1
|
Tang K, Wang J, Pei X, Zhu Z, Liu J, Wan Q, Zhang X. Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants. Adv Colloid Interface Sci 2025; 335:103358. [PMID: 39591835 DOI: 10.1016/j.cis.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The use of biomedical implants in surgical techniques promotes the restoration of lost tissue or organ physiological functions in the body. The interface between different materials determines their interactions and ultimately affects the physicochemical properties of biomedical implants. After implantation, the biointerface plays a crucial role in determining the biocompatibility and functionality of biomedical implants. Surface modification of biomaterials by developing novel biomaterials like various flexible coatings to meet the requirements of biointerfaces, such as mechanical performance, compatibility safety, and biological activities, can improve material-biological interactions by maintaining its original volumetric characteristics. Hydrogels possess excellent plasticity, biodegradability, biocompatibility, and extracellular-matrix-like properties, making them widely used in the biomedical field. Moreover, due to their unique three-dimensional crosslinked hydrophilic network, hydrogels can encapsulate a variety of materials, such as small molecules, polymers, and particle. In recent years, it has been proved that coating biomedical implant materials with flexible hydrogels can optimize the biointerface and holds vast potential for implant surface modification. In this review, we first discussed the potential requirements of the biointerface on the surface of implantable materials in both in vitro and in vivo biological microenvironments. Based on these comprehensive reviews, we also introduced the potential applications of hydrogels in both in vitro and in vivo settings. Finally, this review focused on the challenges faced by the biointerface of implantable materials constructed based on hydrogels and proposed future approaches to inspire researchers with new ideas.
Collapse
Affiliation(s)
- Kun Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Kunrath MF, Rubensam G, Rodrigues FVF, Marinowic DR, Sesterheim P, de Oliveira SD, Teixeira ER, Hubler R. Nano-scaled surfaces and sustainable-antibiotic-release from polymeric coating for application on intra-osseous implants and trans-mucosal abutments. Colloids Surf B Biointerfaces 2023; 228:113417. [PMID: 37356139 DOI: 10.1016/j.colsurfb.2023.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP). The samples were characterized regarding their physicochemical properties and the cumulative release of rifampicin (RIMP), investigated at different pH values. Additionally, differentiated osteoblasts from mesenchymal cells were used for cell viability and qRT-PCR analysis. Antibacterial properties of each surface treatment were investigated against Staphylococcus epidermidis. TNTsRIMP demonstrated controlled drug release for up to 7 days in neutral pH environments. Osteogenic cell cultures indicated that all the evaluated surfaces showed biocompatibility. The TNTs group revealed up-regulated values for bone-related gene quantification in 7 days, followed by the TNTsRIMP group. Furthermore, the antibiotic-functionalized surface revealed effectiveness to inhibit S. epidermidis and stimulate promising conditions for osteogenic cell behavior. Characteristics such as nanomorphology and hydrophilicity were determinants for the up-regulated quantification of osteogenic biomarkers related to early bone maturation, encouraging application in intra-osseous implant surfaces; in addition, antibiotic-functionalized surfaces demonstrated significant higher antibacterial properties compared to the other groups. Our findings suggest that polymeric-antibiotic-loaded coating might be applied for the prevention of early infections, favoring its application in multifunctional surfaces for intra- and/or trans-mucosal components of dental implants, while, hydrophilic nanotextured surfaces promoted optimistic properties to stimulate early bone-related cell responses, favoring its application in bone-anchored surfaces.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gabriel Rubensam
- Toxicology and Pharmacology Research Center (INTOX),School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe V F Rodrigues
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel R Marinowic
- Brain Institute of Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Experimental Cardiology Center, Institute of Cardiology of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia D de Oliveira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field-A Review. J Funct Biomater 2023; 14:jfb14050243. [PMID: 37233353 DOI: 10.3390/jfb14050243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot research topic in the antibacterial field. The surface modification of biomaterials by using antibacterial hydrogels as coatings contributes to the biomaterial activity and offers wide prospects for development. A variety of surface chemical strategies have been developed to bind hydrogels to the substrate surface stably. We first introduce the preparation method for antibacterial coatings in this review, which includes surface-initiated graft crosslinking polymerization, anchoring the hydrogel coating to the substrate surface, and the LbL self-assembly technique to coat crosslinked hydrogels. Then, we summarize the applications of hydrogel coating in the biomedical antibacterial field. Hydrogel itself has certain antibacterial properties, but the antibacterial effect is not sufficient. In recent research, in order to optimize its antibacterial performance, the following three antibacterial strategies are mainly adopted: bacterial repellent and inhibition, contact surface killing of bacteria, and release of antibacterial agents. We systematically introduce the antibacterial mechanism of each strategy. The review aims to provide reference for the further development and application of hydrogel coatings.
Collapse
Affiliation(s)
- Tai Peng
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Qi Shi
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Manlong Chen
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
| | - Wenyi Yu
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Tingting Yang
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
6
|
Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy. Colloids Surf B Biointerfaces 2023; 224:113188. [PMID: 36773409 DOI: 10.1016/j.colsurfb.2023.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
It is still a big challenge in orthopedics to treat infected bone defects properly using medical metals. The use of three-dimensional (3D) scaffold materials that simultaneously mimic the skeletal hierarchy and induce sustainable osteogenic and antibacterial functions are a promising solution with an increasing appeal. In this study, we first designed a bifunctional fusion peptide (HHC36-RGD, HR) by linking antimicrobial peptide (HHC36) and arginine-glycine-aspartate (RGD) peptide via 6-aminohexanoic acid. Then the 3D scaffold was fabricated by additive manufacturing, and the strontium titanate nanotube structure (3D-STN) was constructed on its surface. Finally, the HR was anchored to the 3D-STN with the aid of polydopamine (PDA, P), forming the 3D-STN-P-HR scaffold. The results showed that the scaffold exhibited an ordered 3D porous structure, and that the surface was covered by a dense HHC36-RGD layer. Expectedly, the adsorption of PDA effectively slowed down the release of HR. Moreover, the functionalized scaffold had a significant inhibitory effect on Staphylococcus aureus and Escherichia coli, and its antibacterial rate could reach more than 95%. The results of in vitro cell culture experiments demonstrated that the 3D-STN-P-HR scaffold possessed excellent cytocompatibility and could promote the transcription of osteogenic differentiation-related genes and the expression of related proteins. In conclusion, the functionally modified 3D porous titanium alloy scaffold (3D-STN-P-HR) has a balanced antibacterial and osteogenic function, which bodes well for future potential in the customized functional reconstruction of complex-shaped infected bone defects.
Collapse
|
7
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio 2022; 17:100447. [PMID: 36278144 PMCID: PMC9579810 DOI: 10.1016/j.mtbio.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti-Cu implants with antibacterial activity. The review first discusses the fundamentals of interactions between bacteria and implanted surfaces followed by an overview of the most common engineering strategies utilized to endow an implant with antibacterial activity. The underlying mechanisms for antibacterial activity of Ti-Cu implants are then discussed in detail. Special attention is paid to contact killing mechanisms because the misinterpretation of this mechanism is the root of discrepancies in the literature.
Collapse
Affiliation(s)
- Pezhman Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11365-9466, Iran
| | - Mohammad Reza Akbarpour
- Department of Materials Engineering, University of Maragheh, Maragheh, P.O. Box 55136-553, Iran
| | | | - Fengjuan Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mohammad Reza Hadidi
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Behnam Akhavan
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Research Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
9
|
Smart Bacteria-Responsive Drug Delivery Systems in Medical Implants. J Funct Biomater 2022; 13:jfb13040173. [PMID: 36278642 PMCID: PMC9589986 DOI: 10.3390/jfb13040173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of implantable biomaterials, the rising risk of bacterial infections has drawn widespread concern. Due to the high recurrence rate of bacterial infections and the issue of antibiotic resistance, the common treatments of peri-implant infections cannot meet the demand. In this context, stimuli-responsive biomaterials have attracted attention because of their great potential to spontaneously modulate the drug releasing rate. Numerous smart bacteria-responsive drug delivery systems (DDSs) have, therefore, been designed to temporally and spatially release antibacterial agents from the implants in an autonomous manner at the infected sites. In this review, we summarized recent advances in bacteria-responsive DDSs used for combating bacterial infections, mainly according to the different trigger modes, including physical stimuli-responsive, virulence-factor-responsive, host-immune-response responsive and their combinations. It is believed that the smart bacteria-responsive DDSs will become the next generation of mainstream antibacterial therapies.
Collapse
|
10
|
Lu Y, Yang Y, Liu S, Ge S. Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery—a promising method for tissue regeneration. Front Cell Dev Biol 2022; 10:898394. [PMID: 36092710 PMCID: PMC9454000 DOI: 10.3389/fcell.2022.898394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become the preferred seed cells for tissue regeneration. Nevertheless, due to their immunogenicity and tumorigenicity, MSC transplantation remains questionable. Extracellular vesicles (EVs) derived from MSCs are becoming a promising substitute for MSCs. As a route of the MSC paracrine, EVs have a nano-sized and bilayer lipid-enclosed structure, which can guarantee the integrity of their cargoes, but EVs cannot obtain full function in vivo because of the rapid biodegradation and clearance by phagocytosis. To improve the efficacy and targeting of EVs, methods have been proposed and put into practice, especially engineered vesicles and EV-controlled release systems. In particular, EVs can be cell or tissue targeting because they have cell-specific ligands on their surfaces, but their targeting ability may be eliminated by the biodegradation of the phagocytic system during circulation. Novel application strategies have been proposed beyond direct injecting. EV carriers such as biodegradable hydrogels and other loading systems have been applied in tissue regeneration, and EV engineering is also a brand-new method for higher efficacy. In this review, we distinctively summarize EV engineering and loading system construction methods, emphasizing targeting modification methods and controlled release systems for EVs, which few literature reviews have involved.
Collapse
Affiliation(s)
- Yu Lu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Yang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shaohua Ge
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shaohua Ge,
| |
Collapse
|
11
|
Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y. Applications of Titanium Dioxide Nanostructure in Stomatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123881. [PMID: 35745007 PMCID: PMC9229536 DOI: 10.3390/molecules27123881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Xingzhu Chen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| |
Collapse
|
12
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. Int J Mol Sci 2021; 22:ijms222112022. [PMID: 34769449 PMCID: PMC8584732 DOI: 10.3390/ijms222112022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
The impact of different amounts of glycerin, which was used in the system of sodium alginate/poly(vinyl alcohol) (SA/PVA) hydrogel materials on the properties, such as gel fraction, swelling ability, degradation in simulated body fluids, morphological analysis, and elongation tests were presented. The study shows a significant decrease in the gel fraction from 80.5 ± 2.1% to 45.0 ± 1.2% with the increase of glycerin content. The T5 values of the tested hydrogels were varied and range from 88.7 °C to 161.5 °C. The presence of glycerin in the matrices significantly decreased the thermal resistance, which was especially visible by T10 changes (273.9 to 163.5 °C). The degradation tests indicate that most of the tested materials do not degrade throughout the incubation period and maintain a constant ion level after 7-day incubation. The swelling abilities in distilled water and phosphate buffer solution are approximately 200-300%. However, we noticed that these values decrease with the increase in glycerin content. All tested matrices are characterized by the maximum elongation rate at break in a range of 37.6-69.5%. The FT-IR analysis exhibits glycerin changes in hydrogel structures, which is associated with the cross-linking reaction. Additionally, cytotoxicity results indicate good adhesion properties and no toxicity towards normal human dermal fibroblasts.
Collapse
|
14
|
Hosseinpour S, Nanda A, Walsh LJ, Xu C. Microbial Decontamination and Antibacterial Activity of Nanostructured Titanium Dental Implants: A Narrative Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2336. [PMID: 34578650 PMCID: PMC8471155 DOI: 10.3390/nano11092336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Peri-implantitis is the major cause of the failure of dental implants. Since dental implants have become one of the main therapies for teeth loss, the number of patients with peri-implant diseases has been rising. Like the periodontal diseases that affect the supporting tissues of the teeth, peri-implant diseases are also associated with the formation of dental plaque biofilm, and resulting inflammation and destruction of the gingival tissues and bone. Treatments for peri-implantitis are focused on reducing the bacterial load in the pocket around the implant, and in decontaminating surfaces once bacteria have been detached. Recently, nanoengineered titanium dental implants have been introduced to improve osteointegration and provide an osteoconductive surface; however, the increased surface roughness raises issues of biofilm formation and more challenging decontamination of the implant surface. This paper reviews treatment modalities that are carried out to eliminate bacterial biofilms and slow their regrowth in terms of their advantages and disadvantages when used on titanium dental implant surfaces with nanoscale features. Such decontamination methods include physical debridement, chemo-mechanical treatments, laser ablation and photodynamic therapy, and electrochemical processes. There is a consensus that the efficient removal of the biofilm supplemented by chemical debridement and full access to the pocket is essential for treating peri-implantitis in clinical settings. Moreover, there is the potential to create ideal nano-modified titanium implants which exert antimicrobial actions and inhibit biofilm formation. Methods to achieve this include structural and surface changes via chemical and physical processes that alter the surface morphology and confer antibacterial properties. These have shown promise in preclinical investigations.
Collapse
Affiliation(s)
| | | | - Laurence J. Walsh
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| |
Collapse
|
15
|
Chen F, He Y, Li Z, Xu B, Ye Q, Li X, Ma Z, Song W, Zhang Y. A novel tunable, highly biocompatible and injectable DNA-chitosan hybrid hydrogel fabricated by electrostatic interaction between chitosan and DNA backbone. Int J Pharm 2021; 606:120938. [PMID: 34310955 DOI: 10.1016/j.ijpharm.2021.120938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
The injectable hydrogel is an ideal reservoir for drug delivery. In this study, a new injectable DNA hydrogel was fabricated. Firstly, the DNA pre-gel was obtained by heat-cool treatments to induce cross-linkage through base-paring. Then, the pre-gel was cross-linked with chitosan (CS) through electrostatic interaction, which was confirmed by ATR-FTIR and XPS analysis. The DNA-CS hybrid gel showed finely tunable various properties such as porosity and viscosity. To simulate the biomedical application, the dexamethasone (Dex) was loaded into the gel and coated onto titanium implant surface to induce macrophages M2 polarization. Due to the excellent biocompatibility and Dex delivery, the decorated implant surface was favorable for RAW264.7 cells growth and showed powerful effects of inducing M2 polarization both in vitro and in vivo. In conclusion, it is the first report of DNA hydrogel synthesis via CS cross-linkage and the injectable DNA-CS hybrid gel was superb for therapeutic delivery.
Collapse
Affiliation(s)
- Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Boya Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xinyan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhiwei Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
16
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|