (tensile strength of 9.1 ± 0.6 MPa, suture retention strength of 27N and burst pressure of 350 ± 50 mmHg) when compared to other polymers. Moreover, the PLGA grafts showed good porosity and elongation values, that could be potentially used for vascular graft applications. The combination of PLGA nanofibers with extracellular vesicles (EVs) will be explored as a potential vascular graft in future.
Collapse
Affiliation(s)
- Sairish Malik
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura Road, Faisalabad 37610, Pakistan; (S.M.); (T.H.); (A.N.)
| | - Subramanian Sundarrajan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura Road, Faisalabad 37610, Pakistan; (S.M.); (T.H.); (A.N.)
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura Road, Faisalabad 37610, Pakistan; (S.M.); (T.H.); (A.N.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| |
Collapse
|
43
|
Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Electrospinning of Biomaterials for Vascular Regeneration. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
45
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|