1
|
Jaita P, Randorn C, Watcharapasorn A, Jarupoom P. In vitro bioactivity, mechanical, and cell interaction of sodium chloride-added calcium sulfate-hydroxyapatite composite bone cements. RSC Adv 2024; 14:35460-35474. [PMID: 39507684 PMCID: PMC11538968 DOI: 10.1039/d4ra06034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
In this research, sodium chloride-added calcium sulfate-hydroxyapatite composite bone cements (0.70CaS-0.30HAP)/xNaCl were studied. Different wt% of NaCl (0, 1.5, and 2.5) were added to 0.70CaS-0.30HAP bone cement to investigate the setting time, injectability, washout resistance, phase evolution, physical properties, water absorption, microstructural, chemical analysis, mechanical strength, statistical analysis, in vitro apatite-forming ability, and in vitro cytotoxicity. With increasing NaCl, the initial setting time decreased to around 3.18 min. X-ray pattern revealed that all composite bone cement samples had mixed phases of CaS, HAP, brushite, gypsum, and NaCl. Water absorption and average grain size increased with increasing NaCl content. The densification and mechanical performances, including σ c, σ f, and E values, slightly decreased with increasing NaCl content, correlated with the increasing porosity value. This resulted in the production of a porous structure, which caused an excellent in vitro apatite-forming ability. The x = 2.5 sample showed good bioactivity, inducing the highest apatite mineralization ability in the SBF solution. Additionally, in vitro cell culture analysis showed above 94.12% cell viability against a high concentration (@ 200 μg mL-1) for the x = 2.5 sample, revealing cytocompatibility. The obtained results indicated that the (0.70CaS-0.30HAP)/2.5NaCl composite bone cement, with good injectability, bioactivity, and cytocompatibility, are promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Pharatree Jaita
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Office of Research Administration, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Chamnan Randorn
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Anucha Watcharapasorn
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Parkpoom Jarupoom
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL) Chiang Mai 50300 Thailand
- Materials and Medical Innovation Research Unit, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL) Chiang Mai 50300 Thailand
| |
Collapse
|
2
|
Kaczmarek-Szczepańska B, Zasada L, D'Amora U, Pałubicka A, Michno A, Ronowska A, Wekwejt M. Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46102-46112. [PMID: 39163280 PMCID: PMC11378156 DOI: 10.1021/acsami.4c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Wound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing and address several problems plaguing partially healed injuries, including severe inflammation, scarring, and wound infection. Naturally derived compounds offer unique advantages such as minimal toxicity, cost-effectiveness, and outstanding biocompatibility along with potential anti-inflammatory and antimicrobial activity. Herein, the main driving idea of the work was the design and development of konjac glucomannan d-glucono-1,5-lactone (KG) films bioactivated by tannic acid and d-glucono-1,5-lactone (GL) addition. Our analysis, using attenuated total reflectance-Fourier transform infrared, atomic force microscopy, and surface energy measurements demonstrated that tannic acid (TA) clearly interacted with the KG matrix, acting as its cross-linker, whereas GL was embedded within the polymer structure. All developed films maintained a moist environment, which represents a pivotal property for wound dressing. Hemocompatibility experiments showed that all tested films exhibited no hemolytic impact on human erythrocytes. Moreover, the presence of TA and GL enhanced the metabolic and energetic activity in human dermal fibroblasts, as indicated by the MTT assay, showing results exceeding 150%. Finally, all films demonstrated high antibacterial properties as they significantly reduced the multiplication rate of both Staphylococcus aureus and Escherichia coli in bacterial broth and created the inhibition zones for S. aureus in agar plates. These remarkable outcomes make the KG/TA/GL film promising candidates for wound healing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d'OLtremare Pad. 20, 80125 Naples, Italy
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
- Laboratory for Biomaterials and Bioengineering (CRC-Tier I), Dept Min-Met-Materials Eng & Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| |
Collapse
|
3
|
Jaita P, Chokethawai K, Randorn C, Boonsri K, Pringproa K, Thongkorn K, Watcharapasorn A, Jarupoom P. Enhancing bioactivity and mechanical performances of hydroxyapatite-calcium sulfate bone cements for bone repair: in vivo histological evaluation in rabbit femurs. RSC Adv 2024; 14:23286-23302. [PMID: 39049882 PMCID: PMC11268428 DOI: 10.1039/d4ra03686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
This study deals with synthesizing hydroxyapatite-calcium sulfate bone cements or HAP-xCaS for bone repair. The effect of CaS on the setting time, injectability, washout resistance, phase evolution, water absorption, and physical, microstructural, and mechanical properties, as well as in vitro apatite-forming ability test and pH behavior of the HAP were investigated. Implantation of bone cement in rabbit femur and in vivo histological analysis were also analyzed. Initial and final setting times decrease with increasing CaS, which would be helpful for clinical procedures. All compositions have mixed phases of HAP, CaS, brushite, and gypsum. The prepared bone cement exhibited a dense structure and increased linear shrinkage with increasing CaS content. Adding more CaS inhibited grain growth and improved the mechanical properties, including compressive strength (σ c), bending strength (σ f), and Young's modulus (E). SEM micrographs displayed that the x = 0.7 or HAP-0.7CaS bone cement produced the highest ability to induce in vitro apatite formation, indicating its biocompatibility. In vivo histological analysis for the HAP-0.7CaS bone cement demonstrated that more new bone formed around defects and bone cement particles. Osteoblasts were found peripherally at the bone trabeculae, and occasional osteoblast-like cells were observed at the granules after 4-8 weeks of implantation. The obtained results indicated that the HAP-0.7CaS bone cement has the potential to exhibit good bioactivity, injectability, and good mechanical properties for bone repair applications.
Collapse
Affiliation(s)
- Pharatree Jaita
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Office of Research Administration, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Komsanti Chokethawai
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Chamnan Randorn
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Kittikorn Boonsri
- Center of Veterinary Diagnosis and Technology Transfer, Faculty of Veterinary Medicine, Chiang Mai University Chiang Mai 50100 Thailand
| | | | | | - Anucha Watcharapasorn
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Parkpoom Jarupoom
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL) Chiang Mai 50300 Thailand
- Materials and Medical Innovation Research Unit, Faculty of Engineering, Rajamangala University of Technology Lanna (RMUTL) Chiang Mai 50300 Thailand
| |
Collapse
|
4
|
Zhang Y, Xie L, Jiao X, Yue X, Xu Y, Wang C, Li Y, Yang X, Yang G, Xu S, Wang Y, Weng X, Gou Z. Preferentially Biodegradable Gypsum Fibers Endowing Invisible Microporous Structures and Enhancing Osteogenic Capability of Calcium Phosphate Cements. ACS Biomater Sci Eng 2024; 10:1077-1089. [PMID: 38301150 DOI: 10.1021/acsbiomaterials.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 μm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The μCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Lijun Xie
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Xiaoyi Jiao
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Xusong Yue
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Yan Xu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Cong Wang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
| | - Yifan Li
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an 325200, China
| | - Sanzhong Xu
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Partial equilibration during dissolution of calcium hydrogen phosphate in aqueous sodium hydrogen citrate: mechanism behind spontaneous supersaturation increasing calcium bioaccessibility. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Lee JJ, Ng HY, Lin YH, Lin TJ, Kao CT, Shie MY. The Synergistic Effect of Cyclic Tensile Force and Periodontal Ligament Cell-Laden Calcium Silicate/Gelatin Methacrylate Auxetic Hydrogel Scaffolds for Bone Regeneration. Cells 2022; 11:2069. [PMID: 35805154 PMCID: PMC9265804 DOI: 10.3390/cells11132069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The development of 3D printing technologies has allowed us to fabricate complex novel scaffolds for bone regeneration. In this study, we reported the incorporation of different concentrations of calcium silicate (CS) powder into fish gelatin methacrylate (FGelMa) for the fabrication of CS/FGelMa auxetic bio-scaffolds using 3D printing technology. Our results showed that CS could be successfully incorporated into FGelMa without influencing the original structural components of FGelMa. Furthermore, it conveyed that CS modifications both the mechanical properties and degradation rates of the scaffolds were improved in accordance with the concentrations of CS upon modifications of CS. In addition, the presence of CS enhanced the adhesion and proliferation of human periodontal ligament cells (hPDLs) cultured in the scaffold. Further osteogenic evaluation also confirmed that CS was able to enhance the osteogenic capabilities via activation of downstream intracellular factors such as pFAK/FAK and pERK/ERK. More interestingly, it was noted that the application of extrinsic biomechanical stimulation to the auxetic scaffolds further enhanced the proliferation and differentiation of hPDLs cells and secretion of osteogenic-related markers when compared to CS/FGelMa hydrogels without tensile stimulation. This prompted us to explore the related mechanism behind this interesting phenomenon. Subsequent studies showed that biomechanical stimulation works via YAP, which is a biomechanical cue. Taken together, our results showed that novel auxetic scaffolds could be fabricated by combining different aspects of science and technology, in order to improve the future chances of clinical applications for bone regeneration.
Collapse
Affiliation(s)
- Jian-Jr Lee
- School of Medicine, China Medical University, Taichung City 406040, Taiwan;
- Department of Plastic & Reconstruction Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Hooi-Yee Ng
- Department of Education, China Medical University Hospital, Taichung City 404332, Taiwan;
| | - Yen-Hong Lin
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung City 406040, Taiwan;
| | - Ting-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan;
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| |
Collapse
|
7
|
Lin YH, Lee AKX, Ho CC, Fang MJ, Kuo TY, Shie MY. The effects of a 3D-printed magnesium-/strontium-doped calcium silicate scaffold on regulation of bone regeneration via dual-stimulation of the AKT and WNT signaling pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112660. [PMID: 35034814 DOI: 10.1016/j.msec.2022.112660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
Numerous studies have demonstrated that calcium silicate (CS) can be doped with various trace metal elements such as strontium (Sr) or magnesium (Mg). These studies have confirmed that such modifications promote bone regeneration. However, the development and emergence of 3D printing have further made it possible to fabricate bone grafts with precise structural designs using multi-bioceramics so as to better suit specific clinical requirements. We fabricated scaffolds using Mg-doped CS as the outer layer with Sr-doped CS in the center. In addition, PCL was used to improve printability of the scaffolds. This enhanced Mg and Sr architecture prevented premature degradation of the scaffolds during immersion while enabling the release of ions in a sustained manner in order to achieve the desired therapeutic goals. Even the capabilities of stem cells were shown to be enhanced when cultured on these scaffolds. Furthermore, the hybrid scaffolds were found to up-regulate the expression of bone-related proteins such as factors leading to differentiation-inducing pathways, including PI3K/Akt, Wnt, and TRPM7. The in vivo performance of the proposed scaffolds was assessed using micro-CT. The histological results revealed that the hybrid scaffolds were able to further enhance bone regeneration as compared to uni-bioceramics. By combining 3D printing, multi-ceramics, and trace metal elements, a novel hybrid scaffold could be fabricated with ease and specifically suited to future bone tissue engineering applications.
Collapse
Affiliation(s)
- Yen-Hong Lin
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 406040, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
| | - Alvin Kai-Xing Lee
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Min-Jie Fang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ting-You Kuo
- The Master Program for Biomedical Engineering, China Medical University, Taichung City 406040, Taiwan
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; School of Dentistry, China Medical University, Taichung 406040, Taiwan.
| |
Collapse
|
8
|
de Zawadzki A, Liu XC, Ahrné LM, Skibsted LH. Increasing calcium phosphate aqueous solubility and spontaneous supersaturation combining citrate and gluconate with perspectives for functional foods. Food Chem 2021; 374:131701. [PMID: 34902813 DOI: 10.1016/j.foodchem.2021.131701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/20/2022]
Abstract
Uptake of calcium from food depends on solubility of calcium salts in the intestines, and precipitation of calcium phosphates decreases bioaccessibility of food calcium. Citrate as a high affinity complex binder for calcium was found spontaneously to create strongly supersaturated solutions by rapid dissolution of calcium hydrogen phosphate characterized by short lag phases for precipitation. Gluconate with weaker affinity for calcium binding showed longer lag phases for precipitation from supersaturated solutions. For citrate/gluconate combinations, the highest degree of supersaturation with longest lag phases for precipitation were found by trial-and-error experiments for a citrate/gluconate ratio of 1:10 for dissolution of calcium hydrogen phosphate resulting in supersaturation factors around three and without precipitation for more than a month. The aim of the present study was to provide a physicochemical explanation of this robust supersaturation. Calcium speciation based on electrochemical calcium activity measurement identified a low [Ca2+]·[HCitr2-] product as critical for supersaturation.
Collapse
Affiliation(s)
- Andressa de Zawadzki
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Xiao-Chen Liu
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lilia M Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Lai WY, Lee TH, Chen JX, Ng HY, Huang TH, Shie MY. Synergies of Human Umbilical Vein Endothelial Cell-Laden Calcium Silicate-Activated Gelatin Methacrylate for Accelerating 3D Human Dental Pulp Stem Cell Differentiation for Endodontic Regeneration. Polymers (Basel) 2021; 13:polym13193301. [PMID: 34641117 PMCID: PMC8512667 DOI: 10.3390/polym13193301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Centers for Disease Control and Prevention, tooth caries is a common problem affecting 9 out of every 10 adults worldwide. Dentin regeneration has since become one of the pressing issues in dentistry with tissue engineering emerging as a potential solution for enhancing dentin regeneration. In this study, we fabricated cell blocks with human dental pulp stem cells (hDPSCs)-laden alginate/fish gelatin hydrogels (Alg/FGel) at the center of the cell block and human umbilical vascular endothelial cells (HUVEC)-laden Si ion-infused fish gelatin methacrylate (FGelMa) at the periphery of the cell block. 1H NMR and FTIR results showed the successful fabrication of Alg/FGel and FGelMa. In addition, Si ions in the FGelMa were noted to be bonded via covalent bonds and the increased number of covalent bonds led to an increase in mechanical properties and improved degradation of FGelMa. The Si-containing FGelMa was able to release Si ions, which subsequently significantly not only enhanced the expressions of angiogenic-related protein, but also secreted some cytokines to regulate odontogenesis. Further immunofluorescence results indicated that the cell blocks allowed interactions between the HUVEC and hDPSCs, and taken together, were able to enhance odontogenic-related markers' expression, such as alkaline phosphatase (ALP), dentin matrix phosphoprotein-1 (DMP-1), and osteocalcin (OC). Subsequent Alizarin Red S stain confirmed the benefits of our cell block and demonstrated that such a novel combination and modification of biomaterials can serve as a platform for future clinical applications and use in dentin regeneration.
Collapse
Affiliation(s)
- Wei-Yun Lai
- School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan;
| | - Tzu-Hsin Lee
- Department of Orthodontics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Jian-Xun Chen
- School of Medicine, China Medical University, Taichung 40447, Taiwan; (J.-X.C.); (H.-Y.N.)
- Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan
| | - Hooi-Yee Ng
- School of Medicine, China Medical University, Taichung 40447, Taiwan; (J.-X.C.); (H.-Y.N.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan;
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.H.); (M.-Y.S.)
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
- School of Dentistry, China Medical University, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (T.-H.H.); (M.-Y.S.)
| |
Collapse
|
10
|
The Development of Light-Curable Calcium-Silicate-Containing Composites Used in Odontogenic Regeneration. Polymers (Basel) 2021; 13:polym13183107. [PMID: 34578012 PMCID: PMC8468725 DOI: 10.3390/polym13183107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Pulp regeneration is one of the most successful areas in the field of tissue regeneration, despite its current limitations. The biocompatibility of endodontic biomaterials is essential in securing the oral microenvironment and supporting pulp tissue regeneration. Therefore, the objective of this study was to investigate the new light-curable calcium silicate (CS)-containing polyethylene glycol diacrylate (PEGDA) biocomposites’ regulation of human dental pulp stem cells (hDPSCs) in odontogenic-related regeneration. The CS-containing PEGDA (0 to 30 wt%) biocomposites are applied to endodontics materials to promote their mechanical, bioactive, and biological properties. Firstly, X-ray diffraction and Fourier-transform infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the PEGDA. The diameter tension strength of the CS-containing PEGDA composite was significantly higher than that of normal PEGDA, and a different microstructure was detected on the surface. Samples were analyzed for their surface characteristics and Ca/Si ion-release profiles after soaking in simulated body fluid for different periods of time. The CS30 group presented better hDPSC adhesion and proliferation in comparison with CS0. Higher values of odontogenic-related biomarkers were found in hDPSCs on CS30. Altogether, these results prove the potential of light-curable CS-containing PEGDA composites as part of a ‘point-of-care’ strategy for application in odontogenesis-related regeneration.
Collapse
|
11
|
Lin YT, Hsu TT, Liu YW, Kao CT, Huang TH. Bidirectional Differentiation of Human-Derived Stem Cells Induced by Biomimetic Calcium Silicate-Reinforced Gelatin Methacrylate Bioink for Odontogenic Regeneration. Biomedicines 2021; 9:biomedicines9080929. [PMID: 34440133 PMCID: PMC8394247 DOI: 10.3390/biomedicines9080929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Tooth loss or damage is a common problem affecting millions of people worldwide, and it results in significant impacts on one’s quality of life. Dental regeneration with the support of stem cell-containing scaffolds has emerged as an alternative treatment strategy for such cases. With this concept in mind, we developed various concentrations of calcium silicate (CS) in a gelatin methacryloyl (GelMa) matrix and fabricated human dental pulp stem cells (hDPSCs)-laden scaffolds via the use of a bioprinting technology in order to determine their feasibility in promoting odontogenesis. The X-ray diffraction and Fourier transform-infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the GelMa hydrogels. In addition, rheological analyses were conducted for the different concentrations of hydrogels to evaluate their sol–gel transition temperature. It was shown that incorporation of CS improved the printability and printing quality of the scaffolds. The printed CS-containing scaffolds were able to release silicate (Si) ions, which subsequently significantly enhanced the activation of signaling-related markers such as ERK and significantly improved the expression of odontogenic-related markers such as alkaline phosphatase (ALP), dentin matrix protein-1 (DMP-1), and osteocalcin (OC). The calcium deposition assays were also significantly enhanced in the CS-containing scaffold. Our results demonstrated that CS/GelMa scaffolds were not only enhanced in terms of their physicochemical behaviors but the odontogenesis of the hDPSCs was also promoted as compared to GelMa scaffolds. These results demonstrated that CS/GelMa scaffolds can serve as cell-laden materials for future clinical applications and use in dentin regeneration.
Collapse
Affiliation(s)
- Yi-Ting Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
| | - Tuan-Ti Hsu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; (T.-T.H.); (Y.-W.L.)
| | - Yu-Wei Liu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; (T.-T.H.); (Y.-W.L.)
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-22967979 (ext. 3700)
| |
Collapse
|
12
|
Chen CY, Shie MY, Lee AKX, Chou YT, Chiang C, Lin CP. 3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration. Biomedicines 2021; 9:biomedicines9080907. [PMID: 34440111 PMCID: PMC8389633 DOI: 10.3390/biomedicines9080907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Bone defects are commonly found in the elderly and athletic population due to systemic diseases such as osteoporosis and trauma. Bone scaffolds have since been developed to enhance bone regeneration by acting as a biological extracellular scaffold for cells. The main advantage of a bone scaffold lies in its ability to provide various degrees of structural support and growth factors for cellular activities. Therefore, we designed a 3D porous scaffold that can not only provide sufficient mechanical properties but also carry drugs and promote cell viability. Ginsenoside Rb1 (GR) is an extract from panax ginseng, which has been used for bone regeneration and repair since ancient Chinese history. In this study, we fabricated scaffolds using various concentrations of GR with mesoporous calcium silicate/calcium sulfate (MSCS) and investigated the scaffold’s physical and chemical characteristic properties. PrestoBlue, F-actin staining, and ELISA were used to demonstrate the effect of the GR-contained MSCS scaffold on cell proliferation, morphology, and expression of the specific osteogenic-related protein of human dental pulp stem cells (hDPSCs). According to our data, hDPSCs cultivated in GR-contained MSCS scaffold had preferable abilities of proliferation and higher expression of the osteogenic-related protein and could effectively inhibit inflammation. Finally, in vivo performance was assessed using histological results that revealed the GR-contained MSCS scaffolds were able to further achieve more effective hard tissue regeneration than has been the case in the past. Taken together, this study demonstrated that a GR-containing MSCS 3D scaffold could be used as a potential alternative for future bone tissue engineering studies and has good potential for clinical use.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| | - Alvin Kai-Xing Lee
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Yun-Ting Chou
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung 406040, Taiwan;
| | - Chun Chiang
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: ; Tel.: +886-2-23831346
| |
Collapse
|
13
|
Therapeutic Effects of the Addition of Fibroblast Growth Factor-2 to Biodegradable Gelatin/Magnesium-Doped Calcium Silicate Hybrid 3D-Printed Scaffold with Enhanced Osteogenic Capabilities for Critical Bone Defect Restoration. Biomedicines 2021; 9:biomedicines9070712. [PMID: 34201589 PMCID: PMC8301337 DOI: 10.3390/biomedicines9070712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Worldwide, the number of bone fractures due to traumatic and accidental injuries is increasing exponentially. In fact, repairing critical large bone defects remains challenging due to a high risk of delayed union or even nonunion. Among the many bioceramics available for clinical use, calcium silicate-based (CS) bioceramics have gained popularity due to their good bioactivity and ability to stimulate cell behavior. In order to improve the shortcomings of 3D-printed ceramic scaffolds, which do not easily carry growth factors and do not provide good tissue regeneration effects, the aim of this study was to use a gelatin-coated 3D-printed magnesium-doped calcium silicate (MgCS) scaffold with genipin cross-linking for regulating degradation, improving mechanical properties, and enhancing osteogenesis behavior. In addition, we consider the effects of fibroblast growth factor-2 (FGF-2) loaded into an MgCS scaffold with and without gelatin coating. Furthermore, we cultured the human Wharton jelly-derived mesenchymal stem cells (WJMSC) on the scaffolds and observed the biocompatibility, alkaline phosphatase activity, and osteogenic-related markers. Finally, the in vivo performance was assessed using micro-CT and histological data that revealed that the hybrid bioscaffolds were able to further achieve more effective bone tissue regeneration than has been the case in the past. The above results demonstrated that this type of processing had great potential for future clinical applications and studies and can be used as a potential alternative for future bone tissue engineering research, as well as having good potential for clinical applications.
Collapse
|
14
|
Zhang R, Hu J, Chen H, Ding Z, Ouyang Y, Zhang Q, Yan Y. A novel degradable tricalcium silicate/calcium polyphosphate/polyvinyl alcohol organic-inorganic composite cement for bone filling. J Biomater Appl 2021; 36:772-788. [PMID: 34102909 DOI: 10.1177/08853282211020399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, tricalcium silicate (C3S) calcium/polyphosphate/polyvinyl alcohol organic-inorganic self-setting composites were successfully designed. A variety of tests were conducted to characterize their self-setting properties, mechanical properties, degradation properties, and related biological properties. The composite bone cements showed a short setting time (5.5-37.5 min) with a 5:5-6:4 ratio of C3S/CPP to maintain a stable compressive strength (28 MPa). In addition, PVA effectively reduced the brittleness of the inorganic phase. Degradation experiments confirmed the sustainable surface degradation of bone cement. A maximum degradation rate of 49% was reached within 56 days, and the structure remained intact without collapse. Culturing MC3T3 cells with bone cement extracts revealed that the composite bone cements had excellent biological properties in vitro. The original extract showed a proliferation promotion effect on cells, whereas most of the other original extracts of degradable bone cements were toxic to the cells. Meanwhile, extracellular matrix mineralization and alkaline phosphatase expression showed remarkable effects on cell differentiation. In addition, a good level of adhesion of cells to the surfaces of materials was observed. Taken together, these results indicate that C3S/CPP/PVA composite bone cements have great potential in bone defect filling for fast curing.
Collapse
Affiliation(s)
- Rongguang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Jinbo Hu
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Hong Chen
- College of Physical Science and Technology, Sichuan University, Chengdu, P.R. China
| | - Zhengwen Ding
- College of Physical Science and Technology, Sichuan University, Chengdu, P.R. China
| | - Yalan Ouyang
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|