1
|
Won JE, Kim WJ, Ryu JJ, Shim JS. Guided Bone Regeneration with a Nitric-Oxide Releasing Polymer Inducing Angiogenesis and Osteogenesis in Critical-Sized Bone Defects. Macromol Biosci 2022; 22:e2200162. [PMID: 35895972 DOI: 10.1002/mabi.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
Synthetic scaffolds, as bone grafts, provide a favorable environment for the repair and growth of new bone tissue at defect sites. However, the lack of angio- and osteo-induction limits the usefulness of artificial scaffolds for bone regeneration. Nitric oxide (NO) performs essential roles in healing processes, such as regulating inflammation and addressing incomplete revascularization. In this study, we developed a polymer capable of controlled NO release to promote the osteogenic capacity in artificial scaffolds. The biological efficiency of the NO compound was assessed by its effect on pre-osteoblasts and macrophages in vitro and the extent of vascularization and bone formation in the calvaria defect model in vivo. The compound did not inhibit cell adhesion or proliferation. NO treatment significantly increased both alkaline phosphatase activity and mineralization in pre-osteoblasts. Macrophages treated with NO secreted high levels of anti-inflammatory factors and adopted the pro-regenerative M2 phenotype. In the critical-sized defect model, the collagen scaffold containing the NO compound enhanced neovascularization and bone formation. The developed NO-releasing system promoted osteogenesis and regeneration of damaged bone tissue. As the multiple functions of NO involve macrophage modulation and angiogenesis, such release systems may be valuable for guiding bone regeneration in critical-sized defects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jong-Eun Won
- Institute for Clinical Dental Research, Department of Dentistry, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang-si, 37673, Republic of Korea
| | - Jae Jun Ryu
- Department of Dentistry, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Ji Suk Shim
- Institute for Clinical Dental Research, Department of Dentistry, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| |
Collapse
|
2
|
Yuan Y, Shang Y, Zhou Y, Guo J, Yan F. Enabling Antibacterial and Antifouling Coating via Grafting of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules 2022; 23:2329-2341. [PMID: 35652936 DOI: 10.1021/acs.biomac.2c00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections caused by bacteria and biofilms on the surfaces of biomedical devices and implants pose serious threats to public health. Herein, a nitric oxide (NO) gas-releasing quaternary ammonium-type ionic liquid (IL)-based coating on polydimethylsiloxane (PDMS), PDIL-NO, with effective and long-acting antibacterial and antifouling properties was prepared. N-(2-((2, 3-Dimethylbut-3-enoyl)oxy)ethyl)-N, N-dimethyloctan-1-aminium bromide (IL-Br), and 2-methyl-2-propenoic acid 2-(2-methoxyethoxy) ethyl ester were covalently grafted onto the surfaces of PDMS by a thiol-ene click chemical reaction, followed by incorporation of l-proline anions (Pro-) through anion exchange with Br- to adsorb NO gas. The prepared PDIL-NO showed a prolonged NO-releasing time (>1440 min) and a relatively high concentration (88 μM). Additionally, PDIL-NO possessed good and long-term antimicrobial activity, and could effectively reduce the adsorption of bovine serum albumin and adhesion of bacteria, as well as inhibit wound infection and reduce inflammation in vivo due to the synergetic effect of IL and the released NO. This study may provide a new approach to combat bacterial infections associated with biomedical devices and implants.
Collapse
Affiliation(s)
- Yinghui Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yating Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Dou J, Yang R, Jin X, Li P, Han X, Wang L, Chi B, Shen J, Yuan J. Nitric oxide-releasing polyurethane/ S-nitrosated keratin mats for accelerating wound healing. Regen Biomater 2022; 9:rbac006. [PMID: 35592138 PMCID: PMC9113238 DOI: 10.1093/rb/rbac006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/07/2023] Open
Abstract
Nitric oxide (NO) plays an important role in wound healing, due to its ability to contract wound surfaces, dilate blood vessels, participate in inflammation as well as promote collagen synthesis, angiogenesis and fibroblast proliferation. Herein, keratin was first nitrosated to afford S-nitrosated keratin (KSNO). As a NO donor, KSNO was then co-electrospun with polyurethane (PU). These as-spun PU/KSNO biocomposite mats could release NO sustainably for 72 h, matching the renewal time of the wound dressing. Moreover, these mats exhibited excellent cytocompatibility with good cell adhesion and cell migration. Further, the biocomposite mats exhibited antibacterial properties without inducing severe inflammatory responses. The wound repair in vivo demonstrated that these mats accelerated wound healing by promoting tissue formation, collagen deposition, cell migration, re-epithelialization and angiogenesis. Overall, PU/KSNO mats may be promising candidates for wound dressing.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
4
|
Xu Y, Li H, Xu S, Liu X, Lin J, Chen H, Yuan Z. Light-Triggered Fluorescence Self-Reporting Nitric Oxide Release from Coumarin Analogues for Accelerating Wound Healing and Synergistic Antimicrobial Applications. J Med Chem 2021; 65:424-435. [PMID: 34918930 DOI: 10.1021/acs.jmedchem.1c01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) has an important class of endogenous diatomic molecules that play a key regulatory role in many physiological and biochemical processes. However, the type of nitrosamine NO donor stimulated by light has many advantages compared to the conventional NO donors such as diazeniumdiolates and S-nitrosothiols compounds, including easy synthesis, good stability, and controllable release. In addition, NO release can be regulated by light induction with a built-in calibration mechanism fluorescence. Here, we report that the migration and proliferation of human umbilical vein vascular endothelial cells could be accelerated by the light-triggered NO donors, leading to the angiogenesis. Meanwhile, the screened NO donor 3a with Levofloxacin (Lev) showed synergistic effects to eradicate Methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vitro and treat bacteria-infected wound in vivo.
Collapse
Affiliation(s)
- Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China.,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Xian Liu
- The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| |
Collapse
|