1
|
Chen J, Sheng R, Mo Q, Backman LJ, Lu Z, Long Q, Chen Z, Cao Z, Zhang Y, Liu C, Zheng H, Qi Y, Cao M, Rui Y, Zhang W. Controlled TPCA-1 delivery engineers a pro-tenogenic niche to initiate tendon regeneration by targeting IKKβ/NF-κB signaling. Bioact Mater 2025; 44:319-338. [PMID: 39512422 PMCID: PMC11541688 DOI: 10.1016/j.bioactmat.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Tendon repair remains challenging due to its poor intrinsic healing capacity, and stem cell therapy has emerged as a promising strategy to promote tendon regeneration. Nevertheless, the inflammatory environment following acute tendon injuries disrupts stem cell differentiation, leading to unsatisfied outcomes. Our study recognized the critical role of NF-κB signaling in activating inflammation and suppressing tenogenic differentiation of stem cells after acute tendon injury via multiomics analysis. TPCA-1, a selective inhibitor of IKKβ/NF-κB signaling, efficiently restored the impaired tenogenesis of stem cells in the inflammatory environment. By developing a microsphere-incorporated hydrogel system for stem cell delivery and controlled release of TPCA-1, we successfully engineered a pro-tenogenic niche to initiate tenogenesis for tendon regeneration. Collectively, we recognize NF-κB signaling as a critical target to tailor a pro-tenogenic niche and propose the combined delivery of stem cells and TPCA-1 as a potential strategy for acute tendon injuries.
Collapse
Affiliation(s)
- Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058, Hangzhou, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Ludvig J. Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, 90187, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, 90187, Umeå, Sweden
| | - Zhiyuan Lu
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Qiuzi Long
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Haotian Zheng
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Yu Qi
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
| | - Mumin Cao
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
| | - Yunfeng Rui
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058, Hangzhou, China
| |
Collapse
|
2
|
Shen C, Zhou Z, Li R, Yang S, Zhou D, Zhou F, Geng Z, Su J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025; 15:560-584. [PMID: 39744693 PMCID: PMC11671376 DOI: 10.7150/thno.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies. Meanwhile, the repair effect of cartilage tissue engineering is also unsatisfactory. Cartilage organoids are multicellular aggregates with cartilage-like three-dimensional structure and function. On the one hand, cartilage organoids can be used to explore the pathogenesis of OA by constructing disease models. On the other hand, it can be used as filler for rapid cartilage repair. Extracellular matrix (ECM)-like three-dimensional environment is the key to construct cartilage organoids. Silk fibroin (SF)-based hydrogels not only have ECM-like structure, but also have unique mechanical properties and remarkable biocompatibility. Therefore, SF-based hydrogels are considered as ideal biomaterials for constructing cartilage organoids. In this review, we reviewed the studies of cartilage organoids and SF-based hydrogels. The advantages of SF-based hydrogels in constructing cartilage organoids and the iterative optimization of cartilage organoids through designing hydrogels by using artificial intelligence (AI) calculation are also discussed. This review aims to provide a theoretical basis for the treatment of OA using SF-based biomaterials and cartilage organoids.
Collapse
Affiliation(s)
- Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shike Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Anesthesiology, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
3
|
赵 俊, 赵 宇, 蒲 彦, 王 玺, 黄 鹏, 张 兆, 赵 海. [Research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1408-1413. [PMID: 39542635 PMCID: PMC11563741 DOI: 10.7507/1002-1892.202407101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
Objective To review the research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells (MSCs). Methods An extensive review of the relevant literature on bone repair biomaterials, particularly those designed to recruit endogenous MSCs, was conducted, encompassing both domestic and international studies from recent years. The construction methods and optimization strategies for these biomaterials were summarized. Additionally, future research directions and focal points concerning this material were proposed. Results With the advancement of tissue engineering technology, bone repair biomaterials have increasingly emerged as an ideal solution for addressing bone defects. MSCs serve as the most critical "seed cells" in bone tissue engineering. Historically, both MSCs and their derived exosomes have been utilized in bone repair biomaterials; however, challenges such as limited sources of MSCs and exosomes, low survival rates, and various other issues have persisted. To address these challenges, researchers are combining growth factors, bioactive peptides, specific aptamers, and other substances with biomaterials to develop constructs that facilitate stem cell recruitment. By optimizing mechanical properties, promoting vascular regeneration, and regulating the microenvironment, it is possible to create effective bone repair biomaterials that enhance stem cell recruitment. Conclusion In comparison to cytokines, phages, and metal ions, bioactive peptides and aptamers obtained through screening exhibit more specific and targeted recruitment functions. Future development directions for bone repair biomaterials will involve the modification of peptides and aptamers with targeted recruitment capabilities in biological materials, as well as the optimization of the mechanical properties of these materials to enhance vascular regeneration and adjust the microenvironment.
Collapse
Affiliation(s)
- 俊杰 赵
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| | - 宇昊 赵
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| | - 彦川 蒲
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| | - 玺玉 王
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| | - 鹏飞 黄
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| | - 兆坤 张
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| | - 海燕 赵
- 兰州大学第一临床医学院(兰州 730000)The First School of Clinical Medicine, Lanzhou University, Lanzhou Gansu, 730000, P. R. China
- 兰州大学第一医院骨科(兰州 730000)Department of Orthopaedics, the First Hospital of Lanzhou University, Lanzhou Gansu, 730000, P. R. China
| |
Collapse
|
4
|
He F, Wu H, He B, Han Z, Chen J, Huang L. Antioxidant hydrogels for the treatment of osteoarthritis: mechanisms and recent advances. Front Pharmacol 2024; 15:1488036. [PMID: 39525636 PMCID: PMC11543442 DOI: 10.3389/fphar.2024.1488036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Articular cartilage has limited self-healing ability, resulting in injuries often evolving into osteoarthritis (OA), which poses a significant challenge in the medical field. Although some treatments exist to reduce pain and damage, there is a lack of effective means to promote cartilage regeneration. Reactive Oxygen Species (ROS) have been found to increase significantly in the OA micro-environment. They play a key role in biological systems by participating in cell signaling and maintaining cellular homeostasis. Abnormal ROS expression, caused by internal and external stimuli and tissue damage, leads to elevated levels of oxidative stress, inflammatory responses, cell damage, and impaired tissue repair. To prevent excessive ROS accumulation at injury sites, biological materials can be engineered to respond to the damaged microenvironment, release active components in an orderly manner, regulate ROS levels, reduce oxidative stress, and promote tissue regeneration. Hydrogels have garnered significant attention due to their excellent biocompatibility, tunable physicochemical properties, and drug delivery capabilities. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. This paper discusses a comprehensive treatment strategy that combines antioxidant hydrogels with existing treatments for OA and explores the potential applications of antioxidant hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Feng He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Bin He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Zun Han
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Jiayi Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lei Huang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
5
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
6
|
Ding Q, Liu W, Zhang S, Sun S, Yang J, Zhang L, Wang N, Ma S, Chai G, Shen L, Gao Y, Ding C, Liu X. Hydrogel loaded with thiolated chitosan modified taxifolin liposome promotes osteoblast proliferation and regulates Wnt signaling pathway to repair rat skull defects. Carbohydr Polym 2024; 336:122115. [PMID: 38670750 DOI: 10.1016/j.carbpol.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agricultural University, Changchun 130118, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China.
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| |
Collapse
|
7
|
Sun Y, Sheng R, Cao Z, Liu C, Li J, Zhang P, Du Y, Mo Q, Yao Q, Chen J, Zhang W. Bioactive fiber-reinforced hydrogel to tailor cell microenvironment for structural and functional regeneration of myotendinous junction. SCIENCE ADVANCES 2024; 10:eadm7164. [PMID: 38657071 PMCID: PMC11042749 DOI: 10.1126/sciadv.adm7164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration. In a rat MTJ defect model, the bioactive fiber-reinforced hydrogel promoted the structural restoration of muscle, tendon, and muscle-tendon interface and enhanced the functional recovery of injured MTJ. In vivo proteomics and in vitro cell cultures elucidated the regenerative mechanisms of the bioactive fiber-reinforced hydrogel by modulating oxidative stress and inflammation, thus engineering an optimized microenvironment to support the survival and differentiation of transplanted MSCs and maintain the functional phenotype of resident cells within MTJ tissues, including tendon/muscle cells and macrophages. This strategy provides a promising treatment for MTJ injuries.
Collapse
Affiliation(s)
- Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yan Du
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| |
Collapse
|
8
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Shen J, Fu S, Liu X, Tian S, Liu D, Liu H. Fabrication of Low-Temperature Fast Gelation β-Cyclodextrin-Based Hydrogel-Loaded Medicine for Wound Dressings. Biomacromolecules 2024; 25:55-66. [PMID: 37878661 DOI: 10.1021/acs.biomac.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
β-Cyclodextrin (β-CD) is often used as a drug carrier for biomedical materials due to its unique cavity structure. Herein, β-CD was modified by acryloyl chloride and further copolymerized with N-isopropylacrylamide (NIPAM) and acrylic acid (AA) to obtain PNIPAM-co-β-CD-AC. The results showed that the critical phase transition temperature of PNIPAM/β-CD-AC could be controlled at 19 °C, and the fast sol-gel phase transition was realized in 2-10 s. The hydrophobic drug carried in this hydrogel can constantly be released for more than 6 days at pH values (pH 5.5-8), and the duration may match the recovery of the wound. As a dressing hydrogel, its rapid gel formation and inversion as well as shear-thinning behavior prevent secondary wound damage. The β-CD-based hydrogel also has good biocompatibility and antioxidant properties, which provide a good potential choice for wound dressings, especially for exposed wounds in winter.
Collapse
Affiliation(s)
- Juanli Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohong Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shenglong Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Wu M, Zheng K, Li W, He W, Qian C, Lin Z, Xiao H, Yang H, Xu Y, Wei M, Bai J, Geng D. Nature‐Inspired Strategies for the Treatment of Osteoarthritis. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202305603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage is devoid of nerves and blood vessels, and its nutrients must be obtained from the joint fluid; therefore, its ability to repair itself is limited. Manufactured materials such as artificial cartilage or synthetic materials are typically used in traditional approaches for knee cartilage repair. However, durability, postimplant rejection, and tissue incompatibility are the problems associated with these materials. In recent decades, tissue engineering and regenerative medicine have focused on the development of functional substitutes, particularly those based on naturally inspired biopolymers. This review focuses on sustainably produced biopolymers based on materials derived from natural sources. Furthermore, these materials have many advantages, including low antigenicity, biocompatibility, and degradability. Of course, there are also many challenges associated with natural materials, such as the lack of clinical studies and long‐term follow‐up data, unstable mechanical properties of the materials, and high demands placed on preparation and molding techniques. In this review, an overview of natural and nature‐inspired polymers that are the subject of research to date, as well as their structural designs and product performances is provided. This review provides scientific guidance for enhancing the development of naturally inspired materials for treating cartilage injuries.
Collapse
Affiliation(s)
- Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 140 Renmin South Road Suzhou Jiangsu 215400 China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
- National Center for Translational Medicine (Shanghai) SHU Branch Shanghai University Shanghai 215031 China
| | - Weiming He
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu 210004 China
| | - Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Minggang Wei
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| |
Collapse
|
11
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
12
|
Zhang W, Zha K, Hu W, Xiong Y, Knoedler S, Obed D, Panayi AC, Lin Z, Cao F, Mi B, Liu G. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration. Biomater Res 2023; 27:76. [PMID: 37542353 PMCID: PMC10403923 DOI: 10.1186/s40824-023-00411-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023] Open
Abstract
Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Doha Obed
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Adriana C Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071, Ludwigshafen/Rhine, Germany
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
13
|
Wang F, Zhang W, Qiao Y, Shi D, Hu L, Cheng J, Wu J, Zhao L, Li D, Shi W, Xie L, Zhou Q. ECM-Like Adhesive Hydrogel for the Regeneration of Large Corneal Stromal Defects. Adv Healthc Mater 2023; 12:e2300192. [PMID: 37097884 DOI: 10.1002/adhm.202300192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Indexed: 04/26/2023]
Abstract
The repair of large-diameter corneal stroma defects is a major clinical problem. Although some studies have attempted to use hydrogels to repair corneal damage, most of these hydrogels can only be used for focal stromal defects that are ≤3.5 mm in diameter due to poor hydrogel adhesion. Here, a photocurable adhesive hydrogel that mimics the extracellular matrix (ECM) with regard to composition for repairing 6 mm-diameter corneal stromal defects in rabbits is investigated. This ECM-like adhesive can be rapidly cured after light exposure, with high light transmittance and good mechanical properties. More importantly, this hydrogel maintains the viability and adhesion of cornea-derived cells and promotes their migration in vitro in 2D and 3D culture environments. Proteomics analysis confirms that the hydrogel promotes cell proliferation and ECM synthesis. Furthermore, in rabbit corneal stromal defect repair experiments, it is proven by histological and proteomic analysis that this hydrogel can effectively promote corneal stroma repair, reduce scar formation, and increase corneal stromal-neural regeneration at the six months follow-up. This work demonstrates the great application of ECM-like adhesive hydrogels for the regeneration of large-diameter corneal defects.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lizhi Hu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Jingyi Wu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Long Zhao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Donfang Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| |
Collapse
|
14
|
Sheng R, Liu J, Zhang W, Luo Y, Chen Z, Chi J, Mo Q, Wang M, Sun Y, Liu C, Zhang Y, Zhu Y, Kuang B, Yan C, Liu H, Backman LJ, Chen J. Material Stiffness in Cooperation with Macrophage Paracrine Signals Determines the Tenogenic Differentiation of Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206814. [PMID: 37097733 DOI: 10.1002/advs.202206814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/18/2023] [Indexed: 06/15/2023]
Abstract
Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Jia Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, P. R. China
| | - Yifan Luo
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Jiayu Chi
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Chuanquan Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yanan Zhang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yue Zhu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Chunguang Yan
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, SE-901 87, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, SE-901 87, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, P. R. China
| |
Collapse
|
15
|
Zhang P, Chen J, Sun Y, Cao Z, Zhang Y, Mo Q, Yao Q, Zhang W. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration. J Mater Chem B 2023; 11:1240-1261. [PMID: 36648128 DOI: 10.1039/d2tb02203f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osteochondral defect (OCD) regeneration remains a great challenge. Recently, multilayer scaffold simulating native osteochondral structures have aroused broad interest in osteochondral tissue engineering. Here, we developed a 3D multifunctional bi-layer scaffold composed of a kartogenin (KGN)-loaded GelMA hydrogel (GelMA/KGN) as an upper layer mimicking a cartilage-specific extracellular matrix and a hydroxyapatite (HA)-coated 3D printed polycaprolactone porous scaffold (PCL/HA) as a lower layer simulating subchondral bone. The bi-layer scaffolds were subsequently modified with tannic acid (TA) prime-coating and E7 peptide conjugation (PCL/HA-GelMA/KGN@TA/E7) to regulate endogenous stem cell behaviors and exert antioxidant activity for enhanced osteochondral regeneration. In vitro, the scaffolds could support cell attachment and proliferation, and enhance the chondrogenic and osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BMSCs) in a specific layer. Besides, the incorporation of TA/E7 significantly increased the biological activity of the bi-layer scaffolds including the pro-migratory effect, antioxidant activity, and the maintenance of cell viability against oxidative stress. In vivo, the developed bi-layer scaffolds enhanced the simultaneous regeneration of cartilage and subchondral bone when implanted into a rabbit OCD model through macroscopic, micro-CT, and histological evaluation. Taken together, these investigations demonstrated that the 3D multifunctional bi-layer scaffolds could provide a suitable microenvironment for endogenous stem cells, and promote in situ osteochondral regeneration, showing great potential for the clinical treatment of OCD.
Collapse
Affiliation(s)
- Po Zhang
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yuzhi Sun
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Digital Medicine Institute, Nanjing Medical University Nanjing Hospital, No. 68 Changle Road, Nanjing 210006, P. R. China. .,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China. .,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
16
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Ke X, Tang S, Wang H, Cai Y, Dong Z, Li M, Yang J, Xu X, Luo J, Li J. Natural Small Biological Molecule Based Supramolecular Bioadhesives with Innate Photothermal Antibacterial Capability for Nonpressing Hemostasis and Effective Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53546-53557. [PMID: 36399156 DOI: 10.1021/acsami.2c17415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bioadhesives with immediate wound closure, efficient hemostasis, and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Natural small biological molecule based bioadhesives hold great promise for manipulating wound healing by taking advantage of integrated functionalities, synthetic simplification, and accuracy, cost efficiency and biosafety. Herein, a natural small biological molecule based bioadhesive, composed of natural small biological molecules (α-lipoic acid and tannic acid) and a small amount of ferric chloride, was prepared via an extremely simple and green route for wound management. In this system, covalent and noncovalent interactions between each component resulted in the self-healing supramolecular bioadhesive. It possessed appropriate wet-tissue adhesion, efficient nonpressing hemostasis and free radical scavenging abilities. More importantly, the interaction between tannic acid and Fe3+ endowed the bioadhesive with innate and steady photothermal activity, which showed excellent photothermal bactericidal activity to both E. coli and S. aureus. The bioadhesive promoted wound healing for linear and circular wounds in vivo, especially for infectious wounds under near-infrared (NIR) irradiation. This bioadhesive will have promising value as a safe and effective antimicrobial adhesive for infectious wound management.
Collapse
Affiliation(s)
- Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, P.R. China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Yusong Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Med-X Center for Materials, Sichuan University, Chengdu610065, P.R. China
| |
Collapse
|
18
|
Zhang H, Xu D, Zhang Y, Li M, Chai R. Silk fibroin hydrogels for biomedical applications. SMART MEDICINE 2022; 1:e20220011. [PMID: 39188746 PMCID: PMC11235963 DOI: 10.1002/smmd.20220011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 08/28/2024]
Abstract
Silk fibroin hydrogels occupy an essential position in the biomedical field due to their remarkable biological properties, excellent mechanical properties, flexible processing properties, as well as abundant sources and low cost. Herein, we introduce the unique structures and physicochemical characteristics of silk fibroin, including mechanical properties, biocompatibility, and biodegradability. Then, various preparation strategies of silk fibroin hydrogels are summarized, which can be divided into physical cross-linking and chemical cross-linking. Emphatically, the applications of silk fibroin hydrogel biomaterials in various biomedical fields, including tissue engineering, drug delivery, and wearable sensors, are systematically summarized. At last, the challenges and future prospects of silk fibroin hydrogels in biomedical applications are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yong Zhang
- School of PhysicsSoutheast UniversityNanjingChina
| | - Minli Li
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otorhinolaryngology‐Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Yin SY, Hu Y, Zheng J, Li J, Yang R. Tannic Acid-Assisted Biomineralization Strategy for Encapsulation and Intracellular Delivery of Protein Drugs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50583-50591. [PMID: 36322919 DOI: 10.1021/acsami.2c15205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein therapy has been considered to be one of the most direct and safe ways to regulate cell function and treat tumors. However, safe and effective intracellular delivery of protein drugs is still a key challenge. Herein, we developed a tannic acid-assisted biomineralization strategy for the encapsulation and intracellular delivery of protein drugs. RNase A and glucose oxidase (GOD) were choose as the protein drug model. RNase A, GOD, TA, and Mn2+ are mixed in one pot to attain RG@MT, and CaCO3 coating is subsequently carried out to construct RG@MT@C through biomineralization. Once RG@MT@C is endocytosed, the acidic environment of the lysosome will dissolve the protective layer of CaCO3 and produce plenty of CO2 to cause lysosome bursting, ensuring the lysosome escape of the RG@MT@C and thus releasing the generated TA-Mn2+, RNase A, and GOD into the cytoplasm. The released substances would activate starvation therapy, chemodynamic therapy, and protein therapy pathways to ensure a high performance of cancer therapy. Due to simple preparation, low toxicity, and controlled release in the tumor microenvironment, we expect it can realize efficient and nondestructive delivery of protein drugs and meet the needs for precise, high performance of synergistically antitumor therapy in biomedical applications.
Collapse
Affiliation(s)
- Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Sheng R, Chen J, Wang H, Luo Y, Liu J, Chen Z, Mo Q, Chi J, Ling C, Tan X, Yao Q, Zhang W. Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Adv Healthc Mater 2022; 11:e2200602. [PMID: 35749970 DOI: 10.1002/adhm.202200602] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Osteochondral defects are characterized by injuries to both cartilage and subchondral bone, which is a result of trauma, inflammation, or inappropriate loading. Due to the unique biological properties of subchondral bone and cartilage, developing a tissue engineering scaffold that can promote dual-lineage regeneration of cartilage and bone simultaneously remains a great challenge. In this study, a microporous nanosilicate-reinforced enzymatically crosslinked silk fibroin (SF) hydrogel is fabricated by introducing montmorillonite (MMT) nanoparticles via intercalation chemistry. In vitro studies show that SF-MMT nanocomposite hydrogel has improved mechanical properties and hydrophilicity, as well as the bioactivities to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and maintain chondrocyte phenotype compared with SF hydrogel. Global proteomic analysis verifies the dual-lineage bioactivities of SF-MMT nanocomposite hydrogel, which are probably regulated by multiple signaling pathways. Furthermore, it is observed that the biophysical interaction of cells and SF-MMT nanocomposite hydrogel is partially mediated by clathrin-mediated endocytosis and its downstream processes. In vivo, the SF-MMT nanocomposite hydrogel effectively promotes osteochondral regeneration as evidenced by macroscopic, micro-CT, and histological evaluation. In conclusion, a functionalized SF-MMT nanocomposite hydrogel is developed with dual-lineage bioactivity for osteochondral regeneration, indicating its potential in osteochondral tissue engineering.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yifan Luo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jiayu Chi
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin Tan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qingqiang Yao
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China.,Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
21
|
Yao X, Zou S, Fan S, Niu Q, Zhang Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio 2022; 16:100381. [PMID: 36017107 PMCID: PMC9395666 DOI: 10.1016/j.mtbio.2022.100381] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022]
Abstract
Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.
Collapse
|