1
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
2
|
Sun N, Zhang Y, Ding L, An X, Bai F, Yang Y, Yu K, Fan J, Liu L, Yang H, Yang X. Blockade of aryl hydrocarbon receptor restricts omeprazole-induced chronic kidney disease. J Mol Med (Berl) 2024; 102:679-692. [PMID: 38453697 DOI: 10.1007/s00109-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Chronic kidney disease (CKD) is the 16th leading cause of mortality worldwide. Clinical studies have raised that long-term use of omeprazole (OME) is associated with the morbidity of CKD. OME is commonly used in clinical practice to treat peptic ulcers and gastroesophageal reflux disease. However, the mechanism underlying renal failure following OME treatment remains mostly unknown and the rodent model of OME-induced CKD is yet to be established. We described the process of renal injury after exposure to OME in mice; the early renal injury markers were increased in renal tubular epithelial cells (RTECs). And after long-term OME treatment, the OME-induced CKD mice model was established. Herein, aryl hydrocarbon receptor (AHR) translocation appeared after exposure to OME in HK-2 cells. Then for both in vivo and in vitro, we found that Ahr-knockout (KO) and AHR small interfering RNA (siRNA) substantially alleviated the OME-induced renal function impairment and tubular cell damage. Furthermore, our data demonstrate that antagonists of AHR and CYP1A1 could attenuate OME-induced tubular cell impairment in HK-2 cells. Taken together, these data indicate that OME induces CKD through the activation of the AHR-CYP axis in RTECs. Our findings suggest that blocking the AHR-CYP1A1 pathway acts as a potential strategy for the treatment of CKD caused by OME. KEY MESSAGES: We provide an omeprazole-induced chronic kidney disease (CKD) mice model. AHR activation and translocation process was involved in renal tubular damage and promoted the occurrence of CKD. The process of omeprazole nephrotoxicity can be ameliorated by blockade of the AHR-CYP1A1 axis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Cell Line
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1A1/genetics
- Disease Models, Animal
- Epithelial Cells/metabolism
- Epithelial Cells/drug effects
- Kidney Tubules/pathology
- Kidney Tubules/metabolism
- Kidney Tubules/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Omeprazole/pharmacology
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/chemically induced
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Nan Sun
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yimeng Zhang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Ding
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin An
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Bai
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanjiang Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kuipeng Yu
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiahui Fan
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medical Science, Jinan, Shandong, China
| | - Huimin Yang
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
5
|
Research and Application of Kupffer Cell Thresholds for BSA Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020880. [PMID: 36677939 PMCID: PMC9864197 DOI: 10.3390/molecules28020880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Over the past decade, the dose of nanoparticles given to solid tumors has remained at a median of 0.7% of the injected dose. Most nanoparticles are trapped in a mononuclear phagocyte system (MPS), of which 85% are Kupffer cells. In our study, threshold doses of bovine serum albumin (BSA) nanoparticles were investigated for the uptake of Kupffer cells in vitro and in vivo. The antitumor effect and safety of albumin-bound paclitaxel (ABP) were improved by using threshold doses of BSA nanoparticles. We found a threshold dose of 20,000 nanoparticles per macrophage uptake in vitro and a saturation dose of 0.3 trillion nanoparticles in tumor-bearing mice. In vivo efficacy and safety evaluations demonstrated that the threshold doses of blank BSA nanoparticles could significantly improve the efficacy and safety of ABP against tumors compared with ABP alone. In this study, the delivery efficiency of ABP was improved by using blank nanoparticles to saturate Kupffer cells, which provided a new approach to studying the Kupffer cell saturation threshold and thus a new scheme for improving the curative effect of ABP.
Collapse
|
6
|
Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022; 352:600-618. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Collapse
Affiliation(s)
- Yaru Shao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022; 14:1860. [PMID: 36145608 PMCID: PMC9501124 DOI: 10.3390/pharmaceutics14091860] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
With the growing burden of cancer, parallel advancements in anticancer nanotechnological solutions have been witnessed. Among the different types of cancers, breast cancer accounts for approximately 25% and leads to 15% of deaths. Nanomedicine and its allied fields of material science have revolutionized the science of medicine in the 21st century. Novel treatments have paved the way for improved drug delivery systems that have better efficacy and reduced adverse effects. A variety of nanoformulations using lipids, polymers, inorganic, and peptide-based nanomedicines with various functionalities are being synthesized. Thus, elaborate knowledge of these intelligent nanomedicines for highly promising drug delivery systems is of prime importance. Polymeric micelles (PMs) are generally easy to prepare with good solubilization properties; hence, they appear to be an attractive alternative over the other nanosystems. Although an overall perspective of PM systems has been presented in recent reviews, a brief discussion has been provided on PMs for breast cancer. This review provides a discussion of the state-of-the-art PMs together with the most recent advances in this field. Furthermore, special emphasis is placed on regulatory guidelines, clinical translation potential, and future aspects of the use of PMs in breast cancer treatment. The recent developments in micelle formulations look promising, with regulatory guidelines that are now more clearly defined; hence, we anticipate early clinical translation in the near future.
Collapse
Affiliation(s)
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Dinesh Nyavanandi
- Pharmaceutical Development Services, Thermo Fisher Scientific, Cincinnati, OH 45237, USA
| | - Sunitha Sampathi
- GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad 502329, India
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
8
|
Wu TY, Chen M, Chen IC, Chen YJ, Chen CY, Wang CH, Cheng JJ, Nepali K, Chuang KH, Liou JP. Rational design of synthetically tractable HDAC6/HSP90 dual inhibitors to destroy immune-suppressive tumor microenvironment. J Adv Res 2022; 46:159-171. [PMID: 35752438 PMCID: PMC10105078 DOI: 10.1016/j.jare.2022.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/06/2022] [Accepted: 06/18/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The tumor microenvironment is mainly flooded with immunosuppressive cells and inhibitory cytokines, resulting in the inability of effective immune cells to infiltrate and recognize tumors and even the loss of anti-cancer ability. OBJECTIVES We propose a novel HDAC6/HSP90 dual inhibitory strategy as well as a chemoimmunotherapeutic agent that does not only kill tumor cells but also destroys the tumor microenvironment and enhances anti-cancer immunity. METHODS A hybrid scaffold construction approach was leveraged to furnish a series of rationally designed resorcinol-based hydroxamates as dual selective HDAC6/HSP90 inhibitors. The drug design campaign commenced with a fragment recruitment process to pinpoint validated structural units to inhibit HDAC6 and HSP90, followed by their installation in flexible HDAC inhibitory templates via an efficient and facile multistep synthetic route. Subsequent evaluations identified a strikingly potent selective HDAC6/HSP90 dual inhibitor (compound 17) via molecular and biological analysis in vitro and in vivo. RESULTS Compound 17 exhibited not only direct cytotoxicity to cancer cells but also downregulated immune checkpoints (PD-L1 and IDO) expression in tumors via the inhibition of STAT1 pathway and degradation of oncogene proteins (Src, AKT, Rb, and FAK), leading to in vivo tumor growth inhibition. These multiple effects enabled the effector T cells to largely infiltrate into the tumor region and release granzyme B to kill cancer cells. In addition, compound 17 also decreased TGF-β secretion from normal cells, resulting in the systemic reduction of immunosuppressive regulatory T cells. Delightfully, a cocktail treatment of compound 17 and anti-PD-1 antibodies demonstrated synergistic efficacy to eliminate solid tumors with 83.9% of tumor growth inhibition. CONCLUSION In summary, the impressive activity profile of compound 17, as an effective anticancer agent and a potential immunosensitizer, forecasts the application of HDAC6/HSP90 dual inhibitory strategy to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Yi-Jou Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Che-Yi Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Chang-Hung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Jing-Jy Cheng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.
| | - Kuo-Hsiang Chuang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 110031, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.
| |
Collapse
|
9
|
Luo X, Zhang Q, Chen H, Hou K, Zeng N, Wu Y. Smart Nanoparticles for Breast Cancer Treatment Based on the Tumor Microenvironment. Front Oncol 2022; 12:907684. [PMID: 35720010 PMCID: PMC9204624 DOI: 10.3389/fonc.2022.907684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women. There are different risk characteristics and treatment strategies for different subtypes of BC. The tumor microenvironment (TME) is of great significance for understanding the occurrence, development, and metastasis of tumors. The TME plays an important role in all stages of BC metastasis, immune monitoring, immune response avoidance, and drug resistance, and also plays an important role in the diagnosis, prevention, and prognosis of BC. Smart nanosystems have broad development prospect in the regulation of the BC drug delivery based on the response of the TME. In particular, TME-responsive nanoparticles cleverly utilize the abnormal features of BC tissues and cells to achieve targeted transport, stable release, and improved efficacy. We here present a review of the mechanisms underlying the response of the TME to BC to provide potential nanostrategies for future BC treatment.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wang Z, Xiao H, Dong J, Li Y, Wang B, Chen Z, Zeng X, Liu J, Dong Y, Ma L, Xu J, Cheng L, Li C, Liu X, Cui M. Sexual dimorphism in gut microbiota dictates therapeutic efficacy of intravenous immunoglobulin on radiotherapy complications. J Adv Res 2022; 46:123-133. [PMID: 35700918 PMCID: PMC10105085 DOI: 10.1016/j.jare.2022.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION With the mounting number of cancer survivors, the complications following cancer treatment become novel conundrums and starve for countermeasures. Intravenous immunoglobulin (IVIg) is a purified preparation for immune-deficient and autoimmune conditions. OBJECTIVES Here, we investigated whether IVIg could be employed to fight against radiation injuries and explored the underlying mechanism. METHODS Hematopoietic or gastrointestinal (GI) tract toxicity was induced by total body or abdominal local irradiation. High-throughput sequencing was performed to analyze the gut microbiota configurations and gene expression profile of small intestine. The untargeted metabolomics of gut microbiome was assessed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses. Hydrodynamic-based gene delivery was used to knockdown the target genes in vivo. RESULTS Intravenous injection of IVIg protected against radiation-induced hematopoietic and GI tract toxicity in female mice but not in males. IVIg structured sex-characteristic gut microbiota configurations in abdominal irradiated mice. The irradiation enriched gut Lachnospiraceae in female mice but reduced those in males. IVIg injection combined with oral gavage of Lachnospiraceae or its metabolite hypoxanthine, alleviated radiation toxicity in male mice however, Lachnospiraceae or hypoxanthine alone failed to ameliorate the injuries. Abdominal local irradiation drove sex-distinct gene expression signatures in small intestine. Mechanistic investigation showed that replenishment of Lachnospiraceae or hypoxanthine offset abdominal radiation-reduced PLD1 expression in male mice. In females, irradiation elevated PLD1 expression. Deletion of PLD1 in GI tract of female mice erased the radioprotective effects of IVIg. CONCLUSION IVIg battles against radiation injuries in a sex-specific, gut microbiome-dependent way through Lachnospiraceae/hypoxanthine/PLD1 axis. Our findings provide a sex-precise therapeutic avenue to improve the prognosis of cancer patients with radiotherapy in pre-clinical settings.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaozhou Zeng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jia Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanxi Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, China
| | - Jun Xu
- Shanghai RAAS Blood products Co., Ltd., Shanghai, 201401, China
| | - Lu Cheng
- Shanghai RAAS Blood products Co., Ltd., Shanghai, 201401, China
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
11
|
Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-Derived Non-Coding RNAs in the Tumor Microenvironment of Colorectal Cancer: Possible Functions, Mechanisms and Clinical Applications. Front Oncol 2022; 12:887532. [PMID: 35646623 PMCID: PMC9133322 DOI: 10.3389/fonc.2022.887532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death and the third most prevalent malignancy. Colorectal tumors exchange information with the surrounding environment and influence each other, which collectively constitutes the tumor microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-coding RNAs (ncRNAs) play important roles in various pathophysiological processes by regulating the TME of CRC. This review summarizes recent findings on the fundamental roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor metabolism and drug resistance. Certainly, the in-depth understanding of exosomal ncRNAs will provide comprehensive insights into the clinical application of these molecules against CRC.
Collapse
Affiliation(s)
- Xian Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|