1
|
Lou L, Rubfiaro AS, Deng V, He J, Thomas T, Roy M, Dickerson D, Agarwal A. Harnessing 3D Printing and Electrospinning for Multiscale Hybrid Patches Mimicking the Native Myocardium. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37596-37612. [PMID: 38991102 DOI: 10.1021/acsami.4c06505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Engineered cardiac tissues show potential for regenerative therapy in ischemic heart disease. Yet, selection of soft biomaterials for scaffold manufacturing is primarily influenced by empirical and compositional factors, raising concerns about arrhythmic risks due to poor electrophysiological integration. Addressing this, we developed multiscale hybrid myocardial patches mimicking native myocardium's structural and biomechanical attributes, utilizing 3D printing and electrospinning techniques. We compared three patch types: pure silicone and silicone-poly(lactic-co-glycolic acid) (PLGA) with random (S-PLGA-R) and aligned (S-PLGA-A) fibers. S-PLGA-A patches with fiber orientation angles of 95-115° are achieved by applying a secondary electrical field using two parallel aluminum enhancers. With bulk and localized moduli of 350-750 and 13-20 kPa resembling the native myocardium, S-PLGA-A patches demonstrate a sarcomere length of 2.1 ± 0.2 μm, ≥50% higher strain motions and diastolic phase, and a 50-70% slower rise of calcium handling compared to the other two patches. This enhanced maturation and improved synchronization phenomena are attributed to efficient force transmission and reduced stress concentration due to mechanical similarity and linear propagation of electrical signals. This study presents a promising strategy for advancing regenerative cardiac therapies by harnessing the capabilities of 3D printing and electrospinning, providing a proof-of-concept for their effectiveness.
Collapse
Affiliation(s)
- Lihua Lou
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Alberto Sesena Rubfiaro
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Victor Deng
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Tony Thomas
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Mukesh Roy
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Darryl Dickerson
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| | - Arvind Agarwal
- Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
2
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
3
|
Aljassam Y, Caputo M, Biglino G. Surgical Patching in Congenital Heart Disease: The Role of Imaging and Modelling. Life (Basel) 2023; 13:2295. [PMID: 38137896 PMCID: PMC10745019 DOI: 10.3390/life13122295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
In congenital heart disease, patches are not tailored to patient-specific anatomies, leading to shape mismatch with likely functional implications. The design of patches through imaging and modelling may be beneficial, as it could improve clinical outcomes and reduce the costs associated with redo procedures. Whilst attention has been paid to the material of the patches used in congenital surgery, this review outlines the current knowledge on this subject and isolated experimental work that uses modelling and imaging-derived information (including 3D printing) to inform the design of the surgical patch.
Collapse
Affiliation(s)
- Yousef Aljassam
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK;
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK;
- Cardiac Surgery, University Hospitals Bristol & Weston, NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK;
| |
Collapse
|
4
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Integration of 3D Printing-Coelectrospinning: Concept Shifting in Biomedical Applications. ACS OMEGA 2023; 8:28002-28025. [PMID: 37576662 PMCID: PMC10413848 DOI: 10.1021/acsomega.3c03920] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Porous structures with sizes between the submicrometer and nanometer scales can be produced using efficient and adaptable electrospinning technology. However, to approximate desirable structures, the construction lacks mechanical sophistication and conformance and requires three-dimensional solitary or multifunctional structures. The diversity of high-performance polymers and blends has enabled the creation of several porous structural conformations for applications in advanced materials science, particularly in biomedicine. Two promising technologies can be combined, such as electrospinning with 3D printing or additive manufacturing, thereby providing a straightforward yet flexible technique for digitally controlled shape-morphing fabrication. The hierarchical integration of configurations is used to imprint complex shapes and patterns onto mesostructured, stimulus-responsive electrospun fabrics. This technique controls the internal stresses caused by the swelling/contraction mismatch in the in-plane and interlayer regions, which, in turn, controls the morphological characteristics of the electrospun membranes. Major innovations in 3D printing, along with additive manufacturing, have led to the production of materials and scaffold systems for tactile and wearable sensors, filtration structures, sensors for structural health monitoring, tissue engineering, biomedical scaffolds, and optical patterning. This review discusses the synergy between 3D printing and electrospinning as a constituent of specific microfabrication methods for quick structural prototypes that are expected to advance into next-generation constructs. Furthermore, individual techniques, their process parameters, and how the fabricated novel structures are applied holistically in the biomedical field have never been discussed in the literature. In summary, this review offers novel insights into the use of electrospinning and 3D printing as well as their integration for cutting-edge applications in the biomedical field.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department
of Polymer Science and Technology, University
of Calcutta, Kolkata 700009, India
| | - Jonathan Tersur Orasugh
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Dipankar Chattopadhyay
- Department
of Polymer Science and Technology, University
of Calcutta, Kolkata 700009, India
- Center
for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra
Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700098, India
| |
Collapse
|
6
|
Zhang M, An H, Wan T, Jiang HR, Yang M, Wen YQ, Zhang PX. Micron track chitosan conduit fabricated by 3D-printed model topography provides bionic microenvironment for peripheral nerve regeneration. Int J Bioprint 2023; 9:770. [PMID: 37608847 PMCID: PMC10339431 DOI: 10.18063/ijb.770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 08/24/2023] Open
Abstract
The micron track conduit (MTC) and nerve factor provide a physical and biological model for simulating peripheral nerve growth and have potential applications for nerve injury. However, it has rarely been reported that they synergize on peripheral nerves. In this study, we used bioderived chitosan as a substrate to design and construct a neural repair conduit with micron track topography using threedimensional (3D) printing topography. We loaded the MTC with neurotrophin-3 (NT-3) to promote the regeneration of sensory and sympathetic neurons in the peripheral nervous system. We found that the MTC@NT3 composite nerve conduit mimicked the microenvironment of peripheral nerves and promoted axonal regeneration while inducing the targeted growth of Schwann cells, which would promote functional recovery in rats with peripheral nerve injury. Artificial nerve implants with functional properties can be developed using the strategy presented in this study.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Ming Yang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
7
|
Li G, Lei C, Shan X, Ni X, Chen G, Wang M, Ke R, Wang B. Construction of a vascularized fascia-prosthesis compound model with axial pedicle for ear reconstruction surgery. Front Bioeng Biotechnol 2023; 11:1126269. [PMID: 37292096 PMCID: PMC10244754 DOI: 10.3389/fbioe.2023.1126269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Background: To design a vascular pedicled fascia-prosthesis compound model that can be used for ear reconstruction surgery. Methods: A vascularized tissue engineering chamber model was constructed in New Zealand rabbits, and fresh tissues were obtained after 4 weeks. The histomorphology and vascularization of the newly born tissue compound were analyzed and evaluated by tissue staining and Micro-CT scanning. Results: The neoplastic fibrous tissue formed in the vascularized tissue engineering chamber with the introduction of abdominal superficial vessels, similar to normal fascia, was superior to the control group in terms of vascularization, vascular density, total vascular volume, and total vascular volume/total tissue volume. Conclusion: In vivo, introducing abdominal superficial vessels in the tissue engineering chamber prepped for ear prosthesis may form a well-vascularized pedicled fascia-prosthesis compound that can be used for ear reconstruction.
Collapse
Affiliation(s)
- Guanmin Li
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chen Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guojie Chen
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meishui Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Plastic and Wound Repair Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Lu T, Xia B, Chen G. Advances in polymer-based cell encapsulation and its applications in tissue repair. Biotechnol Prog 2023; 39:e3325. [PMID: 36651921 DOI: 10.1002/btpr.3325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.
Collapse
Affiliation(s)
- Tangfang Lu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| |
Collapse
|