1
|
Safarova (Yantsen) Y, Nessipbekova A, Syzdykova A, Olzhayev F, Umbayev B, Kassenova A, Fadeeva IV, Askarova S, Rau JV. Strontium- and Copper-Doped Ceramic Granules in Bone Regeneration-Associated Cellular Processes. J Funct Biomater 2024; 15:352. [PMID: 39590555 PMCID: PMC11595051 DOI: 10.3390/jfb15110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pathological bone fracturing is an escalating problem driven by increasing aging and obesity. Bioceramics, particularly tricalcium-phosphate-based materials (TCP), are renowned for their exceptional biocompatibility, osteoconductivity, and ability to promote biomineralization. In the present study, we designed and characterized TCP porous granules doped with strontium (Sr) and copper (Cu) (CuSr TCP). Sr2+ ions were selected as Sr plays a crucial role in early bone formation, osteogenesis, and angiogenesis; Cu2+ ions possess antibacterial properties. MATERIALS The synthesized CuSr TCP granules were characterized by X-ray diffraction. Cytotoxicity and cell proliferation analyses' assays were performed through the lactate dehydrogenase (LDH) activity and CCK-8 viability tests in rat bone marrow-derived mesenchymal stem cells (BM-MSCs). Hemolytic activity was carried out with human red blood cells (RBCs). Early and late osteogenesis were assessed with alkaline phosphatase (ALP) and Alizarin Red S activity in human osteoblast progenitor cells and rat BM-MSCs. The influence of CuSr TCP on angiogenesis was investigated in human umbilical vein endothelial cells (HUVECs). RESULTS We have demonstrated that media enriched with CuSr TCP in concentrations ranging from 0.1 mg/mL to 1 mg/mL were not cytotoxic and did not significantly affect cell proliferation rate motility. Moreover, a concentration of 0.5 mg/mL showed a 2.5-fold increase in the migration potential of BM-MSCs. We also found that CuSr TCP-enriched media slightly increased early osteogenesis. We also found that Sr and Cu substitutions in TCP particles significantly enhanced the measured angiogenic parameters compared to control and unsubstituted TCP granules. CONCLUSION Our results demonstrate that TCP porous granules doped with Sr and Cu are biocompatible, promote osteodifferentiation and angiogenesis, and could be recommended for further in vivo studies.
Collapse
Affiliation(s)
- Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Assem Nessipbekova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Aizhan Syzdykova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Aliya Kassenova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Inna V. Fadeeva
- A. A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia;
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Julietta V. Rau
- Instituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia
| |
Collapse
|
2
|
Akbarpour MR, Farajnezhad F, Poureshagh AH, Moniri Javadhesari S. Effects of Copper Doping on Fluorohydroxyapatite Coating: Analysis of Microstructure, Biocompatibility, Corrosion Resistance, and Cell Adhesion Characteristics. Inorg Chem 2024; 63:20314-20324. [PMID: 39418538 DOI: 10.1021/acs.inorgchem.4c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this research, Cu-doped fluorohydroxyapatite (Cu-FHAp) coatings containing varying levels of Cu in electrolyte as a dopant were synthesized by the ultrasonic-assisted pulse-reverse electrodeposition method on AZ31 alloy to improve the biocompatibility and corrosion resistance of the alloy for biomedical applications. Microstructural analysis revealed that the inclusion of the Cu dopant results in the formation of a more uniform coating. Energy dispersive spectroscopy analysis highlights a notable incorporation of copper within the fluorohydroxyapatite structure. The increase in Cu content significantly affected surface roughness and elevated hydrophobicity, leading to a contact angle of up to 136°. Electrochemical impedance spectroscopy analysis revealed that all samples containing copper exhibited favorable corrosion resistance, with the sample prepared using the electrolyte containing 0.036 g/L Cu(NO3)2 demonstrating the highest corrosion resistance. Cell adhesion evaluation yielded a satisfactory cell adhesion to the coated samples, indicating that the presence of the optimum value of Cu does not induce considerable cytotoxic effects.
Collapse
Affiliation(s)
- Mohammad Reza Akbarpour
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 83111-55181, Maragheh 83111-55181, Iran
| | - Farshad Farajnezhad
- Materials and Energy Research Center (MERC), School of Nanotechnology and Advanced Materials, P.O. Box 31779-83634, Karaj 31779-83634, Iran
| | - Amir Hossein Poureshagh
- Department of Materials Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 16846-13114, Iran
| | - Solmaz Moniri Javadhesari
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box 53751-71379, Tabriz 53751-71379, Iran
| |
Collapse
|
3
|
Höppel A, Bahr O, Ebert R, Wittmer A, Seidenstuecker M, Carolina Lanzino M, Gbureck U, Dembski S. Cu-doped calcium phosphate supraparticles for bone tissue regeneration. RSC Adv 2024; 14:32839-32851. [PMID: 39429940 PMCID: PMC11483895 DOI: 10.1039/d4ra04769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Calcium phosphate (CaP) minerals have shown great promise as bone replacement materials due to their similarity to the mineral phase of natural bone. In addition to biocompatibility and osseointegration, the prevention of infection is crucial, especially due to the high concern of antibiotic resistance. In this context, a controlled drug release as well as biodegradation are important features which depend on the porosity of CaP. An increase in porosity can be achieved by using nanoparticles (NPs), which can be processed to supraparticles, combining the properties of nano- and micromaterials. In this study, Cu-doped CaP supraparticles were prepared to improve the bone substitute properties while providing antibacterial effects. In this context, a modified sol-gel process was used for the synthesis of CaP NPs, where a Ca/P molar ratio of 1.10 resulted in the formation of crystalline β-tricalcium phosphate (β-TCP) after calcination at 1000 °C. In the next step, CaP NPs with Cu2+ (0.5-15.0 wt%) were processed into supraparticles by a spray drying method. Cu release experiments of the different Cu-doped CaP supraparticles demonstrated a long-term sustained release over 14 days. The antibacterial properties of the supraparticles were determined against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, where complete antibacterial inhibition was achieved using a Cu concentration of 5.0 wt%. In addition, cell viability assays of the different CaP supraparticles with human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) exhibited high biocompatibility with particle concentrations of 0.01 mg mL-1 over 72 hours.
Collapse
Affiliation(s)
- Anika Höppel
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
| | - Olivia Bahr
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Annette Wittmer
- Medical Center University of Freiburg, Faculty of Medicine, Institute for Microbiology and Hygiene 79104 Freiburg Germany
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg 79106 Freiburg Germany
| | - M Carolina Lanzino
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart 70569 Stuttgart Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg 97070 Würzburg Germany
| | - Sofia Dembski
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
- Fraunhofer Institute for Silicate Research ISC 97082 Würzburg Germany
| |
Collapse
|
4
|
Dantas LR, Ortis GB, Suss PH, Tuon FF. Advances in Regenerative and Reconstructive Medicine in the Prevention and Treatment of Bone Infections. BIOLOGY 2024; 13:605. [PMID: 39194543 DOI: 10.3390/biology13080605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Reconstructive and regenerative medicine are critical disciplines dedicated to restoring tissues and organs affected by injury, disease, or congenital anomalies. These fields rely on biomaterials like synthetic polymers, metals, ceramics, and biological tissues to create substitutes that integrate seamlessly with the body. Personalized implants and prosthetics, designed using advanced imaging and computer-assisted techniques, ensure optimal functionality and fit. Regenerative medicine focuses on stimulating natural healing mechanisms through cellular therapies and biomaterial scaffolds, enhancing tissue regeneration. In bone repair, addressing defects requires advanced solutions such as bone grafts, essential in medical and dental practices worldwide. Bovine bone scaffolds offer advantages over autogenous grafts, reducing surgical risks and costs. Incorporating antimicrobial properties into bone substitutes, particularly with metals like zinc, copper, and silver, shows promise in preventing infections associated with graft procedures. Silver nanoparticles exhibit robust antimicrobial efficacy, while zinc nanoparticles aid in infection prevention and support bone healing; 3D printing technology facilitates the production of customized implants and scaffolds, revolutionizing treatment approaches across medical disciplines. In this review, we discuss the primary biomaterials and their association with antimicrobial agents.
Collapse
Affiliation(s)
- Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Gabriel Burato Ortis
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
5
|
Ghezzi D, Graziani G, Cappelletti M, Fadeeva IV, Montesissa M, Sassoni E, Borciani G, Barbaro K, Boi M, Baldini N, Rau JV. New strontium-based coatings show activity against pathogenic bacteria in spine infection. Front Bioeng Biotechnol 2024; 12:1347811. [PMID: 38665815 PMCID: PMC11044685 DOI: 10.3389/fbioe.2024.1347811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Infections of implants and prostheses represent relevant complications associated with the implantation of biomedical devices in spine surgery. Indeed, due to the length of the surgical procedures and the need to implant invasive devices, infections have high incidence, interfere with osseointegration, and are becoming increasingly difficult to threat with common therapies due to the acquisition of antibiotic resistance genes by pathogenic bacteria. The application of metal-substituted tricalcium phosphate coatings onto the biomedical devices is a promising strategy to simultaneously prevent bacterial infections and promote osseointegration/osseoinduction. Strontium-substituted tricalcium phosphate (Sr-TCP) is known to be an encouraging formulation with osseoinductive properties, but its antimicrobial potential is still unexplored. To this end, novel Sr-TCP coatings were manufactured by Ionized Jet Deposition technology and characterized for their physiochemical and morphological properties, cytotoxicity, and bioactivity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P human pathogenic strains. The coatings are nanostructured, as they are composed by aggregates with diameters from 90 nm up to 1 μm, and their morphology depends significantly on the deposition time. The Sr-TCP coatings did not exhibit any cytotoxic effects on human cell lines and provided an inhibitory effect on the planktonic growth of E. coli and S. aureus strains after 8 h of incubation. Furthermore, bacterial adhesion (after 4 h of exposure) and biofilm formation (after 24 h of cell growth) were significantly reduced when the strains were cultured on Sr-TCP compared to tricalcium phosphate only coatings. On Sr-TCP coatings, E. coli and S. aureus cells lost their organization in a biofilm-like structure and showed morphological alterations due to the toxic effect of the metal. These results demonstrate the stability and anti-adhesion/antibiofilm properties of IJD-manufactured Sr-TCP coatings, which represent potential candidates for future applications to prevent prostheses infections and to promote osteointegration/osteoinduction.
Collapse
Affiliation(s)
- Daniele Ghezzi
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Gabriela Graziani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Martina Cappelletti
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Inna V. Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
| | - Matteo Montesissa
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Enrico Sassoni
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, Bologna, Italy
| | - Giorgia Borciani
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | | | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Biomedical Science and Technologies and Nanobiotechnology Lab, Bologna, Italy
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Rome, Italy
| |
Collapse
|
6
|
Aoyagi H, Okada M, Yanagimoto H, Matsumoto T. Investigation on bacterial capture and antibacterial properties of acid-treated Ti surface. Dent Mater 2024; 40:318-326. [PMID: 38042700 DOI: 10.1016/j.dental.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVES Utilizing Ti and Ti alloys as dental materials established a huge spurt in the field of dentistry. Since implantation is an invasive procedure that involves tissue penetration, infection control is mandatory for increasing the success rate of the implant treatment. In this study, we aimed to assess the impact of the surface physicochemical properties of acid-treated Ti on microorganisms specifically bacteria. METHODS After investigating the surface morphology and characteristics of acid-treated and untreated Ti sheets, we evaluated their potential to capture Escherichia coli (E. coli.) as well as the latter's survival on the surface of both types of sheets. Finally, we assessed the efficiency of the antibacterial properties exhibited by Ti against the oral microflora. RESULTS SEM images revealed surface roughening of the acid-treated Ti represented by significantly irregular shape. Moreover, the acid-treated Ti exhibited remarkable hydrophobicity. A quantitative evaluation confirmed that acid-treated Ti has higher bacterial capture and antibacterial properties than untreated Ti. Further experiments showed similar effects of both types of Ti not only on E. coli but also on oral microflora. SIGNIFICANCE Results suggest that acid treatment of Ti surface is a potent technique for enhancing the antibacterial properties of Ti-derived materials.
Collapse
Affiliation(s)
- Haruyuki Aoyagi
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Hiroaki Yanagimoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| |
Collapse
|
7
|
Cardoso GC, Barbaro K, Kuroda PAB, De Bonis A, Teghil R, Krasnyuk II, Imperatori L, Grandini CR, Rau JV. Antimicrobial Cu-Doped TiO 2 Coatings on the β Ti-30Nb-5Mo Alloy by Micro-Arc Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 17:156. [PMID: 38204010 PMCID: PMC10779965 DOI: 10.3390/ma17010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Among the different surface modification techniques, micro-arc oxidation (MAO) is explored for its ability to enhance the surface properties of Ti alloys by creating a controlled and durable oxide layer. The incorporation of Cu ions during the MAO process introduces additional functionalities to the surface, offering improved corrosion resistance and antimicrobial activity. In this study, the β-metastable Ti-30Nb-5Mo alloy was oxidated through the MAO method to create a Cu-doped TiO2 coating. The quantity of Cu ions in the electrolyte was changed (1.5, 2.5, and 3.5 mMol) to develop coatings with different Cu concentrations. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron and atomic force microscopies, contact angle, and Vickers microhardness techniques were applied to characterize the deposited coatings. Cu incorporation increased the antimicrobial activity of the coatings, inhibiting the growth of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa bacteria strains, and Candida albicans fungus by approximately 44%, 37%, 19%, and 41%, respectively. Meanwhile, the presence of Cu did not inhibit the growth of Escherichia coli. The hardness of all the deposited coatings was between 4 and 5 GPa. All the coatings were non-cytotoxic for adipose tissue-derived mesenchymal stem cells (AMSC), promoting approximately 90% of cell growth and not affecting the AMSC differentiation into the osteogenic lineage.
Collapse
Affiliation(s)
- Giovana Collombaro Cardoso
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17033-360, SP, Brazil; (P.A.B.K.); (C.R.G.)
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (L.I.); (J.V.R.)
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy;
| | - Pedro Akira Bazaglia Kuroda
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17033-360, SP, Brazil; (P.A.B.K.); (C.R.G.)
| | - Angela De Bonis
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.D.B.); (R.T.)
| | - Roberto Teghil
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.D.B.); (R.T.)
| | - Ivan I. Krasnyuk
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia;
| | - Luca Imperatori
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (L.I.); (J.V.R.)
| | - Carlos Roberto Grandini
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17033-360, SP, Brazil; (P.A.B.K.); (C.R.G.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy; (L.I.); (J.V.R.)
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia;
| |
Collapse
|
8
|
Wang Z, Wang J, Wu R, Wei J. Construction of functional surfaces for dental implants to enhance osseointegration. Front Bioeng Biotechnol 2023; 11:1320307. [PMID: 38033823 PMCID: PMC10682203 DOI: 10.3389/fbioe.2023.1320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Dental implants have been extensively used in patients with defects or loss of dentition. However, the loss or failure of dental implants is still a critical problem in clinic. Therefore, many methods have been designed to enhance the osseointegration between the implants and native bone. Herein, the challenge and healing process of dental implant operation will be briefly introduced. Then, various surface modification methods and emerging biomaterials used to tune the properties of dental implants will be summarized comprehensively.
Collapse
Affiliation(s)
- Zhenshi Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Runfa Wu
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
10
|
Fadeeva IV, Deyneko DV, Knotko AV, Olkhov AA, Slukin PV, Davydova GA, Trubitsyna TA, Preobrazhenskiy II, Gosteva AN, Antoniac IV, Rau JV. Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement. Polymers (Basel) 2023; 15:polym15092106. [PMID: 37177252 PMCID: PMC10181370 DOI: 10.3390/polym15092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.
Collapse
Affiliation(s)
- Inna V Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia
| | - Dina V Deyneko
- Chemistry Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Alexander V Knotko
- Chemistry Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
| | - Anatoly A Olkhov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, 119991 Moscow, Russia
- Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Pavel V Slukin
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor 24, Block A, 142279 Obolensk, Russia
| | - Galina A Davydova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Moscow, Russia
| | - Taisiia A Trubitsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Moscow, Russia
| | - Ilya I Preobrazhenskiy
- Materials Science Department, Lomonosov Moscow State University, Vorobievy Gory 1, 119991 Moscow, Russia
| | - Alevtina N Gosteva
- Kola Science Centre RAS, Tananaev Institute of Chemistry, Akademgorodok District 26A, 184209 Apatity, Russia
| | - Iulian V Antoniac
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
11
|
Zhang J, Ye X, Li W, Lin Z, Wang W, Chen L, Li Q, Xie X, Xu X, Lu Y. Copper-containing chitosan-based hydrogels enabled 3D-printed scaffolds to accelerate bone repair and eliminate MRSA-related infection. Int J Biol Macromol 2023; 240:124463. [PMID: 37076063 DOI: 10.1016/j.ijbiomac.2023.124463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Bone defect combined with drug-resistant bacteria-related infection is a thorny challenge in clinic. Herein, 3D-printed polyhydroxyalkanoates/β-tricalcium phosphate (PHA/β-TCP, PT) scaffolds were prepared by fused deposition modeling. Then copper-containing carboxymethyl chitosan/alginate (CA/Cu) hydrogels were integrated with the scaffolds via a facile and low-cost chemical crosslinking method. The resultant PT/CA/Cu scaffolds could not only promote proliferation but also osteogenic differentiation of preosteoblasts in vitro. Moreover, PT/CA/Cu scaffolds exhibited a strong antibacterial activity towards a broad-spectrum of bacteria including methicillin-resistant Staphylococcus aureus (MRSA) through inducing the intercellular generation of reactive oxygen species. In vivo experiments further demonstrated that PT/CA/Cu scaffolds significantly accelerated bone repair of cranial defects and efficiently eliminated MRSA-related infection, showing potential for application in infected bone defect therapy.
Collapse
Affiliation(s)
- Jinwei Zhang
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Xiangling Ye
- Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Wenhua Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Wanshun Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Qi Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaobo Xie
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xuemeng Xu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China.
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China.
| |
Collapse
|
12
|
Ghezzi D, Sassoni E, Boi M, Montesissa M, Baldini N, Graziani G, Cappelletti M. Antibacterial and Antibiofilm Activity of Nanostructured Copper Films Prepared by Ionized Jet Deposition. Antibiotics (Basel) 2022; 12:55. [PMID: 36671256 PMCID: PMC9854604 DOI: 10.3390/antibiotics12010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Metal coatings represent good strategies to functionalize surfaces/devices and limit bacterial contamination/colonization thanks to their pleiotropic activity and their ability to prevent the biofilm formation. Here, we investigated the antibacterial and antibiofilm capacity of copper coatings deposited through the Ionized Jet Deposition (IJD) on the Calgary Biofilm Device (CBD) against the growth of two gram-negative and two gram-positive pathogenic strains. Three areas (i.e., (+)Cu, (++)Cu, and (+++)Cu based on the metal amount) on the CBD were obtained, presenting nanostructured coatings with high surface homogeneity and increasing dimensions of aggregates from the CBD periphery to the centre. The coatings in (++)Cu and (+++)Cu were efficient against the planktonic growth of the four pathogens. This antibacterial effect decreased in (+)Cu but was still significant for most of the pathogens. The antibiofilm efficacy was significant for all the strains and on both coated and uncoated surfaces in (+++)Cu, whereas in (++)Cu the only biofilms forming on the coated surfaces were inhibited, suggesting that the decrease of the metal on the coatings was associated to a reduced metal ion release. In conclusion, this work demonstrates that Cu coatings deposited by IJD have antibacterial and antibiofilm activity against a broad range of pathogens indicating their possible application to functionalize biomedical devices.
Collapse
Affiliation(s)
- Daniele Ghezzi
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Marco Boi
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Matteo Montesissa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Nicola Baldini
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Gabriela Graziani
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| |
Collapse
|
13
|
Fadeeva IV, Deyneko DV, Forysenkova AA, Morozov VA, Akhmedova SA, Kirsanova VA, Sviridova IK, Sergeeva NS, Rodionov SA, Udyanskaya IL, Antoniac IV, Rau JV. Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility. Molecules 2022; 27:molecules27186085. [PMID: 36144818 PMCID: PMC9505591 DOI: 10.3390/molecules27186085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Sr2+-substituted β-tricalcium phosphate (β-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that β-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial β-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the β-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Dina V. Deyneko
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Anna A. Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Vladimir A. Morozov
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
| | - Suraya A. Akhmedova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Valentina A. Kirsanova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Irina K. Sviridova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Natalia S. Sergeeva
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- Academician Yarygin Department of Biology, Federal State Autonomous Educational Institution of Higher Education Russian National Research Medical University Named after N.I. Pirogov, Str. Ostrovityanova, 1, 117997 Moscow, Russia
| | - Sergey A. Rodionov
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics, 10 Priorova Str., 127299 Moscow, Russia
| | - Irina L. Udyanskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Iulian V. Antoniac
- Department of Metallic Materials Science and Physical Metallurg, University Politehnica of Bucharest, Street Splaiul Independentei No 313, Sector 6, 060042 Bucharest, Romania
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
DFT Explorations on the spectral, non-covalent interactions and the invitro analysis of a synthesized anti-bacterial nanocomposite pure hydroxyapatite. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int J Mol Sci 2022; 23:ijms23094692. [PMID: 35563084 PMCID: PMC9101299 DOI: 10.3390/ijms23094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite—the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.
Collapse
|
16
|
Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties. NANOMATERIALS 2022; 12:nano12050852. [PMID: 35269340 PMCID: PMC8912835 DOI: 10.3390/nano12050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023]
Abstract
Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of β-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by β-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both β-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1–50 μm, pore sizes of 1–10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4–1.4 μm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism’s growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.
Collapse
|
17
|
Modification of Biocorrosion and Cellular Response of Magnesium Alloy WE43 by Multiaxial Deformation. METALS 2022. [DOI: 10.3390/met12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study shows that multiaxial deformation (MAD) treatment leads to grain refinement in magnesium alloy WE43. Compared to the initial state, the MAD-processed alloy exhibited smoother biocorrosion dynamics in a fetal bovine serum and in a complete cell growth medium. Examination by microCT demonstrated retardation of the decline in the alloy volume and the Hounsfield unit values. An attendant reduction in the rate of accumulation of the biodegradation products in the immersion medium, a less pronounced alkalization, and inhibited sedimentation of biodegradation products on the surface of the alloy were observed after MAD. These effects were accompanied with an increase in the osteogenic mesenchymal stromal cell viability on the alloy surface and in a medium containing their extracts. It is expected that the more orderly dynamics of biodegradation of the WE43 alloy after MAD and the stimulation of cell colonization will effectively promote stable osteosynthesis, making repeat implant extraction surgeries unnecessary.
Collapse
|
18
|
Fadeeva IV, Trofimchuk ES, Forysenkova AA, Ahmed AI, Gnezdilov OI, Davydova GA, Kozlova SG, Antoniac A, Rau JV. Composite Polyvinylpyrrolidone-Sodium Alginate-Hydroxyapatite Hydrogel Films for Bone Repair and Wound Dressings Applications. Polymers (Basel) 2021; 13:polym13223989. [PMID: 34833286 PMCID: PMC8621946 DOI: 10.3390/polym13223989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Today, the synthesis of biocompatible and bioresorbable composite materials such as “polymer matrix-mineral constituent,” which stimulate the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine. In this study, composite films of bioresorbable polymers of polyvinylpyrrolidone (PVP) and sodium alginate (SA) with hydroxyapatite (HA) were obtained. HA was introduced by two different methods. In one of them, it was synthesized in situ in a solution of polymer mixture, and in another one, it was added ex situ. Phase composition, microstructure, swelling properties and biocompatibility of films were investigated. The crosslinked composite PVP-SA-HA films exhibit hydrogel swelling characteristics, increasing three times in mass after immersion in a saline solution. It was found that composite PVP-SA-HA hydrogel films containing HA synthesized in situ exhibited acute cytotoxicity, associated with the presence of HA synthesis reaction byproducts—ammonia and ammonium nitrate. On the other hand, the films with HA added ex situ promoted the viability of dental pulp stem cells compared to the films containing only a polymer PVP-SA blend. The developed composite hydrogel films are recommended for such applications, such as membranes in osteoplastic surgery and wound dressing.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
- Correspondence: (I.V.F.); (J.V.R.)
| | - Elena S. Trofimchuk
- Department of High-Molecular Compounds, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia;
| | - Anna A. Forysenkova
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
| | - Abdulrahman I. Ahmed
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
- Department of Physics, University of Al-Hamadaniya, Mosul 41001, Iraq
| | - Oleg I. Gnezdilov
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
| | - Galina A. Davydova
- Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya 3, 142290 Pushchino, Moscow reg., Russia;
- National Medical Research Center of Obstetrics, Gynecology and Perinatology, Academician Oparin Str., 117997 Moscow, Russia
| | - Svetlana G. Kozlova
- Department of Natural Science, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia;
| | - Aurora Antoniac
- Department of Metallic Materials Science and Physical Metallurgy, University Politehnica of Bucharest, Street Splaiul Independentei, 060042 Bucharest, Romania;
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street, Build. 8/2, 119991 Moscow, Russia
- Correspondence: (I.V.F.); (J.V.R.)
| |
Collapse
|