1
|
Saadh MJ, Al-Rihaymee AMA, Kaur M, Kumar A, Mutee AF, Ismaeel GL, Shomurotova S, Alubiady MHS, Hamzah HF, Alhassan ZAA, Alazzawi TS, Muzammil K, Alhadrawi M. Advancements in Exosome Proteins for Breast Cancer Diagnosis and Detection: With a Focus on Nanotechnology. AAPS PharmSciTech 2024; 25:276. [PMID: 39604642 DOI: 10.1208/s12249-024-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer, a leading cause of mortality among women, has been recognized as requiring improved diagnostic methods. Exosome proteins, found in small extracellular vesicles, have emerged as a promising solution, reflecting the state of their cell of origin and playing key roles in cancer progression. This review examines their potential in breast cancer diagnosis, discussing advanced isolation and characterization techniques such as ultracentrifugation and microfluidic-based approaches. Various detection methods-including electrochemical, nano-based, optical, and machine learning platforms-were evaluated for their high sensitivity, specificity, and non-invasive capabilities. Electrochemical methods were used to identify unique protein signatures for rapid, cost-effective diagnosis, while machine learning enhanced the classification of exosome proteins. Nano-based techniques leveraged nanomaterials to detect low-abundance proteins, and optical methods offered real-time, label-free monitoring. Despite their promise, challenges in standardizing protocols and integrating these diagnostics into clinical practice remain. Future directions include technological advancements, personalized medicine, and exploring the therapeutic potential of exosome proteins.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Afrah Majeed Ahmed Al-Rihaymee
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami, Bunyodkor street 27, Tashkent, Uzbekistan
| | | | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Tuqa S Alazzawi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Zeng YB, Deng X, Shen LS, Yang Y, Zhou X, Ye L, Chen S, Yang DJ, Chen GQ. Advances in plant-derived extracellular vesicles: isolation, composition, and biological functions. Food Funct 2024; 15:11319-11341. [PMID: 39523827 DOI: 10.1039/d4fo04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plant-derived extracellular vesicles (PDEVs) are nanoscale vesicles released from plant cells into the extracellular space. While similar in structure and function to mammalian-derived EVs, PDEVs are unique due to their origin and the specific metabolites they carry. PDEVs have gained significant attention in recent years, with numerous reports isolating different PDEVs from various plants, each exhibiting diverse biological functions. However, the field is still in its early stages, and many issues need further exploration. To better develop and utilize PDEVs, it is essential to have a comprehensive understanding of their characteristics. This review provides an overview of recent advances in PDEV research. It focuses on the methods and techniques for isolating and purifying PDEVs, comparing their respective advantages, limitations, and application scenarios. Furthermore, we discuss the latest discoveries regarding the composition of PDEVs, including lipids, proteins, nucleic acids, and various plant metabolites. Additionally, we detail advanced studies on the multiple biological functions of PDEVs. Our goal is to advance our understanding of PDEVs and encourage further exploration in PDEV-based science and technology, offering insights into their potential applications for human health.
Collapse
Affiliation(s)
- Yao-Bo Zeng
- Department of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 402760, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xun Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Xing Zhou
- Department of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| |
Collapse
|
3
|
Zhu L, Xu Z, Gao Y, Sun N, Qiu L, Zhao J. Highly Sensitive Detection of Tumor Cell-Derived Exosomes Using Solid-State Nanopores Assisted with a Slight Salt Gradient. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49218-49226. [PMID: 39240779 DOI: 10.1021/acsami.4c14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
As an important biomarker, tumor cell-derived exosomes have substantial application prospects in early cancer screening and diagnosis. However, the unsatisfactory sensitivity and complicated sample pretreatment processes of conventional detection approaches have limited their use in clinical diagnosis. Nanopore sensors, as a highly sensitive, label-free, single-molecule technology, are widely utilized in molecule and bioparticle detection. Nevertheless, the exosome capture rate through nanopores is extremely low due to the low surface charge densities of exosomes and the effects of electrolyte concentration on their structural stability, thereby reducing the detection throughput. Here, we report an approach to improve the capture rate of exosome translocations using silicon nitride (SiNx) nanopores assisted by a slight salt electrolyte gradient. Improvements in exosome translocation event frequency are assessed in electrolyte solutions with different concentration gradients. In the case of asymmetric electrolytes (cis1× PBS and trans0.2 M NaCl, 1× PBS), the event frequency of tumor cell (HepG2)-derived exosome translocations is enhanced by nearly 2 orders of magnitude while maintaining vesicle structure stability. Furthermore, benefiting from the salt gradient effect, tumor cell (AsPC-1 and HCT116)-derived exosome translocations could be discriminated from those of HepG2 cell-derived exosomes. The developed highly sensitive detection method for tumor cell-derived exosomes at the single-particle level provides an approach for early cancer diagnosis.
Collapse
Affiliation(s)
- Libo Zhu
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Zhengyuan Xu
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Na Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Qiu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jinsong Zhao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
4
|
Jassi C, kuo WW, Kuo CH, Chang CM, Chen MC, Shih TC, Li CC, Huang CY. Mediation of radiation-induced bystander effect and epigenetic modification: The role of exosomes in cancer radioresistance. Heliyon 2024; 10:e34460. [PMID: 39114003 PMCID: PMC11304029 DOI: 10.1016/j.heliyon.2024.e34460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Wei-Wen kuo
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging & Radiological Science College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
5
|
Mou X, Peng Z, Yin T, Sun X. Non-endoscopic Screening for Esophageal Squamous Cell Carcinoma: Recent Advances. J Gastrointest Cancer 2024; 55:118-128. [PMID: 37924487 DOI: 10.1007/s12029-023-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common tumors in the gastrointestinal tract, and China has a high incidence area with a high burden on the disease. As early symptoms of ESCC are not obvious, the mortality rate is high, and it is often diagnosed in the intermediate and advanced stages. However, early screening and treatment may reduce morbidity and mortality. METHODS Screening methods are divided into endoscopic and non-endoscopic screening. RESULTS Endoscopic screening cannot be widely used because of its invasive nature and high cost. Currently, non-endoscopic screening consists primarily of tumor biomarkers and cytology, and tumor biomarkers including autoantibodies, circulating tumor cells, circulating tumor DNA, exosomes and serum metabolomics are more likely to be effective. But the efficiency of early diagnosis of esophageal cancer is low and the accuracy of screening needs to be improved. The aim of this study is to summarize advances in non-endoscopic esophageal cancer screening and strategies to provide a scientific basis and research idea for esophageal cancer prevention and control. CONCLUSIONS Non-endoscopic screening is better than endoscopic screening. And the application of tumor biomarkers is much better than other non-endoscopic screening methods.
Collapse
Affiliation(s)
- Xiao Mou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhenglin Peng
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Yin
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingwang Sun
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Qian X, Meng QH. Circulating lung cancer biomarkers: From translational research to clinical practice. Tumour Biol 2024; 46:S27-S33. [PMID: 37927289 DOI: 10.3233/tub-230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Fundamental studies on biomarkers as well as developed assays for their detection can provide valuable information facilitating clinical decisions. For patients with lung cancer, there are established circulating biomarkers such as serum progastrin-releasing peptide (ProGRP), neuron-specific enolase (NSE), squamous cell carcinoma antigen (SCC-Ag), carcinoembryonic antigen (CEA), and cytokeratin-19 fragment (CYFRA21-1). There are also molecular biomarkers for targeted therapy such as epidermal growth factor receptor (EGFR) gene, anaplastic lymphoma kinase (ALK) gene, KRAS gene, and BRAF gene. However, there is still an unmet need for biomarkers that can be used for early detection and predict treatment response and survival. In this review, we describe the lung cancer biomarkers that are currently being used in clinical practice. We also discuss emerging preclinical and clinical studies on new biomarkers such as omics-based biomarkers for their potential clinical use to detect, predict, or monitor subtypes of lung cancer. Additionally, between-method differences in tumor markers warrant further development and improvement of the standardization and harmonization for each assay.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Qing-He Meng
- Department of Laboratory Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Kim YG, Park J, Park EY, Kim SM, Lee SY. Analysis of MicroRNA Signature Differentially Expressed in Pancreatic Islet Cells Treated with Pancreatic Cancer-Derived Exosomes. Int J Mol Sci 2023; 24:14301. [PMID: 37762604 PMCID: PMC10532014 DOI: 10.3390/ijms241814301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Since the majority of patients with pancreatic cancer (PC) develop insulin resistance and/or diabetes mellitus (DM) prior to PC diagnosis, PC-induced diabetes mellitus (PC-DM) has been a focus for a potential platform for PC detection. In previous studies, the PC-derived exosomes were shown to contain the mediators of PC-DM. In the present study, the response of normal pancreatic islet cells to the PC-derived exosomes was investigated to determine the potential biomarkers for PC-DM, and consequently, for PC. Specifically, changes in microRNA (miRNA) expression were evaluated. The miRNA specimens were prepared from the untreated islet cells as well as the islet cells treated with the PC-derived exosomes (from 50 patients) and the healthy-derived exosomes (from 50 individuals). The specimens were subjected to next-generation sequencing and bioinformatic analysis to determine the differentially expressed miRNAs (DEmiRNAs) only in the specimens treated with the PC-derived exosomes. Consequently, 24 candidate miRNA markers, including IRS1-modulating miRNAs such as hsa-miR-144-5p, hsa-miR-3148, and hsa-miR-3133, were proposed. The proposed miRNAs showed relevance to DM and/or insulin resistance in a literature review and pathway analysis, indicating a potential association with PC-DM. Due to the novel approach used in this study, additional evidence from future studies could corroborate the value of the miRNA markers discovered.
Collapse
Affiliation(s)
- Young-gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Eun Young Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
9
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Potential of miRNAs in Plasma Extracellular Vesicle for the Stratification of Prostate Cancer in a South African Population. Cancers (Basel) 2023; 15:3968. [PMID: 37568783 PMCID: PMC10417259 DOI: 10.3390/cancers15153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential expression of miRNAs between low and high Gleason scores in the plasma EVs of South African patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH) and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e., miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in plasma EVs as a tool for the identification of putative markers in the South African population. Our finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| |
Collapse
|
10
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
11
|
Noor J, Chaudhry A, Noor R, Batool S. Advancements and Applications of Liquid Biopsies in Oncology: A Narrative Review. Cureus 2023; 15:e42731. [PMID: 37654932 PMCID: PMC10466971 DOI: 10.7759/cureus.42731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
According to the World Health Organization (WHO), nearly 10 million people died from cancer worldwide in 2020, making it the leading cause of mortality. Liquid biopsies, which provide non-invasive and real-time monitoring of tumor dynamics, have evolved into innovative diagnostic techniques in the field of oncology. Liquid biopsies offer important insights into tumor heterogeneity, treatment response, minimum residual disease identification, and personalized treatment of cancer through the analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles, and microRNAs. They offer several advantages over traditional tissue biopsies, such as being less invasive, more convenient, more representative of tumor heterogeneity and dynamics, and more informative for guiding personalized treatment decisions. Liquid biopsies are being utilized increasingly in clinical oncology, particularly for patients with metastatic disease who require ongoing monitoring and treatment modification. In this narrative review article, we review the latest developments of liquid biopsy technologies, their applications and limitations, and their potential to transform diagnosis, prognosis, and management of cancer patients.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| |
Collapse
|
12
|
Jo H, Shim K, Jeoung D. Exosomes: Diagnostic and Therapeutic Implications in Cancer. Pharmaceutics 2023; 15:pharmaceutics15051465. [PMID: 37242707 DOI: 10.3390/pharmaceutics15051465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
Collapse
Affiliation(s)
- Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
He Y, Xing Y, Jiang T, Wang J, Sang S, Rong H, Yu F. Fluorescence labeling of extracellular vesicles for diverse bio-applications in vitro and in vivo. Chem Commun (Camb) 2023; 59:6609-6626. [PMID: 37161668 DOI: 10.1039/d3cc00998j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles enclosed in a lipid membrane that are sustainably released by nearly all cell types. EVs have been deemed as valuable biomarkers for diagnostics and effective drug carriers, owing to the physiological function of transporting biomolecules for intercellular communication. To investigate their biological properties, efficient labeling strategies have been constructed for EV research, among which fluorescence labeling exerts a powerful function due to the capability of visualizing the nanovesicles with high sensitivity both in vitro and in vivo. In one aspect, with the help of functional fluorescence tags, EVs could be differentiated and categorized in vitro by various analytical techniques, which exert vital roles in disease diagnosis, prognosis, and treatment monitoring. Additionally, innovative EV reporters have been utilized for visualizing EVs, in combination with powerful microscopy techniques, which provide potential tools for investigating the dynamic events of EV release and intercellular communication in suitable animal models. In this feature article, we survey the latest advances regarding EV fluorescence labeling strategies and their application in biomedical application and in vivo biology investigation, highlighting the progresses in individual EV imaging. Finally, the challenges and future perspectives in unravelling EV physiological properties and further biomedical application are discussed.
Collapse
Affiliation(s)
- Yun He
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Yanlong Xing
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shenggang Sang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Hong Rong
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
14
|
Xu Z, Xu Y, Zhang K, Liu Y, Liang Q, Thakur A, Liu W, Yan Y. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J Nanobiotechnology 2023; 21:114. [PMID: 36978093 PMCID: PMC10049910 DOI: 10.1186/s12951-023-01858-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The past few years have witnessed a significant increase in research related to plant-derived extracellular vesicles (PDEVs) in biological and medical applications. Using biochemical technologies, multiple independent groups have demonstrated the important roles of PDEVs as potential mediators involved in cell-cell communication and the exchange of bio-information between species. Recently, several contents have been well identified in PDEVs, including nucleic acids, proteins, lipids, and other active substances. These cargoes carried by PDEVs could be transferred into recipient cells and remarkably influence their biological behaviors associated with human diseases, such as cancers and inflammatory diseases. This review summarizes the latest updates regarding PDEVs and focuses on its important role in nanomedicine applications, as well as the potential of PDEVs as drug delivery strategies to develop diagnostic and therapeutic agents for the clinical management of diseases, especially like cancers. CONCLUSION Considering its unique advantages, especially high stability, intrinsic bioactivity and easy absorption, further elaboration on molecular mechanisms and biological factors driving the function of PDEVs will provide new horizons for the treatment of human disease.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, 421001, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
15
|
Yang Y, Zhang H, Liu Z, Ma N, Li C, Wang Y, Li Z. Use of exosome transcriptome-based analysis to identify novel biomarkers in patients with locally advanced esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:182. [PMID: 36923096 PMCID: PMC10009568 DOI: 10.21037/atm-23-452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Background The prognosis of esophageal squamous cell carcinoma (ESCC) is improved by neoadjuvant chemoradiotherapy (nCRT), especially for patients with pathologic complete response (pCR). Despite the efforts to predict treatment response using multimodality, no molecule has proven to be a strong biomarker. This study aimed to profile the expression of exosome transcriptome that could predict pCR in ESCC before and after nCRT. Methods We collected paired blood samples of 15 patients with ESCC who received nCRT and radical surgery. They were divided into 3 groups: (A) residual tumor in the first clinical response evaluation (CRE-1), (B) no residual tumor in CRE-1 but with residual tumor in CRE-2 which was performed after 5-6 weeks, and (C) no residual tumor in CRE-1 or CRE-2. For each patient, the blood sample was collected before nCRT (time point 0); and then 6 weeks after nCRT, the clinical response was evaluated, and another blood sample was collected (time point 1). Results Using the intersection of different sets, we found 23 progression-associated messenger RNAs (mRNAs) and 67 remission-associated mRNAs. Between remission-associated mRNAs and the targets of progression-associated (carcinogenic) microRNAs (miRNAs), the intersection was acquired, and 2 miRNA-mRNA networks (IFIT2-miR-3615-IFIT2-miR-484 and BTN3A3-miR-6803-3p) were identified. Among the intersection of progression-associated (carcinogenic) mRNAs and the targets of remission-associated miRNAs, there is a network with miR-132-3p (remission-associated miRNA) located at the core, matched with DICER1, KLHL8, ANKRD12, ASH1L, and IMP4. Conclusions Our findings identified altered plasma exosome RNAs among the different groups and between different time points of nCRT, as well as the corresponding enrichments and regulatory networks, which may serve as potentially predictors of treatment response for patients with ESCC after nCRT.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Ma
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|