1
|
Rana I, Deepa, Aslam M, Ranjan KR, Singh P, Kumari K. A review on the use of composites of a natural protein, silk fibroin with Mxene/carbonaceous materials in biomedical science. Int J Biol Macromol 2024; 278:135101. [PMID: 39227275 DOI: 10.1016/j.ijbiomac.2024.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Silk fibroin (SF), a natural biodegradable and biocompatible protein, has garnered significant attention in biomedical applications due to its impressive properties, including excellent biocompatibility, biodegradability, and mechanical resilience. Nevertheless, its broader usage faces obstacles by its insufficient mechanical strength and electrical conductivity. In order to address these constraints, recent studies have concentrated on combining SF with cutting-edge nanomaterials like MXene and carbon-based materials. This review comprehensively examines the applications and potential of silk fibroin-MXene/carbon-based nanocomposites in biomedical fields. The unique properties of SF, MXene, and carbon-based materials are explored, emphasizing how their combination enhances mechanical strength, conductivity, and biocompatibility. These composites show substantial enhancements in performance for several biomedical applications by utilising the excellent conductivity and mechanical capabilities of MXene and carbonaceous elements. The innovative potential of these nanocomposites is highlighted by critically discussing key applications such as tissue engineering, drug delivery, and biosensing. In addition, the work discusses the latest research progress, difficulties, and future prospects in the sector, providing valuable insights into possible breakthroughs and uses. This review seeks to comprehensively analyse the existing information on silk fibroin-MXene/carbon based nanocomposites in healthcare.
Collapse
Affiliation(s)
- Ishika Rana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Deepa
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered Silk Protein-Based 3D In Vitro Models for Tissue Engineering and Drug Development: From Silk Matrix Properties to Biomedical Applications. Adv Healthc Mater 2024:e2401458. [PMID: 39009465 DOI: 10.1002/adhm.202401458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Indexed: 07/17/2024]
Abstract
3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Zhu Y, Yi D, Wang J, Zhang Y, Li M, Ma J, Ji Y, Peng J, Wang Y, Luo Y. Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration. Stem Cell Res Ther 2024; 15:158. [PMID: 38824568 PMCID: PMC11144330 DOI: 10.1186/s13287-024-03753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Rehabilitation Medicine, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jun Ma
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongjiao Ji
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China.
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
- Department of Orthopaedics, The Fourth Centre of Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yukun Luo
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
4
|
Li J, Zhang S, He C, Ling J. Electrospun fibers based anisotropic silk fibroin film with photodynamic antibacterial therapy for S. aureus infected wound healing. Int J Biol Macromol 2024; 254:127685. [PMID: 38287584 DOI: 10.1016/j.ijbiomac.2023.127685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Bacterial infection has been regarded as a life-threatening problem in clinic. In addition to screening of new antibiotics, it is important to develop highly effective antibacterial materials against antibiotic resistance with capacities on modulating chronic inflammation. Herein, aligned Chlorin e6 (Ce6) conjugated silk fibroin electrospun fibers were successfully fabricated on silk fibroin based film via electrospining to achieve effective photodynamic antibacterial activities under near infrared (NIR) irradiation. The aligned electrospun fiber based film composite (SFCF@Film) exhibited good mechanical properties and desirable hemocompatibility. SFCF@Film provided a promising guidance cue for directing cell orientation and promoting cell growth. Significantly, SFCF@Film effectively generated ROS under NIR irradiation to kill S. aureus for treating wound infections within 10 min and promoted M2 polarization of macrophages for wound healing at later stage. Therefore, we believed that this engineered bioscaffold can be a powerful strategy for handling wound infection.
Collapse
Affiliation(s)
- Jiaying Li
- Hospital-Acquired Infection Control Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.
| |
Collapse
|
5
|
Ling J, He C, Zhang S, Zhao Y, Zhu M, Tang X, Li Q, Xu L, Yang Y. Progress in methods for evaluating Schwann cell myelination and axonal growth in peripheral nerve regeneration via scaffolds. Front Bioeng Biotechnol 2023; 11:1308761. [PMID: 38162183 PMCID: PMC10755477 DOI: 10.3389/fbioe.2023.1308761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Peripheral nerve injury (PNI) is a neurological disorder caused by trauma that is frequently induced by accidents, war, and surgical complications, which is of global significance. The severity of the injury determines the potential for lifelong disability in patients. Artificial nerve scaffolds have been investigated as a powerful tool for promoting optimal regeneration of nerve defects. Over the past few decades, bionic scaffolds have been successfully developed to provide guidance and biological cues to facilitate Schwann cell myelination and orientated axonal growth. Numerous assessment techniques have been employed to investigate the therapeutic efficacy of nerve scaffolds in promoting the growth of Schwann cells and axons upon the bioactivities of distinct scaffolds, which have encouraged a greater understanding of the biological mechanisms involved in peripheral nerve development and regeneration. However, it is still difficult to compare the results from different labs due to the diversity of protocols and the availability of innovative technologies when evaluating the effectiveness of novel artificial scaffolds. Meanwhile, due to the complicated process of peripheral nerve regeneration, several evaluation methods are usually combined in studies on peripheral nerve repair. Herein, we have provided an overview of the evaluation methods used to study the outcomes of scaffold-based therapies for PNI in experimental animal models and especially focus on Schwann cell functions and axonal growth within the regenerated nerve.
Collapse
Affiliation(s)
- Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meifeng Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Liming Xu
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
6
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
7
|
Jiang Y, Tang X, Li T, Ling J, Yang Y. The success of biomaterial-based tissue engineering strategies for peripheral nerve regeneration. Front Bioeng Biotechnol 2022; 10:1039777. [PMID: 36329703 PMCID: PMC9622790 DOI: 10.3389/fbioe.2022.1039777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Peripheral nerve injury is a clinically common injury that causes sensory dysfunction and locomotor system degeneration, which seriously affects the quality of the patients' daily life. Long gapped defects in large nerve are difficult to repair via surgery and limited donor source of autologous nerve greatly challenges the successful nerve repair by transplantation. Significantly, remarkable progress has been made in repairing the peripheral nerve injury using artificial nerve grafts and a variety of products for peripheral nerve repair have emerged been approved globally in recent years. The raw materials of these commercial products includes natural/synthetic polymers, extracellular matrix. Despite a lot of effort, the desirable functional recovery still remains great challenges in long gapped nerve defects. Thus this review discusses the recent development of tissue engineering products for peripheral nerve repair and the design of bionic grafts improving the local microenvironment for accelerating nerve regeneration against locomotor disorder, which may provide potential strategies for the repair of long gaps or thick nerve defects by multifunctional biomaterials.
Collapse
Affiliation(s)
- Yuhui Jiang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaoxuan Tang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tao Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yumin Yang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
8
|
Tang X, Li Q, Huang T, Zhang H, Chen X, Ling J, Yang Y. Regenerative Role of T Cells in Nerve Repair and Functional Recovery. Front Immunol 2022; 13:923152. [PMID: 35865551 PMCID: PMC9294345 DOI: 10.3389/fimmu.2022.923152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immune system is essential in the process of nerve repair after injury. Successful modulation of the immune response is regarded as an effective approach to improving treatment outcomes. T cells play an important role in the immune response of the nervous system, and their beneficial roles in promoting regeneration have been increasingly recognized. However, the diversity of T-cell subsets also delivers both neuroprotective and neurodegenerative functions. Therefore, this review mainly discusses the beneficial impact of T-cell subsets in the repair of both peripheral nervous system and central nervous system injuries and introduces studies on various therapies based on T-cell regulation. Further discoveries in T-cell mechanisms and multifunctional biomaterials will provide novel strategies for nerve regeneration.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tingting Huang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Han Zhang
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaoli Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| |
Collapse
|