1
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
2
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Souto EB, Gálvez-Martín P, Clares-Naveros B. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res 2024:10.1007/s13346-024-01596-9. [PMID: 38662335 DOI: 10.1007/s13346-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.
Collapse
Grants
- Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp
- FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
- R&D Human and Animal Health, Bioibérica S.A.U., 08029, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Daskalakis E, Huang B, Hassan MH, Omar AM, Vyas C, Acar AA, Fallah A, Cooper G, Weightman A, Blunn G, Koç B, Bartolo P. In Vitro Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e718-e730. [PMID: 38689909 PMCID: PMC11057695 DOI: 10.1089/3dp.2022.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The demand for biomimetic and biocompatible scaffolds in equivalence of structure and material composition for the regeneration of bone tissue is relevantly high. This article is investigating a novel three-dimensional (3D) printed porous structure called bone bricks with a gradient pore size mimicking the structure of the bone tissue. Poly-ɛ-caprolactone (PCL) combined with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP), and bioglass 45S5 were successfully mixed using a melt blending method and fabricated with the use of screw-assisted extrusion-based additive manufacturing system. Bone bricks containing the same material concentration (20 wt%) were biologically characterized through proliferation and differentiation tests. Scanning electron microscopy (SEM) was used to investigate the morphology of cells on the surface of bone bricks, whereas energy dispersive X-ray (EDX) spectroscopy was used to investigate the element composition on the surface of the bone bricks. Confocal imaging was used to investigate the number of differentiated cells on the surface of bone bricks. Proliferation results showed that bone bricks containing PCL/HA content are presenting higher proliferation properties, whereas differentiation results showed that bone bricks containing PCL/Bioglass 45S5 are presenting higher differentiation properties. Confocal imaging results showed that bone bricks containing PCL/Bioglass 45S5 are presenting a higher number of differentiated cells on their surface compared with the other material contents.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anil A. Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Bahattin Koç
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Wu YF, Wen YT, Salamanca E, Moe Aung L, Chao YQ, Chen CY, Sun YS, Chang WJ. 3D-bioprinted alginate-based bioink scaffolds with β-tricalcium phosphate for bone regeneration applications. J Dent Sci 2024; 19:1116-1125. [PMID: 38618055 PMCID: PMC11010696 DOI: 10.1016/j.jds.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/26/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose 3D-printed bone tissue engineering is becoming recognized as a key approach in dentistry for creating customized bone regeneration treatments fitting patients bone defects requirements. 3D bioprinting offers an innovative method to fabricate detailed 3D structures, closely emulating the native bone micro-environment and better bone regeneration. This study aimed to develop an 3D-bioprintable scaffold using a combination of alginate and β-tricalcium phosphate (β-TCP) with the Cellink® BioX printer, aiming to advance the field of tissue engineering. Materials and methods The physical and biological properties of the resulting 3D-printed scaffolds were evaluated at 10 %, 12 %, and 15 % alginate combined with 10 % β-TCP. The scaffolds were characterized through printability, swelling behavior, degradability, and element analysis. The biological assessment included cell viability, alkaline phosphatase (ALP) activity. Results 10 % alginate/β-TCP 3D printed at 25 °C scaffold demonstrated the optimal condition for printability, swelling capability, and degradability of cell growth and nutrient diffusion. Addition of β-TCP particles significantly improved the 3D printed material viscosity over only alginate (P < 0.05). 10 % alginate/β-TCP enhanced MG-63 cell's proliferation (P < 0.05) and alkaline phosphatase activity (P < 0.001). Conclusion This study demonstrated in vitro that 10 % alginate/β-TCP bioink characteristic for fabricating 3D acellular bioprinted scaffolds was the best approach. 10 % alginate/β-TCP bioink 3D-printed scaffold exhibited superior physical properties and promoted enhanced cell viability and alkaline phosphatase activity, showing great potential for personalized bone regeneration treatments.
Collapse
Affiliation(s)
- Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Ya-Ting Wen
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lwin Moe Aung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Qiao Chao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yun Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| |
Collapse
|
5
|
Wang Y, Shi S, Zhang L, Wang S, Qin H, Wei Y, Wu X, Zhang M. Imatinib@glycymicelles entrapped in hydrogel: preparation, characterization, and therapeutic effect on corneal alkali burn in mice. Drug Deliv Transl Res 2024:10.1007/s13346-024-01570-5. [PMID: 38494558 DOI: 10.1007/s13346-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Imatinib (IMB) is a type of tyrosine kinase inhibitor with great application potential for inhibiting corneal neovascularization (CNV), but its poor water solubility limits its application in eye disease treatment. In this study, novel IMB@glycymicelles entrapped in hydrogel (called IMB@glycymicelle-hydrogel) were prepared, characterized, and evaluated for their therapeutic effects on corneal alkali burn in mice. Imatinib could be successfully loaded in glycymicelles using glycyrrhizin as a nanocarrier with an optimized weight ratio of IMB:nanocarrier. The apparent solubility of IMB was significantly improved from 61.69 ± 5.55 μg/mL to bare IMB to 359,967.62 ± 20,059.42 μg/mL to IMB@glycymicelles. Then, the IMB@glycymicelles were entrapped in hydrogel fabricated with hydroxypropyl methylcellulose and sodium hyaluronate (HA) to prolong retention time on the ocular surface. Rabbit eye tolerance tests showed that IMB@glycymicelle-hydrogel possessed good ocular safety profiles. In a mouse model of corneal alkali burns, the topical administration of IMB@glycymicelle-hydrogel showed strong efficacy by prompting corneal wound healing, recovering corneal sensitivity, relieving corneal opacities, and inhibiting CNV, and these efficacy evaluation parameters were better than those of the positive drug HA. Overall, these results demonstrated that IMB@glycymicelle-hydrogel may be a promising candidate for the effective treatment of alkali ocular damage.
Collapse
Affiliation(s)
- Yanan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Deparment of Pathology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shaohua Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ling Zhang
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Songtao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hongqing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Viwit Pharmaceutical Co., Ltd. Zaozhuang, Shandong, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
- Viwit Pharmaceutical Co., Ltd. Zaozhuang, Shandong, China.
| | - Mengmeng Zhang
- Deparment of Pathology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China.
| |
Collapse
|
6
|
Wiebe-Ben Zakour KE, Kaya S, Matros JC, Hacker MC, Cheikh-Rouhou A, Spaniol K, Geerling G, Witt J. Enhancement of lacrimal gland cell function by decellularized lacrimal gland derived hydrogel. Biofabrication 2024; 16:025008. [PMID: 38241707 DOI: 10.1088/1758-5090/ad2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriatein vitromodels. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential forin vitroADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a futurein vitromodel in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functionalin vitromodel, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LGin vitromodel such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments.
Collapse
Affiliation(s)
- Katharina E Wiebe-Ben Zakour
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia C Matros
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Amina Cheikh-Rouhou
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
7
|
Martorell L, López-Fernández A, García-Lizarribar A, Sabata R, Gálvez-Martín P, Samitier J, Vives J. Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds. Biotechnol Bioeng 2023; 120:2717-2724. [PMID: 36919270 DOI: 10.1002/bit.28381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+ /CD45,- 10.3% HLA-DR,+ 100.0% CD90,+ and 99.2% CD73+ /CD31- expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Lluís Martorell
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
| | - Alba López-Fernández
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea García-Lizarribar
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Roger Sabata
- R&D Human Health, Bioibérica S. A. U., Barcelona, Spain
| | | | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Dechojarassri D, Okada T, Tamura H, Furuike T. Evaluation of Cytotoxicity of Hyaluronic Acid/Chitosan/Bacterial Cellulose-Based Membrane. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5189. [PMID: 37512462 PMCID: PMC10383227 DOI: 10.3390/ma16145189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Novel wound dressing materials are required to non-cytotoxic with a viable cell ratio of above 92%. Herein, the cytotoxicity of hyaluronic acid/chitosan/bacterial cellulose-based (BC(CS/HA)) membranes are evaluated and compared to that of alginate/chitosan/bacterial cellulose-based (BC(CS/Alg)) membranes was investigated. Multilayer membranes with up to ten CS/HA or CS/Alg layers were prepared using the layer-by-layer (LBL) method. Scanning electron microscopy showed that the diameters of the fibers in the BC(CS/Alg) and BC(CS/HA) membranes were larger than those in a BC membrane. The cytotoxicity was analyzed using BALB-3T3 clone A31 cells (mouse fibroblasts, 1 × 104 cells/well). The BC(CS/HA)5 and BC(CS/HA)10 membranes exhibited high biocompatibility, with the cell viabilities of 94% and 87% at 5 d, respectively, compared to just 82% for the BC(CS/Alg)5 and BC(CS/Alg)10 membranes with same numbers of layers. These results suggested that BC(CS/HA)5 is a promising material for wound dressings.
Collapse
Affiliation(s)
- Duangkamol Dechojarassri
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tomoki Okada
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
9
|
Boix-Lemonche G, Nagymihaly RM, Niemi EM, Josifovska N, Johansen S, Moe MC, Scholz H, Petrovski G. Intracorneal Implantation of 3D Bioprinted Scaffolds Containing Mesenchymal Stromal Cells Using Femtosecond-Laser-Assisted Intrastromal Keratoplasty. Macromol Biosci 2023; 23:e2200422. [PMID: 36729619 DOI: 10.1002/mabi.202200422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Indexed: 02/03/2023]
Abstract
Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Essi M Niemi
- Vascular Biology and Surgery Group, Institute for Surgical Research and Department of Vascular Surgery, Oslo University Hospital, Post Box 4950, Oslo, Nydalen, N-0424, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0349, Norway
| | - Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Morten C Moe
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, 0450, Norway
| | - Hanne Scholz
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0349, Norway
- Cell Transplantation and Tissue Engineering Group, Institute for Surgical Research and Section for Transplant Surgery, Oslo University Hospital, Post Box 4950, Oslo, Nydalen, N-0424, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, 0450, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| |
Collapse
|
10
|
Hu X, Zhang Z, Wu H, Yang S, Zhao W, Che L, Wang Y, Cao J, Li K, Qian Z. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. BIOMATERIALS ADVANCES 2023; 152:213501. [PMID: 37321007 DOI: 10.1016/j.bioadv.2023.213501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
In recent years, hydrogels have been widely used in the biomedical field as materials with excellent bionic structures and biological properties. Among them, the excellent comprehensive properties of natural polymer hydrogels represented by sodium alginate have attracted the great attention of researchers. At the same time, by physically blending sodium alginate with other materials, the problems of poor cell adhesion and mechanical properties of sodium alginate hydrogels were directly improved without chemical modification of sodium alginate. The composite blending of multiple materials can also improve the functionality of sodium alginate hydrogels, and the prepared composite hydrogel also has a larger application field. In addition, based on the adjustable viscosity of sodium alginate-based hydrogels, sodium alginate-based hydrogels can be loaded with cells to prepare biological ink, and the scaffold can be printed out by 3D printing technology for the repair of bone defects. This paper first summarizes the improvement of the properties of sodium alginate and other materials after physical blending. Then, it summarizes the application progress of sodium alginate-based hydrogel scaffolds for bone tissue repair based on 3D printing technology in recent years. Moreover, we provide relevant opinions and comments to provide a theoretical basis for follow-up research.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China; State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Shuhao Yang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Weiming Zhao
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Sekar MP, Budharaju H, Sethuraman S, Sundaramurthi D. Carboxymethyl cellulose-agarose-gelatin: A thermoresponsive triad bioink composition to fabricate volumetric soft tissue constructs. SLAS Technol 2023; 28:183-198. [PMID: 37149220 DOI: 10.1016/j.slast.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Polysaccharide based hydrogels have been predominantly utilized as ink materials for 3D bioprinting due to biocompatibility and cell responsive features. However, most hydrogels require extensive crosslinking due to poor mechanical properties leading to limited printability. To improve printability without using cytotoxic crosslinkers, thermoresponsive bioinks could be developed. Agarose is a thermoresponsive polysaccharide with upper critical solution temperature (UCST) for sol-gel transition at 35-37 °C. Therefore, we hypothesized that a triad of carboxymethyl cellulose(C)-agarose(A)-gelatin(G) could be a suitable thermoresponsive ink for printing since they undergo instantaneous gelation without any addition of crosslinkers after bioprinting. The blend of agarose-carboxymethyl cellulose was mixed with 1% w/v, 3% w/v and 5% w/v gelatin to optimize the triad ratio for hydrogel formation. It was observed that a blend (C2-A0.5-G1 and C2-A1-G1) containing 2% w/v carboxymethyl cellulose, 0.5% or 1% w/v agarose and 1% w/v gelatin formed better hydrogels with higher stability for up to 21 days in DPBS at 37 °C. Further, C2-A0.5-G1 and C2-A1-G1hydrogels showed higher storage modulus 762 ± 182 Pa & 2452 ± 430 Pa, higher porosity of 96.98 ± 2% & 98.2 ± 0.8% and swellability of 1518 ± 68% & 1587 ± 25% respectively. To evaluate the in vitro potential of these bioink formulations, indirect and direct cytotoxicity were determined using NCTC clone 929 (mouse fibroblast cells) and HADF (primary human adult dermal fibroblast) cells as per the ISO 10993-5 standards. Importantly, the printability of these bioinks was confirmed using extrusion bioprinting by successfully printing different complex 3D patterns.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India.
| |
Collapse
|
12
|
Badhe RV, Chatterjee A, Bijukumar D, Mathew MT. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023; 171:116746. [PMID: 36965655 PMCID: PMC10559728 DOI: 10.1016/j.bone.2023.116746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In tissue engineering, the fate of a particular organ/tissue regeneration and repair mainly depends on three pillars - 3D architecture, cells used, and stimulus provided. 3D cell supportive structure development is one of the crucial pillars necessary for defining organ/tissue geometry and shape. In recent years, the advancements in 3D bio-printing (additive manufacturing) made it possible to develop very precise 3D architectures with the help of industrial software like Computer-Aided Design (CAD). The main requirement for the 3D printing process is the bio-ink, which can act as a source for cell support, proliferation, drug (growth factors, stimulators) delivery, and organ/tissue shape. The selection of the bio-ink depends upon the type of 3D tissue of interest. Printing tissues like bone and cartilage is always challenging because it is difficult to find printable biomaterial that can act as bio-ink and mimic the strength of the natural bone and cartilage tissues. This review describes different biomaterials used to develop bio-inks with different processing variables and cell-seeding densities for bone and cartilage 3D printing applications. The review also discusses the advantages, limitations, and cell bio-ink compatibility in each biomaterial section. The emphasis is given to bio-inks reported for 3D printing cartilage and bone and their applications in orthopedics and orthodontists. The critical/important performance and the architectural morphology requirements of desired bone and cartilage bio-inks were compiled in summary.
Collapse
Affiliation(s)
- Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA; Pharmaceutical Chemistry Department, Marathwada Mitramandal's College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Abhinav Chatterjee
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
13
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
14
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
15
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
16
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
18
|
3D Bioprinting Technology and Hydrogels Used in the Process. J Funct Biomater 2022; 13:jfb13040214. [PMID: 36412855 PMCID: PMC9680466 DOI: 10.3390/jfb13040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
3D bioprinting has gained visibility in regenerative medicine and tissue engineering due to its applicability. Over time, this technology has been optimized and adapted to ensure a better printability of bioinks and biomaterial inks, contributing to developing structures that mimic human anatomy. Therefore, cross-linked polymeric materials, such as hydrogels, have been highly targeted for the elaboration of bioinks, as they guarantee cell proliferation and adhesion. Thus, this short review offers a brief evolution of the 3D bioprinting technology and elucidates the main hydrogels used in the process.
Collapse
|
19
|
Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Zabala A, de Retana AMO, Gallego I, Saenz-Del-Burgo L, Pedraz JL. 3D Bioprinted Hydroxyapatite or Graphene Oxide Containing Nanocellulose-Based Scaffolds for Bone Regeneration. Macromol Biosci 2022; 22:e2200236. [PMID: 35981208 DOI: 10.1002/mabi.202200236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Indexed: 12/25/2022]
Abstract
Bone tissue is usually damaged after big traumas, tumors, and increasing aging-related diseases such as osteoporosis and osteoarthritis. Current treatments are based on implanting grafts, which are shown to have several inconveniences. In this regard, tissue engineering through the 3D bioprinting technique has arisen to manufacture structures that would be a feasible therapeutic option for bone regenerative medicine. In this study, nanocellulose-alginate (NC-Alg)-based bioink is improved by adding two different inorganic components such as hydroxyapatite (HAP) and graphene oxide (GO). First, ink rheological properties and biocompatibility are evaluated as well as the influence of the sterilization process on them. Then, scaffolds are characterized. Finally, biological studies of embedded murine D1 mesenchymal stem cells engineered to secrete erythropoietin are performed. Results show that the addition of both HAP and GO prevents NC-Alg ink from viscosity lost in the sterilization process. However, GO is reduced due to short cycle autoclave sterilization, making it incompatible with this ink. In addition, HAP and GO have different influences on scaffold architecture and surface as well as in swelling capacity. Scaffolds mechanics, as well as cell viability and functionality, are promoted by both elements addition. Additionally, GO demonstrates an enhanced bone differentiation capacity.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Alaitz Zabala
- Mechanical and Industrial Manufacturing Department, Mondragon Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria, 01006, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
20
|
Antezana PE, Municoy S, Orive G, Desimone MF. Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil. Polymers (Basel) 2022; 14:4506. [PMID: 36365500 PMCID: PMC9658303 DOI: 10.3390/polym14214506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/20/2023] Open
Abstract
There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sofía Municoy
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Martín Federico Desimone
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| |
Collapse
|
21
|
Saravanakumar K, Park S, Santosh SS, Ganeshalingam A, Thiripuranathar G, Sathiyaseelan A, Vijayasarathy S, Swaminathan A, Priya VV, Wang MH. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol 2022; 222:2744-2760. [DOI: 10.1016/j.ijbiomac.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
22
|
Raza A, Mumtaz M, Hayat U, Hussain N, Ghauri MA, Bilal M, Iqbal HM. Recent advancements in extrudable gel-based bioinks for biomedical settings. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Szychlinska MA, Bucchieri F, Fucarino A, Ronca A, D’Amora U. Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources. J Funct Biomater 2022; 13:118. [PMID: 35997456 PMCID: PMC9397043 DOI: 10.3390/jfb13030118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organization by further enhancing its biological cues. However, there are still some limitations that need to be overcome before 3D bioprinting may be globally used for scaffolds' development and their clinical translation. One of them is represented by the poor availability of appropriate, biocompatible and eco-friendly biomaterials, which should present a series of specific requirements to be used and transformed into a proper bioink for CTE. In this scenario, considering that, nowadays, the environmental decline is of the highest concerns worldwide, exploring naturally-derived hydrogels has attracted outstanding attention throughout the scientific community. For this reason, a comprehensive review of the naturally-derived hydrogels, commonly employed as bioinks in CTE, was carried out. In particular, the current state of art regarding eco-friendly and natural bioinks' development for CTE was explored. Overall, this paper gives an overview of 3D bioprinting for CTE to guide future research towards the development of more reliable, customized, eco-friendly and innovative strategies for CTE.
Collapse
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
24
|
Varaprasad K, Karthikeyan C, Yallapu MM, Sadiku R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Int J Biol Macromol 2022; 212:561-578. [DOI: 10.1016/j.ijbiomac.2022.05.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
25
|
Taniguchi Nagahara MH, Caiado Decarli M, Inforçatti Neto P, Lopes da Silva JV, Moraes ÂM. Crosslinked alginate‐xanthan gum blends as effective hydrogels for
3D
bioprinting of biological tissues. J Appl Polym Sci 2022. [DOI: 10.1002/app.52612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| | - Monize Caiado Decarli
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
- Three‐Dimensional Technologies Research Group CTI Renato Archer Campinas São Paulo Brazil
| | - Paulo Inforçatti Neto
- Three‐Dimensional Technologies Research Group CTI Renato Archer Campinas São Paulo Brazil
| | | | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
26
|
O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci 2022; 10:2462-2483. [PMID: 35355029 PMCID: PMC9113059 DOI: 10.1039/d1bm01540k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
In the human body, articular cartilage facilitates the frictionless movement of synovial joints. However, due to its avascular and aneural nature, it has a limited ability to self-repair when damaged due to injury or wear and tear over time. Current surgical treatment options for cartilage defects often lead to the formation of fibrous, non-durable tissue and thus a new solution is required. Nature is the best innovator and so recent advances in the field of tissue engineering have aimed to recreate the microenvironment of native articular cartilage using biomaterial scaffolds. However, the inability to mirror the complexity of native tissue has hindered the clinical translation of many products thus far. Fortunately, the advent of 3D printing has provided a potential solution. 3D printed scaffolds, fabricated using biomimetic biomaterials, can be designed to mimic the complex zonal architecture and composition of articular cartilage. The bioinks used to fabricate these scaffolds can also be further functionalised with cells and/or bioactive factors or gene therapeutics to mirror the cellular composition of the native tissue. Thus, this review investigates how the architecture and composition of native articular cartilage is inspiring the design of biomimetic bioinks for 3D printing of scaffolds for cartilage repair. Subsequently, we discuss how these 3D printed scaffolds can be further functionalised with cells and bioactive factors, as well as looking at future prospects in this field.
Collapse
Affiliation(s)
- Donagh G O'Shea
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
27
|
Janarthanan G, Kim JH, Kim IG, Lee C, Chung EJ, Noh I. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Biofabrication 2022; 14. [PMID: 35504259 DOI: 10.1088/1758-5090/ac6c4c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Abstract
3D bioprinting of self-supporting stable tissue and organ structure is critically important in extrusion-based bioprinting system, especially for tissue engineering and regenerative medicine applications. However, the development of self-standing bioinks with desired crosslinking density, biocompatibility, tunable mechanical strength and other properties like self-healing, in situ gelation, drug or protein incorporation is still a challenge. In this study, we report a hydrogel bioink prepared from alginate (Alg) and hyaluronic acid (HA) crosslinked through multiple crosslinking mechanisms, i.e., acyl-hydrazone, hydrazide interactions and calcium ions. These Alg-HA gels were highly dynamic and shear-thinning with exceptional biocompatibility and tunable mechanical properties. The increased dynamic nature of the gels is mainly chemically attributed to the presence of acyl-hydrazone bonds formed between the amine groups of the acyl-hydrazide of alginate and the monoaldehyde of the hyaluronic acid. Among the different combinations of Alg-HA gel compositions prepared, the A5H5 (Alginate-acyl-hydrazide: HA-monoaldehyde, ratio 50:50) one showed a gelation time of ~60 s, viscosity of ~400 Pa.s (at zero shear rate), high stability in various pH solutions and increased degradation time (>50 days) than the other samples. The A5H5 gels showed high printability with increased post-printing stability as observed from the 3D printed structures (e.g., hollow tube (~100 layers), porous cube (~50 layers), star, heart-in, meniscus and lattice). The scanning electron microscopy analysis of the 3D constructs and hydrogels showed the interconnected pores (~181 µm) and crosslinked networks. Further, the gels showed sustained release of 5-amino salicylic acid and bovine serum albumin. Also, the mechanical properties were tuned by secondary crosslinking via different calcium concentrations. In vitro assays confirmed the cytocompatibility of these gels, where the 3D bioprinted lattice and tubular (~70 layers) constructs demonstrated high cell viability under fluorescence analysis. In in vivo studies, Alg-HA gel showed high biocompatibility (>90%) and increased angiogenesis (3 folds) and reduced macrophage infiltration (2-fold decrease), demonstrating the promising potential of these hydrogels in 3D bioprinting applications for tissue engineering and regenerative medicine with tunable properties.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Dept of chemical and biomolecular engineering, Seoul National University of Science and Technology, Seoul National University of Science and Technology (Seoul Tech), 223-1, 6-Chungun Hall, Gongneung-ro 232, Nowon-Gu, Seoul 01811, Nowon-gu, 01811, Korea (the Republic of)
| | - Jung Hyun Kim
- Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Chung Hall 223-1, Nowon-gu, Seoul, 01811, Korea (the Republic of)
| | - In-Gul Kim
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Seoul, 03080, Korea (the Republic of)
| | - Chibum Lee
- Mechanical System Design Engineering, Seoul National University of Science and Technology, Frontier Bldg, RM904, 232 Gongreung-Ro, Nowon-Gu, Seoul, 01811, Korea (the Republic of)
| | - Eun-Jae Chung
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, Jongno-gu, 03080, Korea (the Republic of)
| | - Insup Noh
- Department of Chemical Engineering, Seoul National University of Science and Technology, 172 Gongnung-dong,, Nowon-gu, Seoul, 139-743, Korea, Nowon-gu, 01811, Korea (the Republic of)
| |
Collapse
|
28
|
Lafuente-Merchan M, Ruiz-Alonso S, Zabala A, Gálvez-Martín P, Marchal JA, Vázquez-Lasa B, Gallego I, Saenz-Del-Burgo L, Pedraz JL. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Macromol Biosci 2022; 22:e2100435. [PMID: 35029035 DOI: 10.1002/mabi.202100435] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Indexed: 11/11/2022]
Abstract
Cartilage is a connective tissue which a limited capacity for healing and repairing. In this context, osteoarthritis disease may be developed with high prevalence in which the use of scaffolds may be a promising treatment. In addition, three-dimensional (3D) bioprinting has become an emerging additive manufacturing technology because of its rapid prototyping capacity and the possibility of creating complex structures. This study was focused on the development of nanocellulose-alginate (NC-Alg) based bioinks for 3D bioprinting for cartilage regeneration to which it was added chondroitin sulfate (CS) and dermatan sulfate (DS). First, rheological properties were evaluated. Then, sterilisation effect, biocompatibility and printability on developed NC-Alg-CS and NC-Alg-DS inks were evaluated. Subsequently, printed scaffolds were characterized. Finally, NC-Alg-CS and NC-Alg-DS inks were loaded with murine D1-MSCs-EPO and cell viability and functionality, as well as the chondrogenic differentiation ability were assessed. Results showed that the addition of both CS and DS to the NC-Alg ink improved its characteristics in terms of rheology and cell viability and functionality. Moreover, differentiation to cartilage was promoted on NC-Alg-CS and NC-Alg-DS scaffolds. Therefore, the utilization of MSCs containing NC-Alg-CS and NC-Alg-DS scaffolds may become a feasible tissue engineering approach for cartilage regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Alaitz Zabala
- Mechanical and Industrial Manufacturing Department, Mondragon Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain
| | | | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, 18100, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.,BioFab i3D Lab - Biofabrication and 3D (bio)printing singular Laboratory, University of Granada, Granada, 18100, Spain
| | - Blanca Vázquez-Lasa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
29
|
García-Villén F, Ruiz-Alonso S, Lafuente-Merchan M, Gallego I, Sainz-Ramos M, Saenz-del-Burgo L, Pedraz JL. Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:1806. [PMID: 34834221 PMCID: PMC8623235 DOI: 10.3390/pharmaceutics13111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adaptation and progress of 3D printing technology toward 3D bioprinting (specifically adapted to biomedical purposes) has opened the door to a world of new opportunities and possibilities in tissue engineering and regenerative medicine. In this regard, 3D bioprinting allows for the production of tailor-made constructs and organs as well as the production of custom implants and medical devices. As it is a growing field of study, currently, the attention is heeded on the optimization and improvement of the mechanical and biological properties of the so-called bioinks/biomaterial inks. One of the strategies proposed is the use of inorganic ingredients (clays, hydroxyapatite, graphene, carbon nanotubes and other silicate nanoparticles). Clays have proven to be useful as rheological and mechanical reinforcement in a wide range of fields, from the building industry to pharmacy. Moreover, they are naturally occurring materials with recognized biocompatibility and bioactivity, revealing them as optimal candidates for this cutting-edge technology. This review deals with the use of clays (both natural and synthetic) for tissue engineering and regenerative medicine through 3D printing and bioprinting. Despite the limited number of studies, it is possible to conclude that clays play a fundamental role in the formulation and optimization of bioinks and biomaterial inks since they are able to improve their rheology and mechanical properties, thus improving printability and construct resistance. Additionally, they have also proven to be exceptionally functional ingredients (enhancing cellular proliferation, adhesion, differentiation and alignment), controlling biodegradation and carrying/releasing actives with tissue regeneration therapeutic activities.
Collapse
Affiliation(s)
- Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
30
|
McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering (Basel) 2021; 8:144. [PMID: 34677217 PMCID: PMC8533558 DOI: 10.3390/bioengineering8100144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage is an avascular tissue with extremely limited self-regeneration capabilities. At present, there are no existing treatments that effectively stop the deterioration of cartilage or reverse its effects; current treatments merely relieve its symptoms and surgical intervention is required when the condition aggravates. Thus, cartilage damage remains an ongoing challenge in orthopaedics with an urgent need for improved treatment options. In recent years, major advances have been made in the development of three-dimensional (3D) bioprinted constructs for cartilage repair applications. 3D bioprinting is an evolutionary additive manufacturing technique that enables the precisely controlled deposition of a combination of biomaterials, cells, and bioactive molecules, collectively known as bioink, layer-by-layer to produce constructs that simulate the structure and function of native cartilage tissue. This review provides an insight into the current developments in 3D bioprinting for cartilage tissue engineering. The bioink and construct properties required for successful application in cartilage repair applications are highlighted. Furthermore, the potential for translation of 3D bioprinted constructs to the clinic is discussed. Overall, 3D bioprinting demonstrates great potential as a novel technique for the fabrication of tissue engineered constructs for cartilage regeneration, with distinct advantages over conventional techniques.
Collapse
Affiliation(s)
- Sophie McGivern
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
| | - Halima Boutouil
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Ghayadah Al-Kharusi
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Suzanne Little
- Insight SFI Research Centre for Data Analytics, Dublin City University, D09 NA55 Dublin, Ireland;
| | - Nicholas J. Dunne
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tanya J. Levingstone
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|