1
|
Chiticaru EA, Ioniță M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: A comprehensive review. Mater Today Bio 2024; 29:101341. [PMID: 39649248 PMCID: PMC11625167 DOI: 10.1016/j.mtbio.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Bioprinting and bioinks are two of the game changers in bone tissue engineering. This review presents different bioprinting technologies including extrusion-based, inkjet-based, laser-assisted, light-based, and hybrid technologies with their own strengths and weaknesses. This review will aid researchers in the selection and assessment of the bioink; the discussion ranges from commercially available bioinks to custom lab-made formulations mainly based on natural polymers, such as agarose, alginate, gelatin, collagen, and chitosan, designed for bone tissue engineering. The review is centered on technological advancements and increasing clinical demand within the rapidly growing bioprinting market. From this point of view, 4D, 5D, and 6D printing technologies promise a future where unprecedented levels of innovation will be involved in fabrication processes leading to more dynamic multifunctionalities of bioprinted constructs. Further advances in bioprinting technology, such as hybrid bioprinting methods are covered, with the promise to meet personalized medicine goals while advancing patient outcomes for bone tissues engineering applications.
Collapse
Affiliation(s)
- Elena Alina Chiticaru
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
| |
Collapse
|
2
|
Tan J, Chen Z, Xu Z, Huang Y, Qin L, Long Y, Wu J, Yang H, Chen X, Yi W, Hang R, Guan M, Wang H, Gao A, Yang D. Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment. J Mater Chem B 2024; 12:9375-9389. [PMID: 39189426 DOI: 10.1039/d4tb00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide-co-glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM). The decoration of SIS on the 3D-printed PLGA/HA/ICA scaffold not only improves the mechanical and degradative performance, but also extends the release of ICA from the scaffold. Both in vitro and in vivo studies demonstrate that this functionalized scaffold mitigates the persistent inflammatory conditions characteristic of diabetic bone defects through inducing macrophages towards the M2 phenotype. Additionally, the scaffold promotes angiogenesis by enhancing the migration and tube formation of vascular cells. Furthermore, the synergistic effects of ICA and SIS with the HA scaffolds contribute to the superior osteogenic induction capabilities. This functionalization approach holds significant promise in advancing the treatment of bone defects within the diabetic population, paving a step forward in the application of polymer-based 3D printing technologies in regenerative medicine.
Collapse
Affiliation(s)
- Jie Tan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
- Orthopaedic department, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Zecai Chen
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zhen Xu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Yafang Huang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Lei Qin
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Yufeng Long
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Jiayi Wu
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Hantao Yang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Xuandu Chen
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Weihong Yi
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Dazhi Yang
- Department of Spine Surgery & Innovative Laboratory of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
3
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Liang Z, Li J, Lin H, Zhang S, Liu F, Rao Z, Chen J, Feng Y, Zhang K, Quan D, Lin Z, Bai Y, Huang Q. Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration. Acta Biomater 2024; 181:202-221. [PMID: 38692468 DOI: 10.1016/j.actbio.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.
Collapse
Affiliation(s)
- Zelin Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Junda Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hongkun Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Fan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuwen Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kexin Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qiting Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
5
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
6
|
Kara Özenler A, Distler T, Akkineni AR, Tihminlioglu F, Gelinsky M, Boccaccini AR. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles. Biofabrication 2024; 16:025027. [PMID: 38394672 DOI: 10.1088/1758-5090/ad2c98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
One of the key challenges in biofabrication applications is to obtain bioinks that provide a balance between printability, shape fidelity, cell viability, and tissue maturation. Decellularization methods allow the extraction of natural extracellular matrix, preserving tissue-specific matrix proteins. However, the critical challenge in bone decellularization is to preserve both organic (collagen, proteoglycans) and inorganic components (hydroxyapatite) to maintain the natural composition and functionality of bone. Besides, there is a need to investigate the effects of decellularized bone (DB) particles as a tissue-based additive in bioink formulation to develop functional bioinks. Here we evaluated the effect of incorporating DB particles of different sizes (≤45 and ≤100μm) and concentrations (1%, 5%, 10% (wt %)) into bioink formulations containing gelatin (GEL) and pre-osteoblasts (MC3T3-E1) or human mesenchymal stem cells (hTERT-MSCs). In addition, we propose a minimalistic bioink formulation using GEL, DB particles and cells with an easy preparation process resulting in a high cell viability. The printability properties of the inks were evaluated. Additionally, rheological properties were determined with shear thinning and thixotropy tests. The bioprinted constructs were cultured for 28 days. The viability, proliferation, and osteogenic differentiation capacity of cells were evaluated using biochemical assays and fluorescence microscopy. The incorporation of DB particles enhanced cell proliferation and osteogenic differentiation capacity which might be due to the natural collagen and hydroxyapatite content of DB particles. Alkaline phosphatase activity is increased significantly by using DB particles, notably, without an osteogenic induction of the cells. Moreover, fluorescence images display pronounced cell-material interaction and cell attachment inside the constructs. With these promising results, the present minimalistic bioink formulation is envisioned as a potential candidate for bone tissue engineering as a clinically translatable material with straightforward preparation and high cell activity.
Collapse
Affiliation(s)
- Aylin Kara Özenler
- İzmir Institute of Technology, Department of Bioengineering, İzmir 35433, Turkey
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, Dresden, 01307, Germany
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, Dresden, 01307, Germany
| | - Funda Tihminlioglu
- İzmir Institute of Technology, Department of Chemical Engineering, İzmir 35433, Turkey
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, Dresden, 01307, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
7
|
Khan AR, Grewal NS, Jun Z, Tawfiq FMO, Tchier F, Muhammad Zulqarnain R, Zhang HJ. Raising the Bar: Progress in 3D-Printed Hybrid Bone Scaffolds for Clinical Applications: A Review. Cell Transplant 2024; 33:9636897241273562. [PMID: 39517106 PMCID: PMC11549696 DOI: 10.1177/09636897241273562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Damage to bones resulting from trauma and tumors poses a significant challenge to human health. Consequently, current research in bone damage healing centers on developing three-dimensional (3D) scaffolding materials that facilitate and enhance the regeneration of fractured bone tissues. In this context, the careful selection of materials and preparation processes is essential for creating demanding scaffolds for bone tissue engineering. This is done to optimize the regeneration of fractured bones. This study comprehensively analyses the latest scientific advancements and difficulties in developing scaffolds for bone tissue creation. Initially, we clarified the composition and process by which bone tissue repairs itself. The review summarizes the primary uses of materials, both inorganic and organic, in scaffolds for bone tissue engineering. In addition, we present a comprehensive study of the most recent advancements in the mainstream techniques used to prepare scaffolds for bone tissue engineering. We also examine the distinct advantages of each method in great detail. This article thoroughly examines potential paths and obstacles in bone tissue engineering scaffolds for clinical applications.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, China
| | - Navdeep Singh Grewal
- Department of Mechanical Engineering, Guru Kashi University, Talwandi Sabo, India
| | - Zhang Jun
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ferdous M. O. Tawfiq
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fairouz Tchier
- Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hai-Jun Zhang
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, China
| |
Collapse
|
8
|
Di Gravina GM, Bari E, Croce S, Scocozza F, Pisani S, Conti B, Avanzini MA, Auricchio F, Cobianchi L, Torre ML, Conti M. Design and development of a hepatic lyo-dECM powder as a biomimetic component for 3D-printable hybrid hydrogels. Biomed Mater 2023; 19:015005. [PMID: 37992318 DOI: 10.1088/1748-605x/ad0ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Bioprinting offers new opportunities to obtain reliable 3Din vitromodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels. To this aim, the powder was first characterized in terms of cytocompatibility on human and porcine mesenchymal stem cells (MSCs), and the optimal powder concentration (i.e. 3.75 mg ml-1) to use in the hydrogel formulation was identified. Moreover, its non-immunogenicity and capacity to reactivate the elastase enzyme potency was proved. Afterward, as a proof-of-concept, the powder was added to a sodium alginate/gelatin blend, and the so-defined multi-component hydrogel was studied from a rheological point of view, demonstrating that adding the lyo-dECM powder at the selected concentration did not alter the viscoelastic properties of the original material. Then, a printing assessment was performed with the support of computational simulations, which were useful to definea priorithe hydrogel printing parameters as window of printability and its post-printing mechanical collapse. Finally, the proposed multi-component hydrogel was bioprinted with cells inside, and its post-printing cell viability for up to 7 d was successfully demonstrated.
Collapse
Affiliation(s)
- Giulia M Di Gravina
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stefania Croce
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Silvia Pisani
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Maria A Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- PharmaExceed s.r.l., Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
10
|
Jahangir S, Vecstaudza J, Augurio A, Canciani E, Stipniece L, Locs J, Alini M, Serra T. Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7214. [PMID: 38005143 PMCID: PMC10673417 DOI: 10.3390/ma16227214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Osteochondral (OC) disorders such as osteoarthritis (OA) damage joint cartilage and subchondral bone tissue. To understand the disease, facilitate drug screening, and advance therapeutic development, in vitro models of OC tissue are essential. This study aims to create a bioprinted OC miniature construct that replicates the cartilage and bone compartments. For this purpose, two hydrogels were selected: one composed of gelatin methacrylate (GelMA) blended with nanosized hydroxyapatite (nHAp) and the other consisting of tyramine-modified hyaluronic acid (THA) to mimic bone and cartilage tissue, respectively. We characterized these hydrogels using rheological testing and assessed their cytotoxicity with live-dead assays. Subsequently, human osteoblasts (hOBs) were encapsulated in GelMA-nHAp, while micropellet chondrocytes were incorporated into THA hydrogels for bioprinting the osteochondral construct. After one week of culture, successful OC tissue generation was confirmed through RT-PCR and histology. Notably, GelMA/nHAp hydrogels exhibited a significantly higher storage modulus (G') compared to GelMA alone. Rheological temperature sweeps and printing tests determined an optimal printing temperature of 20 °C, which remained unaffected by the addition of nHAp. Cell encapsulation did not alter the storage modulus, as demonstrated by amplitude sweep tests, in either GelMA/nHAp or THA hydrogels. Cell viability assays using Ca-AM and EthD-1 staining revealed high cell viability in both GelMA/nHAp and THA hydrogels. Furthermore, RT-PCR and histological analysis confirmed the maintenance of osteogenic and chondrogenic properties in GelMA/nHAp and THA hydrogels, respectively. In conclusion, we have developed GelMA-nHAp and THA hydrogels to simulate bone and cartilage components, optimized 3D printing parameters, and ensured cell viability for bioprinting OC constructs.
Collapse
Affiliation(s)
- Shahrbanoo Jahangir
- AO Research Institute Davos, 7270 Davos, Switzerland; (S.J.); (A.A.); (M.A.)
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia; (J.V.); (L.S.)
- Baltic Biomaterials Centre of Excellence Headquarters, LV-1007 Riga, Latvia
| | - Adriana Augurio
- AO Research Institute Davos, 7270 Davos, Switzerland; (S.J.); (A.A.); (M.A.)
| | - Elena Canciani
- Department of Health Sciences, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy;
| | - Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia; (J.V.); (L.S.)
- Baltic Biomaterials Centre of Excellence Headquarters, LV-1007 Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia; (J.V.); (L.S.)
- Baltic Biomaterials Centre of Excellence Headquarters, LV-1007 Riga, Latvia
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos, Switzerland; (S.J.); (A.A.); (M.A.)
| | - Tiziano Serra
- AO Research Institute Davos, 7270 Davos, Switzerland; (S.J.); (A.A.); (M.A.)
| |
Collapse
|
11
|
Brito-Pereira R, Martins P, Lanceros-Mendez S, Ribeiro C. Polymer-based magnetoelectric scaffolds for wireless bone repair: The fillers’ effect on extracellular microenvironments. COMPOSITES SCIENCE AND TECHNOLOGY 2023; 243:110263. [DOI: 10.1016/j.compscitech.2023.110263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Data K, Kulus M, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Decellularization of Dense Regular Connective Tissue-Cellular and Molecular Modification with Applications in Regenerative Medicine. Cells 2023; 12:2293. [PMID: 37759515 PMCID: PMC10528602 DOI: 10.3390/cells12182293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
13
|
Bui HT, Cho W, Park JK, Lee MS, Kim HK, Yoo HS. Korean Amberjack Skin-Inspired Hyaluronic Acid Bioink for Reconstruction of Human Skin. ACS OMEGA 2023; 8:22752-22761. [PMID: 37396224 PMCID: PMC10308565 DOI: 10.1021/acsomega.3c01642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Decellularized extracellular matrix (dECM) has been extensively employed as tissue engineering scaffolds because its components can greatly enhance the migration and proliferation of cultivating cells. In this study, we decellularized Korean amberjack skin and incorporated soluble fractions in hyaluronic acid hydrogels with 3D-printed tissue engineering hydrogels to overcome any limitation of animal-derived dECM. The hydrolyzed fish-dECM was mixed with methacrylated hyaluronic acid and chemically crosslinked to 3D-printed fish-dECM hydrogels, where fish-dECM contents affected both printability and injectability of the hydrogels. Swelling ratios and mass erosion of the 3D-printed hydrogels were dependent on fish-dECM contents, where higher fish-dECM in the hydrogel increased swelling ratios and mass erosion rates. The higher content of fish-dECM considerably enhanced the viability of the incorporated cells in the matrix for 7 days. Artificial human skin was constructed by seeding human dermal fibroblasts and keratinocytes in the 3D-printed hydrogels, and a formation of a bilayered skin was visualized with tissue staining. Thus, we envision that 3D-printed hydrogels containing fish-dECM can be an alternative bioink composed of a non-mammal-derived matrix.
Collapse
Affiliation(s)
- Hoai-Thuong
Duc Bui
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic
of Korea
| | - Wanho Cho
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic
of Korea
| | - Jae Keun Park
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic
of Korea
| | - Moon Sue Lee
- R&D
center, InnoTherapy Inc., Seoul 07282, Republic of Korea
| | - Hong Kee Kim
- R&D
center, InnoTherapy Inc., Seoul 07282, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic
of Korea
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic
of Korea
- lnstitute
of Bioscience & Biotechnology, Kangwon
National University, Chuncheon 24341, Republic
of Korea
- lnstitute
of Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic
of Korea
| |
Collapse
|
14
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
15
|
Mikhailov OV. Gelatin as It Is: History and Modernity. Int J Mol Sci 2023; 24:ijms24043583. [PMID: 36834993 PMCID: PMC9963746 DOI: 10.3390/ijms24043583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The data concerning the synthesis and physicochemical characteristics of one of the practically important proteins-gelatin, as well as the possibilities of its practical application, are systematized and discussed. When considering the latter, emphasis is placed on the use of gelatin in those areas of science and technology that are associated with the specifics of the spatial/molecular structure of this high-molecular compound, namely, as a binder for the silver halide photographic process, immobilized matrix systems with a nano-level organization of an immobilized substance, matrices for creating pharmaceutical/dosage forms and protein-based nanosystems. It was concluded that the use of this protein is promising in the future.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
16
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
17
|
Gharacheh H, Guvendiren M. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Polymers (Basel) 2022; 14:polym14183788. [PMID: 36145933 PMCID: PMC9503810 DOI: 10.3390/polym14183788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.
Collapse
Affiliation(s)
- Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence:
| |
Collapse
|