1
|
Debnath S, Agrawal A, Jain N, Chatterjee K, Player DJ. Collagen as a bio-ink for 3D printing: a critical review. J Mater Chem B 2025; 13:1890-1919. [PMID: 39775500 DOI: 10.1039/d4tb01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers. For a bio-ink to be considered high-performance, it must meet several critical criteria: printability, gelation kinetics, structural integrity, elasticity and strength, cell adhesion and differentiation, mimicking the native ECM, cell viability and proliferation. As an exemplar application, tissue grafting is used to repair and replace severely injured tissues. The primary considerations in this case include compatibility, availability, advanced surgical techniques, and potential complications after the operation. 3D printing has emerged as an advancement in 3D culture for its use as a regenerative medicine approach. Thus, additive technologies such as 3D bioprinting may offer safe, compatible, and fast-healing tissue engineering options. Multiple methods have been developed for hard and soft tissue engineering during the past few decades, however there are many limitations. Despite significant advances in 3D cell culture, 3D printing, and material creation, a gold standard strategy for designing and rebuilding bone, cartilage, skin, and other tissues has not yet been achieved. Owing to its abundance in the human body and its critical role in protecting and supporting human tissues, soft and hard collagen-based bioinks is an attractive proposition for 3D bioprinting. Collagen, offers a good combination of biocompatibility, controllability, and cell loading. Collagen made of triple helical collagen subunit is a protein-based organic polymer present in almost every extracellular matrix of tissues. Collagen-based bioinks, which create bioinspired scaffolds with multiple functionalities and uses them in various applications, is a represent a breakthrough in the regenerative medicine and biomedical engineering fields. This protein can be blended with a variety of polymers and inorganic fillers to improve the physical and biological performance of the scaffolds. To date, there has not been a comprehensive review appraising the existing literature surround the use of collagen-based bioink applications in 'soft' or 'hard' tissue applications. The uses of the target region in soft tissues include the skin, nerve, and cartilage, whereas in the hard tissues, it specifically refers to bone. For soft tissue healing, collagen-based bioinks must meet greater functional criteria, whereas hard tissue restoration requires superior mechanical qualities. Herein, we summarise collagen-based bioink's features and highlight the most essential ones for diverse healing situations. We conclude with the primary challenges and difficulties of using collagen-based bioinks and suggest future research objectives.
Collapse
Affiliation(s)
- Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.
| |
Collapse
|
2
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
3
|
Ghobadi F, Kalantarzadeh R, Ashrafnia Menarbazari A, Salehi G, Fatahi Y, Simorgh S, Orive G, Dolatshahi-Pirouz A, Gholipourmalekabadi M. Innovating chitosan-based bioinks for dermal wound healing: Current progress and future prospects. Int J Biol Macromol 2025; 298:140013. [PMID: 39832576 DOI: 10.1016/j.ijbiomac.2025.140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The field of three-dimensional (3D) bio/printing, known as additive manufacturing (AM), heavily relies on bioinks possessing suitable mechanical properties and compatibility with living cells. Among the array of potential hydrogel precursor materials, chitosan (CS) has garnered significant attention due to its remarkable physicochemical and biological attributes. These attributes include biodegradability, nontoxicity, antimicrobial properties, wound healing promotion, and immune system activation, making CS a highly appealing hydrogel-based bioink candidate. This review explores the transformative potential of CS-based bioink for enhancing dermal wound healing therapies. We highlight CS's unique qualities that make it an optimal choice for bioink development. Advancements in 3D bio/printing technology for tissue engineering (TE) are discussed, followed by an examination of strategies for CS-based bioink formulation and their impacts on wound healing. To address the progress in translating advanced wound healing from lab to clinic, we highlight the current and ongoing research in CS-based bioink for 3D bio/printing in skin wound healing applications. Finally, we explore current evidence, commercialization prospects, emerging innovations like 4D printing, and the challenges and future directions in this promising field.
Collapse
Affiliation(s)
- Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rooja Kalantarzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Arezoo Ashrafnia Menarbazari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Salehi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
4
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Pérez-Pacheco Y, Tylkowski B, García-Valls R. Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application. Molecules 2025; 30:252. [PMID: 39860124 PMCID: PMC11767700 DOI: 10.3390/molecules30020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release. The potential to customize chitosan for different environments and therapeutic uses introduces opportunities for drug encapsulation and release. The focus on improving drug encapsulation and sustained release in specific tissues is an advanced interpretation, reflecting the evolving role of chitosan in achieving targeted and more efficient therapeutic outcomes. This review describes strategies to improve solubility and stability and ensure the controlled release of encapsulated drugs. The discussion on optimizing factors like cross-linking density, particle size, and pH for controlled drug release introduces a deeper understanding of how to achieve specific therapeutic effects. These strategies represent a refined approach to designing chitosan-based systems, pushing the boundaries of sustained release technologies and offering new avenues for precise drug delivery profiles.
Collapse
Affiliation(s)
- Yaride Pérez-Pacheco
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (Y.P.-P.); (B.T.)
| | - Bartosz Tylkowski
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (Y.P.-P.); (B.T.)
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel_lí Domingo s/n, 43007 Tarragona, Spain
- Faculty of Health Science, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland
| | - Ricard García-Valls
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (Y.P.-P.); (B.T.)
| |
Collapse
|
6
|
Palamidi A, Koumentakou I, Michopoulou A, Bikiaris DN, Terzopoulou Z. Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications. Int J Pharm 2024; 666:124776. [PMID: 39343329 DOI: 10.1016/j.ijpharm.2024.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The combination of biocompatible materials and advanced three-dimensional (3D) additive manufacturing technologies holds great potential in the development of finely tuned complex scaffolds with reproducible macro- and micro-structural characteristics for biomedical applications, such as tissue engineering and drug delivery. In this study, biocompatible printable inks based on chitosan, collagen and gelatin were developed and 3D-printed with a pneumatic-based extrusion printer. The printability of various chitosan-gelatin (CS-Gel) hydrogel inks was assessed by evaluating the quality of the printed constructs. The inks required an extrusion pressure of 150 ± 40 MPa with G22 and G25 nozzles for optimal printing. Inks with low chitosan concentrations (<4% w/v) exhibited poor printability, while inks with 4 % w/v chitosan and 1 % w/v gelatin (CG) demonstrated satisfactory extrusion and printing quality. The addition of collagen (0.1 % w/v) to the optimized ink (CGC) did not compromise printability. Post-printing stabilization using KOH produced self-supporting scaffolds with consistent morphological integrity, while weaker bases like NaOH/EtOH and ammonia vapors resulted in lower pore sizes and reduced structural stability. Water evaporation studies showed that neutralized samples had slower evaporation rates due to the strong intermolecular interactions formed during the neutralization process, contributing to a stable crosslinked network. FTIR spectra confirmed the formation of polyelectrolyte complexes in the CS-Gel and CS-Gel-Collagen blends, further enhancing structural stability. Swelling tests indicated that neutralized constructs maintained stability in different pH environments, with KOH-treated samples exhibiting the lowest swelling ratios and the highest structural stability. After optimizing the ink composition, 10 wt% Levofloxacin was loaded in the constructs as a model antibiotic and it's in vitro release rate was quantified. Drug loading was approximately 4 % for both ink compositions GC and CGC. CG Levo released over 80 % of levofloxacin within the first hour, reaching full release in 24 h, indicating inadequate control, while CGK Levo exhibited slower initial release (55 % in 15 min) followed by stabilized release after 4 h, likely due to controlled diffusion from expanded constructs. These findings demonstrate that the developed hydrogel inks and optimized printing parameters can produce scaffolds suitable for tissue engineering applications. Finally, the cell compatibility of the 3D-printed constructs was confirmed with MTT assay on fibroblasts and the antimicrobial activity of the drug-loaded constructs was tested against E. coli and S. aureus, showing an increase of the bacteria free zone from 8 ± 0.4 mm of the control against E. coli up to 16.4 ± 0.37 mm in the presence of the KOH-treated CG Levo printed construct.
Collapse
Affiliation(s)
- Artemis Palamidi
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Industrial Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
7
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Chiticaru EA, Ioniță M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: A comprehensive review. Mater Today Bio 2024; 29:101341. [PMID: 39649248 PMCID: PMC11625167 DOI: 10.1016/j.mtbio.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Bioprinting and bioinks are two of the game changers in bone tissue engineering. This review presents different bioprinting technologies including extrusion-based, inkjet-based, laser-assisted, light-based, and hybrid technologies with their own strengths and weaknesses. This review will aid researchers in the selection and assessment of the bioink; the discussion ranges from commercially available bioinks to custom lab-made formulations mainly based on natural polymers, such as agarose, alginate, gelatin, collagen, and chitosan, designed for bone tissue engineering. The review is centered on technological advancements and increasing clinical demand within the rapidly growing bioprinting market. From this point of view, 4D, 5D, and 6D printing technologies promise a future where unprecedented levels of innovation will be involved in fabrication processes leading to more dynamic multifunctionalities of bioprinted constructs. Further advances in bioprinting technology, such as hybrid bioprinting methods are covered, with the promise to meet personalized medicine goals while advancing patient outcomes for bone tissues engineering applications.
Collapse
Affiliation(s)
- Elena Alina Chiticaru
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
| |
Collapse
|
9
|
Salehi S. A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39460952 DOI: 10.1080/09205063.2024.2419715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.
Collapse
Affiliation(s)
- Sarah Salehi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
10
|
Yang Y, Yang DC, Long XY, Liu X, Lu JW, Zhang ZJ, Shi QQ, Zhou Y, Zou DH. Bioinspired triple-layered membranes for periodontal guided bone regeneration applications. J Mater Chem B 2024; 12:9938-9946. [PMID: 39267586 DOI: 10.1039/d4tb01658k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Barrier membranes have been used for the treatment of alveolar bone loss caused by periodontal diseases or trauma. However, an optimal barrier membrane must satisfy multiple requirements simultaneously, which are challenging to combine into a single material. We herein report the design of a bioinspired membrane consisting of three functional layers. The primary layer is composed of clay nanosheets and chitin, which form a nacre-inspired laminated structure. A calcium phosphate mineral layer is deposited on the inner surface of the nacre-inspired layer, while a poly(lactic acid) layer is coated on the outer surface. The composite membrane integrates good mechanical strength and deformability because of the nacre-inspired structure, facilitating operations during the implant surgery. The mineral layer induces the osteogenic differentiation of bone marrow mesenchymal stem cells and increases the stiffness of the membrane, which is an important factor for the regeneration process. The poly(lactic acid) layer can prevent unwanted mineralization on the outer surface of the membrane in oral environments. Cell experiments reveal that the membrane exhibits good biocompatibility and anti-infiltration capability toward connective tissue/epithelium cells. Furthermore, in vitro analyses show that the membrane does not degrade too fast, allowing enough time for bone regeneration. In vivo experiments prove that the membrane can effectively induce better bone regeneration and higher trabecular bone density in alveolar bone defects. This study demonstrates the potential of this bioinspired triple-layered membrane with hierarchical structures as a promising barrier material for periodontal guided tissue regeneration.
Collapse
Affiliation(s)
- Yang Yang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Deng-Cheng Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Long
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Xiang Liu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Jing-Wen Lu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhou-Jing Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Qian-Qian Shi
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Yong Zhou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Duo-Hong Zou
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, School of Medicine, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
11
|
Gillani SMH, Mughal A, Khan RAA, Nawaz MH, Razzaq Z, Ismat MS, Hussain R, Wadood A, Ahmed S, Minhas B, Abbas M, Vayalpurayil T, Rehman MAU. Development of hybrid polyvinylpyrrolidone/carboxymethyl cellulose/collagen incorporated oregano scaffolds via direct ink write printing for potential wound healing applications. Int J Biol Macromol 2024; 278:134528. [PMID: 39111499 DOI: 10.1016/j.ijbiomac.2024.134528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Additive manufacturing can develop regenerative scaffolds for wound healing. 3D printing offers meticulous porosity, mechanical integrity, cell adhesion and cost-effectiveness. Herein, we prepared ink composed of carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), collagen, and oregano extract for the fabrication of tissue constructs. The blend was optimized to form a homogeneous ink and rheological characterization demonstrated shear thinning behavior. The scaffolds were printed using Direct Ink Write (DIW) at a flow speed of 4 mm3/s and a layer height of 0.18 mm. The fabricated scaffolds demonstrated an ultimate tensile strength (UTS) and toughness of 730 KPa and 2.72 MJ/m3, respectively. Scanning Electron Microscopy (SEM) revealed an average pore size of 300 ± 30 μm. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that all materials were present. The contact angle of the composite scaffold was 68° ± 1°. Moreover, the scaffolds presented 82 % mass loss (degradation) in phosphate buffer saline (PBS) over 14 days. The composite scaffold exhibited inhibition zones of 9 mm and 12 mm against Staphylococcus aureus and Escherichia coli, respectively. The PVP/CMC/collagen/oregano 3D printed scaffolds exhibited excellent biocompatibility with the mesenchymal stem cells and humman dermal fibroblast cells, confirmed by water-soluble tetrazolium - 8 (WST-8) assay (test conducted for 7 days). The enhanced angiogenic potential of said scaffold was assesed by release of vascular endothelial growth factor followed by further validation through in-vivo CAM assay. Thus, confirming suitability for the potential wound healing application.
Collapse
Affiliation(s)
- Syed Muneeb Haider Gillani
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Awab Mughal
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Raja Aqib Akmal Khan
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Zohaib Razzaq
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Muhammad Sameet Ismat
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Rabia Hussain
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan
| | - Abdul Wadood
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan
| | - Badar Minhas
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan.
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Center of Excellence in Biomaterials and Tissue Engineering, Materials Science and Engineering Department Government Collage University, 54000 Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000 Islamabad, Pakistan.
| |
Collapse
|
12
|
Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, Kuprianowicz M, Nyga M, Jadach B, Milanowski B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers (Basel) 2024; 16:2668. [PMID: 39339133 PMCID: PMC11435467 DOI: 10.3390/polym16182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Biomaterials have been the subject of extensive research, and their applications in medicine and pharmacy are expanding rapidly. Collagen and its derivatives stand out as valuable biomaterials due to their high biocompatibility, biodegradability, and lack of toxicity and immunogenicity. This review comprehensively examines collagen from various sources, its extraction and processing methods, and its structural and functional properties. Preserving the native state of collagen is crucial for maintaining its beneficial characteristics. The challenges associated with chemically modifying collagen to tailor its properties for specific clinical needs are also addressed. The review discusses various collagen-based biomaterials, including solutions, hydrogels, powders, sponges, scaffolds, and thin films. These materials have broad applications in regenerative medicine, tissue engineering, drug delivery, and wound healing. Additionally, the review highlights current research trends related to collagen and its derivatives. These trends may significantly influence future developments, such as using collagen-based bioinks for 3D bioprinting or exploring new collagen nanoparticle preparation methods and drug delivery systems.
Collapse
Affiliation(s)
- Hanna Wosicka-Frąckowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Kornelia Poniedziałek
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Martyna Nyga
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Bartłomiej Milanowski
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
13
|
Li M, Liu R, Chen G, Wang H, Wang J, Kong B, Yu C. Mesenchymal Stem Cell Exosome-Integrated Antibacterial Hydrogels for Nasal Mucosal Injury Treatment. RESEARCH (WASHINGTON, D.C.) 2024; 7:0469. [PMID: 39253102 PMCID: PMC11382016 DOI: 10.34133/research.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Hydrogels have emerged as appealing prospects for wound healing due to their superior biocompatible qualities. However, the integration of antibacterial active substances into hydrogels for effective wound repair remains challenging. Here, we present a novel double-network hydrogel for nasal mucosal injury repair with antibacterial and self-healing capabilities. This hydrogel is the result of mixing aldehyde polyethylene glycol (PEG) and a carboxymethyl chitosan (CMCS)-based hydrogel with a photocured methylacrylate gelatin (GelMA) hydrogel to envelop mesenchymal stem cell exosomes (MSC-Exos). CMCS is rich in amino groups and facilitates antibacterial repair. Given the dynamically reversible Schiff base connections between the amino group of chitosan and the aldehyde group of modified PEG, the hydrogel can be easily injected into the lesion site because of its excellent injection and shear thinning properties. GelMA introduces an additional network layer for the hydrogel, which enhances its strength and extends the duration of stem cell exosomes on the wound surface. On the basis of these characteristics, we provide evidence that this compound hydrogel can substantially increase cell proliferation and regeneration, inhibit scar hyperplasia, and stimulate angiogenesis in rabbit nasal septum mucosa trauma models. These results suggest that MSC exosome-loaded hydrogels (ME-Gel) have substantial clinical potential for the repair and regeneration of nasal mucosa after surgery or trauma.
Collapse
Affiliation(s)
- Min Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
| | - Rui Liu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Guopu Chen
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Handong Wang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinglin Wang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Bin Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
| |
Collapse
|
14
|
Vellalapalayam Manoharan G, Munuswamy NB, Johnpeter JH, Veeramani S, Balasubramanian H. Advances in 3D bioprinting for environmental remediation and hazardous materials treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55984-55995. [PMID: 39251533 DOI: 10.1007/s11356-024-34921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
The high-throughput method based on the micron-level structure that 3D bioprinting technology offers for various environmental microbiological engineering applications is made possible by its several printing paths and precision programming control. This versatility makes it an on-demand manufacturing technology. A novel 3D manufacturing technique called 3D bioprinting may be used to precisely uptake and disperse bacteria to create microbial active substances with a variety of intricate functionalities for environmental applications. The technological challenges that the current 3D bioprinting technology must face include the mechanical properties of materials, the creation of specific bioinks to adapt to different strains, and the exploration of 4D bioprinting for intelligent applications. Therefore, this analysis delves deeply into the core technological ideas of 3D bioprinting, bioink materials, and their environmental applications. It also offers recommendations about the challenges and opportunities associated with 3D bioprinting. Combined with the present advancements in microbe enhancement technology, 3D bioprinting will provide an enabling platform for multifunctional microorganisms and facilitate the management of in situ directional responses in the environmental domain. This review highlights the applications of 3D bioprinting in the environmental monitoring and bioremediation. 3D printing in solid waste management is also discussed in detail.
Collapse
Affiliation(s)
| | - Naresh Babu Munuswamy
- Department of Mechanical Engineering, Easwari Engineering College, Chennai, 600 089, India
| | - Jasmine Hephzipah Johnpeter
- Department of Electronics and Communication Engineering, R.M.K. Engineering College, Chennai, 601 206, India
| | - Sathya Veeramani
- Department of Computer Science Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Hemalatha Balasubramanian
- Department of Civil Engineering, St. Peter's Institute of Higher Education and Research, Chennai, 600 054, India
| |
Collapse
|
15
|
Sun T, Huang H, Zhao Y, Li Z, Wang H, Zhou G. Low-Temperature Deposited Amorphous Poly(aryl ether ketone) Hierarchically Porous Scaffolds with Strontium-Doped Mineralized Coating for Bone Defect Repair. Adv Healthc Mater 2024; 13:e2400927. [PMID: 38717232 DOI: 10.1002/adhm.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Indexed: 06/06/2024]
Abstract
In recent years, the demand for clinical bone grafting has increased. As a new solution for orthopedic implants, polyether ether ketone (PEEK, crystalline PAEK) has excellent comprehensive performance and is practically applied in the clinic. In this research, a noteworthy elevated scheme to enhance the performance of PEEK scaffolds is presented. The amorphous aggregated poly (aryl ether ketone) (PAEK) resin is prepared as the matrix material, which maintains high mechanical strength and can be processed through the solution. So, the tissue engineering scaffolds with multilevel pores can be printed by low-temperature deposited manufacturing (LDM) to improve biologically inert scaffolds with smooth surfaces. Also, the feature of PAEK's solution processing is profitable to uniformly add the functional components for bone repair. Ultimately, A system of orthopedic implantable PAEK material based on intermolecular interactions, surface topology, and surface modification is established. The specific steps include synthesizing PAEK that contain polar carboxyl structures, preparing bioinks and fabricating scaffolds by LDM, preparation of scaffolds with strontium-doped mineralized coatings, evaluation of their osteogenic properties in vitro and in vivo, and investigation on the effect and mechanism of scaffolds in promoting osteogenic differentiation. This work provides an upgraded system of PAEK implantable materials for clinical application.
Collapse
Affiliation(s)
- Tianze Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Huagui Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yantao Zhao
- Institute of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Honghua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
16
|
Paoletti L, Baschieri F, Migliorini C, Di Meo C, Monasson O, Peroni E, Matricardi P. 3D printing of gellan-dextran methacrylate IPNs in glycerol and their bioadhesion by RGD derivatives. J Biomed Mater Res A 2024; 112:1107-1123. [PMID: 38433552 DOI: 10.1002/jbm.a.37698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The ever-growing need for new tissue and organ replacement approaches paved the way for tissue engineering. Successful tissue regeneration requires an appropriate scaffold, which allows cell adhesion and provides mechanical support during tissue repair. In this light, an interpenetrating polymer network (IPN) system based on biocompatible polysaccharides, dextran (Dex) and gellan (Ge), was designed and proposed as a surface that facilitates cell adhesion in tissue engineering applications. The new matrix was developed in glycerol, an unconventional solvent, before the chemical functionalization of the polymer backbone, which provides the system with enhanced properties, such as increased stiffness and bioadhesiveness. Dex was modified introducing methacrylic groups, which are known to be sensitive to UV light. At the same time, Ge was functionalized with RGD moieties, known as promoters for cell adhesion. The printability of the systems was evaluated by exploiting the ability of glycerol to act as a co-initiator in the process, speeding up the kinetics of crosslinking. Following semi-IPNs formation, the solvent was removed by extensive solvent exchange with HEPES and CaCl2, leading to conversion into IPNs due to the ionic gelation of Ge chains. Mechanical properties were investigated and IPNs ability to promote osteoblasts adhesion was evaluated on thin-layer, 3D-printed disk films. Our results show a significant increase in adhesion on hydrogels decorated with RGD moieties, where osteoblasts adopted the spindle-shaped morphology typical of adherent mesenchymal cells. Our findings support the use of RGD-decorated Ge/Dex IPNs as new matrices able to support and facilitate cell adhesion in the perspective of bone tissue regeneration.
Collapse
Affiliation(s)
- Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Francesco Baschieri
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Migliorini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Olivier Monasson
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Elisa Peroni
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
18
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
20
|
Daskalakis E, Huang B, Hassan MH, Omar AM, Vyas C, Acar AA, Fallah A, Cooper G, Weightman A, Blunn G, Koç B, Bartolo P. In Vitro Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e718-e730. [PMID: 38689909 PMCID: PMC11057695 DOI: 10.1089/3dp.2022.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The demand for biomimetic and biocompatible scaffolds in equivalence of structure and material composition for the regeneration of bone tissue is relevantly high. This article is investigating a novel three-dimensional (3D) printed porous structure called bone bricks with a gradient pore size mimicking the structure of the bone tissue. Poly-ɛ-caprolactone (PCL) combined with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP), and bioglass 45S5 were successfully mixed using a melt blending method and fabricated with the use of screw-assisted extrusion-based additive manufacturing system. Bone bricks containing the same material concentration (20 wt%) were biologically characterized through proliferation and differentiation tests. Scanning electron microscopy (SEM) was used to investigate the morphology of cells on the surface of bone bricks, whereas energy dispersive X-ray (EDX) spectroscopy was used to investigate the element composition on the surface of the bone bricks. Confocal imaging was used to investigate the number of differentiated cells on the surface of bone bricks. Proliferation results showed that bone bricks containing PCL/HA content are presenting higher proliferation properties, whereas differentiation results showed that bone bricks containing PCL/Bioglass 45S5 are presenting higher differentiation properties. Confocal imaging results showed that bone bricks containing PCL/Bioglass 45S5 are presenting a higher number of differentiated cells on their surface compared with the other material contents.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anil A. Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Bahattin Koç
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Dobaj Štiglic A, Lackner F, Nagaraj C, Beaumont M, Bračič M, Duarte I, Kononenko V, Drobne D, Madhan B, Finšgar M, Kargl R, Stana Kleinschek K, Mohan T. 3D-Printed Collagen-Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2023; 6:5596-5608. [PMID: 38050684 PMCID: PMC10731651 DOI: 10.1021/acsabm.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.
Collapse
Affiliation(s)
- Andreja Dobaj Štiglic
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Chandran Nagaraj
- Ludwig
Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Marco Beaumont
- Department
of Chemistry, Institute of Chemistry o Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), A-3430 Tulln, Austria
| | - Matej Bračič
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Isabel Duarte
- Department
of Mechanical Engineering, Centre for Mechanical Technology and Automation
(TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veno Kononenko
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Balaraman Madhan
- CSIR-Central
Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Matjaž Finšgar
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Institute
of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia
| | - Tamilselvan Mohan
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
22
|
Carpentier N, Van der Meeren L, Skirtach AG, Devisscher L, Van Vlierberghe H, Dubruel P, Van Vlierberghe S. Gelatin-Based Hybrid Hydrogel Scaffolds: Toward Physicochemical Liver Mimicry. Biomacromolecules 2023; 24:4333-4347. [PMID: 35914189 DOI: 10.1021/acs.biomac.2c00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There exists a clear need to develop novel materials that could serve liver tissue engineering purposes. Those materials need to be researched for the development of bioengineered liver tissue as an alternative to donor livers, as well as for materials that could be applied for scaffolds to develop an in vitro model for drug-induced liver injury (DILI) detection . In this paper, the hydrogels oxidized dextran-gelatin (Dexox-Gel) and norbornene-modified dextran-thiolated gelatin (DexNB-GelSH) were developed, and their feasibility toward processing via indirect 3D-printing was investigated with the aim to develop hydrogel scaffolds that physicochemically mimic native liver tissue. Furthermore, their in vitro biocompatibility was assessed using preliminary biological tests using HepG2 cells. Both materials were thoroughly physicochemically characterized and benchmarked to the methacrylated gelatin (GelMA) reference material. Due to inferior properties, Dexox-gel was not further processed into 3D-hydrogel scaffolds. This research revealed that DexNB-GelSH exhibited physicochemical properties that were in excellent agreement with the properties of natural liver tissue in contrast to GelMA. In combination with an equally good biological evaluation of DexNB-GelSH in comparison with GelMA based on an MTS proliferation assay and an albumin quantification assay, DexNB-GelSH can be considered promising in the field of liver tissue engineering.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Louis Van der Meeren
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent, Ghent University, Ghent 9000, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Dpt Internal Medicine and Pediatrics; Liver Research Center Ghent, Ghent University, Ghent 9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
23
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
24
|
Koumentakou I, Noordam MJ, Michopoulou A, Terzopoulou Z, Bikiaris DN. 3D-Printed Chitosan-Based Hydrogels Loaded with Levofloxacin for Tissue Engineering Applications. Biomacromolecules 2023; 24:4019-4032. [PMID: 37604780 DOI: 10.1021/acs.biomac.3c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH3 vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.
Collapse
Affiliation(s)
- Ioanna Koumentakou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Thessaloniki 57001, Greece
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Agarwal T, Chiesa I, Costantini M, Lopamarda A, Tirelli MC, Borra OP, Varshapally SVS, Kumar YAV, Koteswara Reddy G, De Maria C, Zhang LG, Maiti TK. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol 2023; 246:125669. [PMID: 37406901 DOI: 10.1016/j.ijbiomac.2023.125669] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India.
| | - Irene Chiesa
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Anna Lopamarda
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | | | - Om Prakash Borra
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | | | | | - G Koteswara Reddy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
26
|
Abbadessa A, Nuñez Bernal P, Buttitta G, Ronca A, D'Amora U, Zihlmann C, Stiefel N, Ambrosio L, Malda J, Levato R, Crecente-Campo J, Alonso MJ. Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis. J Control Release 2023; 360:747-758. [PMID: 37451546 DOI: 10.1016/j.jconrel.2023.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Giorgio Buttitta
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy.
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy.
| | | | | | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy.
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
28
|
Pasquier E, Rosendahl J, Solberg A, Ståhlberg A, Håkansson J, Chinga-Carrasco G. Polysaccharides and Structural Proteins as Components in Three-Dimensional Scaffolds for Breast Cancer Tissue Models: A Review. Bioengineering (Basel) 2023; 10:682. [PMID: 37370613 PMCID: PMC10295496 DOI: 10.3390/bioengineering10060682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.
Collapse
Affiliation(s)
- Eva Pasquier
- RISE PFI AS, Høgskoleringen 6b, NO-7491 Trondheim, Norway; (E.P.); (A.S.)
| | - Jennifer Rosendahl
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, 50115 Borås, Sweden; (J.R.); (J.H.)
| | - Amalie Solberg
- RISE PFI AS, Høgskoleringen 6b, NO-7491 Trondheim, Norway; (E.P.); (A.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, 50115 Borås, Sweden; (J.R.); (J.H.)
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
29
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
30
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
31
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
32
|
Raees S, Ullah F, Javed F, Akil HM, Jadoon Khan M, Safdar M, Din IU, Alotaibi MA, Alharthi AI, Bakht MA, Ahmad A, Nassar AA. Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. Int J Biol Macromol 2023; 232:123476. [PMID: 36731696 DOI: 10.1016/j.ijbiomac.2023.123476] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.
Collapse
Affiliation(s)
- Sania Raees
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45520 Islamabad, Pakistan
| | - Faheem Ullah
- Department of Biological Sciences, National University of Medical Sciences, NUMS, Rawalpindi 46000, Pakistan; School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, KPK, Pakistan
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45520 Islamabad, Pakistan
| | - Muhammad Safdar
- Department of Pharmacy, Gomal University D. I Khan, KPK, Pakistan
| | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia.
| | - Mshari A Alotaibi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Abdulrahman I Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - M Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Amal A Nassar
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| |
Collapse
|
33
|
Gwak MA, Lee SJ, Lee D, Park SA, Park WH. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting. Int J Biol Macromol 2023; 227:493-504. [PMID: 36535357 DOI: 10.1016/j.ijbiomac.2022.12.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although three-dimensional (3D) bioprinting is a promising technology for reconstructing artificial tissues and organs using bioink, there is a lack of a bioink that satisfies all requirements, including printability, gelation, mechanical properties, and cytocompatibility, Herein, a novel self-crosslinkable bioink derived from chitosan (CS) and gallic acid (GA) is presented. 3D printed scaffolds with excellent shape fidelity are realized by systematically analyzing the self-crosslinking mechanism of hydrogel formation from CS-GA conjugates and by optimizing various parameters of the printing process. The CS-GA hydrogel forms rapidly in a physiological pH without any chemical crosslinking agent. In addition, the CS-GA hydrogel exhibited various physical and chemical intermolecular interactions, fast gelation rates, and excellent mechanical properties (>337 kPa). Moreover, the CS-GA hydrogel singificantly improves the cell viability (>92 %) and proliferation of the bioink. Therefore, the self-crosslinkable CS-GA bioink has great potential to overcome the limitations of conventional bioinks.
Collapse
Affiliation(s)
- Min A Gwak
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dongjin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
34
|
Improving Chitosan Hydrogels Printability: A Comprehensive Study on Printing Scaffolds for Customized Drug Delivery. Int J Mol Sci 2023; 24:ijms24020973. [PMID: 36674489 PMCID: PMC9865046 DOI: 10.3390/ijms24020973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Chitosan is an interesting polymer to produce hydrogels suitable for the 3D printing of customized drug delivery systems. This study aimed at the achievement of chitosan-based scaffolds suitable for the incorporation of active components in the matrix or loaded into the pores. Several scaffolds were printed using different chitosan-based hydrogels. To understand which parameters would have a greater impact on printability, an optimization study was conducted. The scaffolds with the highest printability were obtained with a chitosan hydrogel at 2.5 wt%, a flow speed of 0.15 mm/s and a layer height of 0.41 mm. To improve the chitosan hydrogel printability, starch was added, and a design of experiments with three factors and two responses was carried out to find out the optimal starch supplementation. It was possible to conclude that the addition of starch (13 wt%) to the chitosan hydrogel improved the structural characteristics of the chitosan-based scaffolds. These scaffolds showed potential to be tested in the future as drug-delivery systems.
Collapse
|
35
|
Yang P, Ju Y, Hu Y, Xie X, Fang B, Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res 2023; 27:1. [PMID: 36597149 PMCID: PMC9808966 DOI: 10.1186/s40824-022-00338-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Plastic surgery is a discipline that uses surgical methods or tissue transplantation to repair, reconstruct and beautify the defects and deformities of human tissues and organs. Three-dimensional (3D) bioprinting has gained widespread attention because it enables fine customization of the implants in the patient's surgical area preoperatively while avoiding some of the adverse reactions and complications of traditional surgical approaches. In this paper, we review the recent research advances in the application of 3D bioprinting in plastic surgery. We first introduce the printing process and basic principles of 3D bioprinting technology, revealing the advantages and disadvantages of different bioprinting technologies. Then, we describe the currently available bioprinting materials, and dissect the rationale for special dynamic 3D bioprinting (4D bioprinting) that is achieved by varying the combination strategy of bioprinting materials. Later, we focus on the viable clinical applications and effects of 3D bioprinting in plastic surgery. Finally, we summarize and discuss the challenges and prospects for the application of 3D bioprinting in plastic surgery. We believe that this review can contribute to further development of 3D bioprinting in plastic surgery and provide lessons for related research.
Collapse
Affiliation(s)
- Pu Yang
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Yikun Ju
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Yue Hu
- grid.449525.b0000 0004 1798 4472School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000 People’s Republic of China
| | - Xiaoyan Xie
- grid.452708.c0000 0004 1803 0208Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Bairong Fang
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Lanjie Lei
- grid.263826.b0000 0004 1761 0489School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| |
Collapse
|
36
|
Dadhich P, Kumar P, Roy A, Bitar KN. Advances in 3D Printing Technology for Tissue Engineering. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
37
|
Ho CC, Chen YW, Wang K, Lin YH, Chen TC, Shie MY. Effect of mussel-inspired polydopamine on the reinforced properties of 3D printed β-tricalcium phosphate/polycaprolactone scaffolds for bone regeneration. J Mater Chem B 2022; 11:72-82. [PMID: 36373587 DOI: 10.1039/d2tb01995g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bioceramic/polymer scaffolds have been considered as potential grafts used for facilitating bone healing. Unfortunately, the poor interfacial interaction between polymer matrices and bioceramic fillers limited their use in practical medicine. Thus, a facile strategy for reinforcing the three-dimensional printed β-tricalcium phosphate/polycaprolactone scaffolds through employing polydopamine modified-ceramics as fillers. The effects of the dopamine precursor on the compressive strength, degradability, cell proliferation, osteogenic differentiation, and in vivo osteogenicity were measured. The results indicated that the concentration of dopamine could remarkably affect the thickness and density of the polydopamine layer on fillers, further varying the compressive strength (1.23-fold to 1.64-fold), degradability, and osteogenicity of the scaffolds. More importantly, the presence of polydopamine in the three-dimensional printed composite scaffolds not only facilitated the proliferation, alkaline phosphatase activity and mineralization of mesenchymal stem cells, but also stimulated the formation of neo-bone tissue in femur defects. Taking together, the proposed scaffolds might serve as a candidate for bone regeneration.
Collapse
Affiliation(s)
- Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan. .,High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung City, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Ta-Cheng Chen
- High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung City, Taiwan.,Department of Information Management, National Formosa University, Yunlin, Taiwan
| | - Ming-You Shie
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan. .,x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Natural Biopolymers for Bone Tissue Engineering: A Brief Review. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
39
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Natural Materials for 3D Printing and Their Applications. Gels 2022; 8:748. [PMID: 36421570 PMCID: PMC9689506 DOI: 10.3390/gels8110748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
40
|
Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest Advances in 3D Bioprinting of Cardiac Tissues. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101636. [PMID: 38044954 PMCID: PMC10691862 DOI: 10.1002/admt.202101636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/05/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.
Collapse
Affiliation(s)
- Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, 60203 Compiègne, France
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
41
|
Su G, Li G, Wang W, Xu L. Application Prospect and Preliminary Exploration of GelMA in Corneal Stroma Regeneration. Polymers (Basel) 2022; 14:polym14194227. [PMID: 36236174 PMCID: PMC9571618 DOI: 10.3390/polym14194227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Corneal regeneration has become a prominent study area in recent decades. Because the corneal stroma contributes about 90% of the corneal thickness in the corneal structure, corneal stromal regeneration is critical for the treatment of cornea disease. Numerous materials, including deacetylated chitosan, hydrophilic gel, collagen, gelatin methacrylate (GelMA), serine protein, glycerol sebacate, and decellularized extracellular matrix, have been explored for keratocytes regeneration. GelMA is one of the most prominent materials, which is becoming more and more popular because of its outstanding three-dimensional scaffold structure, strong mechanics, good optical transmittance, and biocompatibility. This review discussed recent research on corneal stroma regeneration materials and related GelMA.
Collapse
|
42
|
3D Bioprinted Chitosan-Based Hydrogel Scaffolds in Tissue Engineering and Localised Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14091978. [PMID: 36145727 PMCID: PMC9500618 DOI: 10.3390/pharmaceutics14091978] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting is an emerging technology with various applications in developing functional tissue constructs for the replacement of harmed or damaged tissues and simultaneously controlled drug delivery systems (DDSs) for the administration of several active substances, such as growth factors, proteins, and drug molecules. It is a novel approach that provides high reproducibility and precise control over the fabricated constructs in an automated way. An ideal bioink should possess proper mechanical, rheological, and biological properties essential to ensure proper function. Chitosan is a promising natural-derived polysaccharide to be used as ink because of its attractive properties, such as biodegradability, biocompatibility, low cost, and non-immunogenicity. This review focuses on 3D bioprinting technology for the preparation of chitosan-based hydrogel scaffolds for the regeneration of tissues delivering either cells or active substances to promote restoration.
Collapse
|
43
|
Lupa D, Płaziński W, Michna A, Wasilewska M, Pomastowski P, Gołębiowski A, Buszewski B, Adamczyk Z. Chitosan characteristics in electrolyte solutions: Combined molecular dynamics modeling and slender body hydrodynamics. Carbohydr Polym 2022; 292:119676. [PMID: 35725171 DOI: 10.1016/j.carbpol.2022.119676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022]
Abstract
Molecular dynamics modeling was applied to predict chitosan molecule conformations, the contour length, the gyration radius, the effective cross-section and the density in electrolyte solutions. Using various experimental techniques the diffusion coefficient, the hydrodynamic diameter and the electrophoretic mobility of molecules were determined. This allowed to calculate the zeta potential, the electrokinetic charge and the effective ionization degree of the chitosan molecule as a function of pH and the temperature. The chitosan solution density and zero shear dynamic viscosity were also measured, which enabled to determine the intrinsic viscosity increment. The experimental results were quantitatively interpreted in terms of the slender body hydrodynamics exploiting molecule characteristics derived from the modeling. It is also confirmed that this approach can be successfully used for a proper interpretation of previous literature data obtained under various physicochemical conditions.
Collapse
Affiliation(s)
- Dawid Lupa
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, ul. Chodźki 4A, 20-093 Lublin, Poland.
| | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland.
| | - Adrian Gołębiowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland.
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland.
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
44
|
Tamo AK, Tran TA, Doench I, Jahangir S, Lall A, David L, Peniche-Covas C, Walther A, Osorio-Madrazo A. 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6039. [PMID: 36079419 PMCID: PMC9456765 DOI: 10.3390/ma15176039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 05/18/2023]
Abstract
The 3D printing of a multifunctional hydrogel biomaterial with bioactivity for tissue engineering, good mechanical properties and a biodegradability mediated by free and encapsulated cellulase was proposed. Bioinks of cellulase-laden and cellulose nanofiber filled chitosan viscous suspensions were used to 3D print enzymatic biodegradable and biocompatible cellulose nanofiber (CNF) reinforced chitosan (CHI) hydrogels. The study of the kinetics of CNF enzymatic degradation was studied in situ in fibroblast cell culture. To preserve enzyme stability as well as to guarantee its sustained release, the cellulase was preliminarily encapsulated in chitosan-caseinate nanoparticles, which were further incorporated in the CNF/CHI viscous suspension before the 3D printing of the ink. The incorporation of the enzyme within the CHI/CNF hydrogel contributed to control the decrease of the CNF mechanical reinforcement in the long term while keeping the cell growth-promoting property of chitosan. The hydrolysis kinetics of cellulose in the 3D printed scaffolds showed a slow but sustained degradation of the CNFs with enzyme, with approximately 65% and 55% relative activities still obtained after 14 days of incubation for the encapsulated and free enzyme, respectively. The 3D printed composite hydrogels showed excellent cytocompatibility supporting fibroblast cell attachment, proliferation and growth. Ultimately, the concomitant cell growth and biodegradation of CNFs within the 3D printed CHI/CNF scaffolds highlights the remarkable potential of CHI/CNF composites in the design of tissue models for the development of 3D constructs with tailored in vitro/in vivo degradability for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Tuan Anh Tran
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Shaghayegh Jahangir
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Aastha Lall
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Laurent David
- Polymer Materials Engineering IMP CNRS UMR 5223, Université Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet St Etienne, INSA de Lyon, CNRS, 69622 Villeurbanne, France
| | - Carlos Peniche-Covas
- Center of Biomaterials, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Andreas Walther
- ABMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
45
|
Duan Y, Huang W, Zhan B, Li Y, Xu X, Li K, Li X, Liu X, Ding S, Wang S, Guo J, Wang Y, Gu Q. A Bioink Derived From Human Placenta Supporting Angiogenesis. Biomed Mater 2022; 17. [PMID: 35732166 DOI: 10.1088/1748-605x/ac7b5b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
Bioprinting is an emerging approach for constructing sophisticated tissue analogues with detailed architectures such as vascular networks, which requires bioink fulfill the highly printable property and provide a cell-friendly microenvironment mimicking native extracellular matrix (ECM). Here, we developed a human placental ECM-derived bioink (hp-bioink) meeting the requirements of 3D printing for printability and bioactivity. We first decellularized the human placenta, followed by enzymatic digestion, dialysis, lyophilization, and re-solubilization to convert the extracts into hp-bioink. Then, we demonstrated that 3%-5% of hp-bioink can be printed with self-standing and 1%-2% of hp-bioink can be embedded with suspended hydrogels. Moreover, hp-bioink supports HUVEC assembly in vitro and angiogenesis in mice in vivo. Our research enriched the bank of human-derived bioink, and provided a new opportunity to further accelerate bioprinting research and application.
Collapse
Affiliation(s)
- Yongchao Duan
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Wenhui Huang
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Bo Zhan
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Yuanyuan Li
- Shanxi Provincial Peoples Hospital, No 29 Shuangtadong Street, Yinze district, Taiyuan, Taiyuan, Shanxi , 030012, CHINA
| | - Xue Xu
- Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, Beijing, 100044, CHINA
| | - Kai Li
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Xia Li
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Xin Liu
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Shenglong Ding
- Beijing Tongren Hospital, 2 Chongwenmennei Dajie Dongcheng District, Beijing, Beijing, 100730, CHINA
| | - Shuo Wang
- Institute of Zoology Chinese Academy of Sciences, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, CHINA
| | - Jia Guo
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Yukai Wang
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, Beijing, 100101, CHINA
| | - Qi Gu
- Institute of Zoology Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District District, Beijing, 100101, CHINA
| |
Collapse
|
46
|
Yao Q, Liu S, Zheng W, Chen M, Zhou S, Liao M, Huang W, Hu Y, Zhou W. Formation of poly(ε‐caprolactone)‐embedded bioactive nanoparticles/collagen hierarchical scaffolds with the designed and customized porous structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.52749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Yao
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuifeng Liu
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou China
| | - Manting Chen
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuzhen Zhou
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Minjian Liao
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wenhua Huang
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou China
| | - Yang Hu
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wuyi Zhou
- Key Laboratory of the Ministry of Bio‐based Materials and Energy Education South China Agricultural University Guangzhou China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy South China Agricultural University Guangzhou China
| |
Collapse
|
47
|
Ferreira PG, Ferreira VF, da Silva FDC, Freitas CS, Pereira PR, Paschoalin VMF. Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics 2022; 14:pharmaceutics14061307. [PMID: 35745879 PMCID: PMC9228519 DOI: 10.3390/pharmaceutics14061307] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/05/2023] Open
Abstract
Chitosan displays a dual function, acting as both an active ingredient and/or carrier for pharmaceutical bioactive molecules and metal ions. Its hydroxyl- and amino-reactive groups and acetylation degree can be used to adjust this biopolymer's physicochemical and pharmacological properties in different forms, including scaffolds, nanoparticles, fibers, sponges, films, and hydrogels, among others. In terms of pharmacological purposes, chitosan association with different polymers and the immobilization or entrapment of bioactive agents are effective strategies to achieve desired biological responses. Chitosan biocompatibility, water entrapment within nanofibrils, antioxidant character, and antimicrobial and anti-inflammatory properties, whether enhanced by other active components or not, ensure skin moisturization, as well as protection against bacteria colonization and oxidative imbalance. Chitosan-based nanomaterials can maintain or reconstruct skin architecture through topical or systemic delivery of hydrophilic or hydrophobic pharmaceuticals at controlled rates to treat skin affections, such as acne, inflammatory manifestations, wounds, or even tumorigenesis, by coating chemotherapy drugs. Herein, chitosan obtention, physicochemical characteristics, chemical modifications, and interactions with bioactive agents are presented and discussed. Molecular mechanisms involved in chitosan skin protection and recovery are highlighted by overlapping the events orchestrated by the signaling molecules secreted by different cell types to reconstitute healthy skin tissue structures and components.
Collapse
Affiliation(s)
- Patricia Garcia Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (P.G.F.); (V.F.F.)
| | - Vitor Francisco Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (P.G.F.); (V.F.F.)
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil;
| | - Cyntia Silva Freitas
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (C.S.F.); (P.R.P.)
- Programa de Pós-Graduação em Ciencia de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (C.S.F.); (P.R.P.)
- Programa de Pós-Graduação em Ciencia de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (C.S.F.); (P.R.P.)
- Programa de Pós-Graduação em Ciencia de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Programa de Pós-Graduação em Química (PGQu), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Sala 545, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7362
| |
Collapse
|
48
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
49
|
Baniasadi H, Kimiaei E, Polez RT, Ajdary R, Rojas OJ, Österberg M, Seppälä J. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. Int J Biol Macromol 2022; 209:2020-2031. [PMID: 35500781 DOI: 10.1016/j.ijbiomac.2022.04.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 01/19/2023]
Abstract
The current study provides a comprehensive rheology study and a survey on direct ink writing of xanthan gum/cellulose nanocrystal (XG/CNC) bio-inks for developing 3D geometries that mimic soft tissue engineering scaffolds' physical and mechanical properties. The presence of CNC was found to be a critical prerequisite for the printability of XG bio-inks; accordingly, the hybrid XG/CNC bio-inks revealed the excellent viscoelastic properties that enabled precise control of hydrogel shaping and printing of lattice structures composed of up to eleven layers with high fidelity and fair resolution without any deformation after printing. The lyophilized 3D scaffolds presented a porous structure with open and interconnected pores and a porosity higher than 70%, vital features for tissue engineering scaffolds. Moreover, they showed a relatively high swelling of approximately 11 g/g, facilitating oxygen and nutrient exchange. Furthermore, the elastic and compressive moduli of the scaffolds that enhanced significantly upon increasing CNC content were in the range of a few kPa, similar to soft tissues. Finally, no significant cell cytotoxicity was observed against human liver cancer cells (HepG2), highlighting the potential of these developed 3D printed scaffolds for soft tissue engineering applications.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Erfan Kimiaei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto Espoo, Finland
| | - Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto Espoo, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto Espoo, Finland; Bioproducts Institute, Departments of Chemical and Biological Engineering, Department of Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto Espoo, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
50
|
Bose S, Li S, Mele E, Silberschmidt VV. Exploring the Mechanical Properties and Performance of Type-I Collagen at Various Length Scales: A Progress Report. MATERIALS 2022; 15:ma15082753. [PMID: 35454443 PMCID: PMC9025246 DOI: 10.3390/ma15082753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
Abstract
Collagen is the basic protein of animal tissues and has a complex hierarchical structure. It plays a crucial role in maintaining the mechanical and structural stability of biological tissues. Over the years, it has become a material of interest in the biomedical industries thanks to its excellent biocompatibility and biodegradability and low antigenicity. Despite its significance, the mechanical properties and performance of pure collagen have been never reviewed. In this work, the emphasis is on the mechanics of collagen at different hierarchical levels and its long-term mechanical performance. In addition, the effect of hydration, important for various applications, was considered throughout the study because of its dramatic influence on the mechanics of collagen. Furthermore, the discrepancies in reports of the mechanical properties of collagenous tissues (basically composed of 20-30% collagen fibres) and those of pure collagen are discussed.
Collapse
Affiliation(s)
- Shirsha Bose
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Correspondence: (E.M.); (V.V.S.)
| | - Vadim V. Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia
- Correspondence: (E.M.); (V.V.S.)
| |
Collapse
|