1
|
Haderer L, Zhou Y, Tang P, Daneshgar A, Globke B, Krenzien F, Reutzel-Selke A, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH, Keshi E. Thrombogenicity Assessment of Perfusable Tissue-Engineered Constructs: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 39007511 DOI: 10.1089/ten.teb.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vascular surgery is facing a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency is particularly applicable to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs is promising as a solution to organ shortage for transplantation. To achieve this, it is essential to (re)construct a biocompatible and nonthrombogenic vascular network within these organs. In this systematic review, we identify, classify, and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue-engineered organs and tissues. We conducted a preregistered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines. This comprised a systematic data extraction, in-depth analysis, and risk of bias assessment of 116 included studies. We identified shaking (n = 28), flow loop (n = 17), ex vivo (arteriovenous shunt, n = 33), and dynamic in vitro models (n = 38) as the main approaches for thrombogenicity assessment. This comprehensive review reveals a prevalent lack of standardization and provides a valuable guide in the design of standardized experimental setups.
Collapse
Affiliation(s)
- Luna Haderer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Yijun Zhou
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Assal Daneshgar
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Brigitta Globke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marie Weinhart
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hanover, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Igor Maximillian Sauer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Karl Herbert Hillebrandt
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eriselda Keshi
- Department of Surgery, Experimental Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Su L, Liu W, Wang Y, Jiang Y, Li Z, Wang M, Liu G. Corrosion behavior, antibacterial properties and in vitro and in vivo biocompatibility of biodegradable Zn-5Cu-xMg alloy for bone-implant applications. BIOMATERIALS ADVANCES 2024; 165:214000. [PMID: 39208498 DOI: 10.1016/j.bioadv.2024.214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Reasonable optimization of degradation rate, antibacterial performance and biocompatibility is crucial for the development of biodegradable zinc alloy medical implant devices with antibacterial properties. In this study, various amounts of Mg elements were incorporated into Zn5Cu alloy to modulate the degradation rate, antibacterial properties and biocompatibility. The effects of Mg contents on the microstructure, corrosion behavior, antibacterial properties and biocompatibility of Zn-5Cu-xMg alloy were extensively investigated. The results revealed that with an increase of Mg content, the amount of Mg2Zn11 phase increased and its galvanic effect with the Zn matrix was enhanced, which accelerated the corrosion process and led to higher corrosion rate and high degradation rate of the alloy. Additionally, there was an increased release of Mg2+ and Zn2+ ions from the alloy which imparted excellent resistance against Escherichia coli and Staphylococcus aureus bacteria and improved biocompatibility, subcutaneous antibacterial and immune microenvironment regulation properties. Zn-5Cu-2 Mg exhibited superior antibacterial ability, cell compatibility, proliferation effect, subcutaneous antibacterial and immune microenvironment regulation performances, which can work as a promising candidate of biodegradable antibacterial medical implants.
Collapse
Affiliation(s)
- Lin Su
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410008, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yanggang Wang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Yanbin Jiang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China; State Key Lab for Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Zhou Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, China; State Key Lab for Powder Metallurgy, Central South University, Changsha 410083, China
| | - Meng Wang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Gengyan Liu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410008, China.
| |
Collapse
|
3
|
Schumacher L, Cetin IN, Bielefeldt S, Rupp F, Roehler A. Enhanced Experimental Setup and Methodology for the Investigation of Corrosion Fatigue in Metallic Biodegradable Implant Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5146. [PMID: 39517421 PMCID: PMC11547594 DOI: 10.3390/ma17215146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Biodegradable implants as bone fixations may present a safe alternative to traditional permanent implants, reducing the risk of infections, promoting bone healing, and eliminating the need for removal surgeries. Structural integrity is an important consideration when choosing an implant material. As a biodegradable implant is being resorbed, until the natural bone has regrown, the implant material needs to provide mechanical stability. However, the corrosive environment of the human body may affect the fatigue life of the material. Conversely, mechanical stress can have an effect on electrochemical corrosion processes. This is known as corrosion fatigue. In the presented work, an experimental setup and methodology was established to analyze the corrosion fatigue of experimental bioresorbable materials while simultaneously monitoring the electrochemical processes. A double-walled measurement cell was constructed for a three-point bending test in Dulbecco's Phosphate-Buffered Saline (DPBS- -), which was used as simulated body fluid (SBF), at 37 ± 1 °C. The setup was combined with a three-electrode setup for corrosion measurements. Rod-shaped zinc samples were used to validate the setup's functionality. Preliminary static and dynamic bending tests were carried out as per the outlined methodology to determine the test parameters. Open-circuit as well as potentiostatic polarization measurements were performed with and without mechanical loading. For the control, fatigue tests were performed in an air environment. The tested zinc samples were inspected via scanning electron microscopy (SEM). Based on the measured mechanical and electrochemical values as well as the SEM images, the effects of the different environments were investigated, and the setup's functionality was verified. An analysis of the data showed that a comprehensive investigation of corrosion fatigue characteristics is feasible with the outlined approach. Therefore, this novel methodology shows great potential for furthering our understanding of the effects of corrosion on the fatigue of biodegradable implant materials.
Collapse
|
4
|
Moore E, Robson AJ, Crisp AR, Cockshell MP, Burzava ALS, Ganesan R, Robinson N, Al-Bataineh S, Nankivell V, Sandeman L, Tondl M, Benveniste G, Finnie JW, Psaltis PJ, Martocq L, Quadrelli A, Jarvis SP, Williams C, Ramage G, Rehman IU, Bursill CA, Simula T, Voelcker NH, Griesser HJ, Short RD, Bonder CS. Study of the Structure of Hyperbranched Polyglycerol Coatings and Their Antibiofouling and Antithrombotic Applications. Adv Healthc Mater 2024; 13:e2401545. [PMID: 38924692 DOI: 10.1002/adhm.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.
Collapse
Affiliation(s)
- Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Alexander J Robson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Amy R Crisp
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Anouck L S Burzava
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | | | - Victoria Nankivell
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Lauren Sandeman
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Markus Tondl
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | | | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, 5000, Australia
| | - Laurine Martocq
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | | | - Samuel P Jarvis
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Craig Williams
- Microbiology Department, Royal Lancaster Infirmary, Lancaster, LA1 4RP, UK
| | - Gordon Ramage
- Department of Nursing and Community Health, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Ihtesham U Rehman
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Tony Simula
- TekCyte Limited, Mawson Lakes, South Australia, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
5
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
6
|
Cesarz-Andraczke K, Staszuk M, Tunçay T, Woźniak A, Smok W, Tunçay B. Influence of casein on the degradation process of polylactide-casein coatings for resorbable alloys. Sci Rep 2024; 14:18946. [PMID: 39147799 PMCID: PMC11327277 DOI: 10.1038/s41598-024-69956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
This study used the dip-coating method to develop a new biocompatible coating composed of polylactide (PLA) and casein for ZnMg1.2 wt% alloy implants. It evaluated its impact on the alloy's degradation in a simulated body fluid. After 168 h of immersion in Ringer's solution, surface morphology analysis showed that the PLA-casein coatings demonstrated uniform degradation, with the corrosion current density measured at 48 µA/cm2. Contact angle measurements indicated that the average contact angles for the PLA-casein-coated samples were below 80°, signifying a hydrophilic nature that promotes cell adhesion. Fourier-transform infrared spectroscopy (FTIR) revealed no presence of lactic acid on PLA-casein coatings after immersion, in contrast to pure PLA coatings. Pull-off adhesion tests showed tensile strength values of 7.6 MPa for pure PLA coatings and 5 MPa for PLA-casein coatings. Electrochemical tests further supported the favorable corrosion resistance of the PLA-casein coatings, highlighting their potential to reduce tissue inflammation and improve the biocompatibility of ZnMg1.2 wt% alloy implants.
Collapse
Affiliation(s)
- Katarzyna Cesarz-Andraczke
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland.
| | - Marcin Staszuk
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Tansel Tunçay
- Manufacturing Engineering Department, Technology Faculty, Karabuk University, Karabuk, Turkey
| | - Anna Woźniak
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Weronika Smok
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Badegül Tunçay
- Mechanical Engineering Department, Engineering Faculty, Karabuk University, Karabuk, Turkey
| |
Collapse
|
7
|
Yu L, Sun F, Wang Y, Li W, Zheng Y, Shen G, Wang Y, Chen M. Effects of MgO nanoparticle addition on the mechanical properties, degradation properties, antibacterial properties and in vitro and in vivo biological properties of 3D-printed Zn scaffolds. Bioact Mater 2024; 37:72-85. [PMID: 38523703 PMCID: PMC10958222 DOI: 10.1016/j.bioactmat.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Bone tissue engineering is the main method for repairing large segment bone defects. In this study, a layer of bioactive MgO nanoparticles was wrapped on the surface of spherical Zn powders, which allowed the MgO nanoparticles to be incorporated into 3D-printed Zn matrix and improved the biodegradation and biocompatibility of the Zn matrix. The results showed that porous pure Zn scaffolds and Zn/MgO scaffolds with skeletal-gyroid (G) model structure were successfully prepared by selective laser melting (SLM). The average porosity of two porous scaffolds was 59.3 and 60.0%, respectively. The pores were uniformly distributed with an average pore size of 558.6-569.3 μm. MgO nanoparticles regulated the corrosion rate of scaffolds, resulting in a more uniform corrosion degradation behavior of the Zn/MgO scaffolds in simulated body fluid solution. The degradation ratio of Zn/MgO composite scaffolds in vivo was increased compared to pure Zn scaffolds, reaching 15.6% at 12 weeks. The yield strength (10.8 ± 2.4 MPa) of the Zn/MgO composite scaffold was comparable to that of cancellous bone, and the antimicrobial rate were higher than 99%. The Zn/MgO composite scaffolds could better guide bone tissue regeneration in rat cranial bone repair experiments (completely filling the scaffolds at 12 weeks). Therefore, porous Zn/MgO scaffolds with G-model structure prepared with SLM are a promising biodegradable bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Leiting Yu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Fengdong Sun
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Wang
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guangxin Shen
- Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Yao Wang
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
8
|
Xu Y, Xu Y, Zhang W, Li M, Wendel HP, Geis-Gerstorfer J, Li P, Wan G, Xu S, Hu T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front Chem 2022; 10:860040. [PMID: 35734444 PMCID: PMC9208203 DOI: 10.3389/fchem.2022.860040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials’ biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.
Collapse
Affiliation(s)
- Yan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Materials Engineering, Sichuan Engineering Technical College, Deyang, China
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Qian J, Zhang W, Chen Y, Zeng P, Wang J, Zhou C, Zeng H, Sang H, Huang N, Zhang H, Wan G. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications. BIOMATERIALS ADVANCES 2022; 136:212792. [PMID: 35929323 DOI: 10.1016/j.bioadv.2022.212792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Zinc is becoming one of the leading candidate materials for biodegradable orthopedic implants owing to its attractive properties in terms of degradation behavior and mechanical properties. However, the insufficient surface bio-activities postpone its clinical application. In this study, an organic-inorganic collagen entrapped calcium/zinc phosphates coating was constructed on Zn surface to lessen Zn2+ releasing rate and to leverage the surface osteogenic and angiogenic properties. Collagen molecules were immobilized onto Zn substrate and subsequently coordinated with calcium and zinc ions to promote the CaZnP inorganic phase growth, ensuing an intertwined collagen-CaZnP hybrid system. Consequently, the hybrid coating was highly coalesced and compact. Such high quality warranted the contained Zn2+ releasing in a tolerable rate favorable for cells viability. The collagen-CaZnP coated Zn showed remarkedly stronger osteogenicity as compared to the untreated Zn, ascertained by the MC3T3-E1 osteoblast cell proliferation and differentiation assays, such as alkaline phosphatase expression and calcium nodule formation results. In addition, this hybrid coating supported human umbilical vein endothelial cells (HUVECs) migration and tube formation. The enhanced osteogenic and angiogenic properties could be ascribed to the nature of collagen and calcium/zinc phosphate components, the hybrid micro/nano-structure as well as the ability of controlling the Zn2+ release of Zn substrate into a suitable concentration range. Our strategy provides a new avenue to surface modification of biodegradable metals for bone regenerative perspective.
Collapse
Affiliation(s)
- Junyu Qian
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yingqi Chen
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Peijie Zeng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiale Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chao Zhou
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, Shandong 251100, China
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, Shandong 251100, China; Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
10
|
Li P, Zhang W, Spintzyk S, Schweizer E, Krajewski S, Alexander D, Dai J, Xu S, Wan G, Rupp F. Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112430. [PMID: 34702515 DOI: 10.1016/j.msec.2021.112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Biodegradable zinc (Zn) and Zn-based alloys have been recognized as promising biomaterials for biomedical implants. Sterilization is an essential step in handling Zn-based implants before their use in clinical practice and there are various sterilization methods are available. However, how these treatments influence the Zn-based biomaterials remains unknown and is of critical relevance. In this study, three commonly-applied standard sterilization methods, namely gamma irradiation, hydrogen peroxide gas plasma and steam autoclave, were used on pure Zn and Zn3Cu (wt%) alloy. The treated Zn and ZnCu alloy were investigated to compare the different influences of sterilizations on surface characteristics, transient and long-term degradation behavior and cytotoxicity of Zn and Zn alloy. Our results indicate that autoclaving brought about apparently a formation of inhomogeneous zinc oxide film whereas the other two methods produced no apparent alterations on the material surfaces. Consequently, the samples after autoclaving showed significantly faster degradation rates and more severe localized corrosion, especially for the ZnCu alloy, owing to the incomplete covering and unstable zinc oxide layer. Moreover, the autoclave-treated Zn and ZnCu alloy exhibited apparent cytotoxic effects towards fibroblasts, which may be due to the excessive Zn ion releasing and its local concentration exceeds the cellular tolerance capacity. In contrast, gamma irradiation and hydrogen peroxide gas plasma had no apparent adverse effects on the biodegradability and cytocompatibility of Zn and ZnCu alloy. Our findings may have significant implications regarding the selection of suitable sterilization methods for Zn-based implant materials among others.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sebastian Spintzyk
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Ernst Schweizer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Stefanie Krajewski
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany.
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Frank Rupp
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| |
Collapse
|
11
|
Strohbach A, Busch R. Predicting the In Vivo Performance of Cardiovascular Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial Interactions. Int J Mol Sci 2021; 22:ijms222111390. [PMID: 34768821 PMCID: PMC8583792 DOI: 10.3390/ijms222111390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic efficacy of a cardiovascular device after implantation is highly dependent on the host-initiated complement and coagulation cascade. Both can eventually trigger thrombosis and inflammation. Therefore, understanding these initial responses of the body is of great importance for newly developed biomaterials. Subtle modulation of the associated biological processes could optimize clinical outcomes. However, our failure to produce truly blood compatible materials may reflect our inability to properly understand the mechanisms of thrombosis and inflammation associated with biomaterials. In vitro models mimicking these processes provide valuable insights into the mechanisms of biomaterial-induced complement activation and coagulation. Here, we review (i) the influence of biomaterials on complement and coagulation cascades, (ii) the significance of complement-coagulation interactions for the clinical success of cardiovascular implants, (iii) the modulation of complement activation by surface modifications, and (iv) in vitro testing strategies.
Collapse
Affiliation(s)
- Anne Strohbach
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
- Correspondence:
| | - Raila Busch
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| |
Collapse
|
12
|
Limitation of Water-Soluble Tetrazolium Salt for the Cytocompatibility Evaluation of Zinc-Based Metals. MATERIALS 2021; 14:ma14216247. [PMID: 34771776 PMCID: PMC8584906 DOI: 10.3390/ma14216247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
Zinc (Zn) and its alloys have been regarded as promising biodegradable metals. The standardized cytotoxicity evaluation is a mandatory step to screen the biocompatibility of novel Zn and its alloys. Nevertheless, the suitability of the tetrazolium-based assay in the direct contact test for some metallic biomaterials (i.e., magnesium and manganese) is questionable. In this study, our results demonstrate an obvious inconsistency between qualitative observation via fluorescence staining and quantitative assessment using water-soluble tetrazolium salt (CCK-8). Subsequent experiments revealed that Zn and pre-treated Zn can directly convert tetrazolium salts to formazan, falsifying the cytotoxicity results. Therefore, we conclude that the CCK-8 assay is not suitable for evaluating the cytotoxicity of biodegradable Zn-based metals in the direct contact test.
Collapse
|