1
|
Bakare A, Mohanadas HP, Tucker N, Ahmed W, Manikandan A, Faudzi AAM, Mohamaddan S, Jaganathan SK. Advancements in textile techniques for cardiovascular tissue replacement and repair. APL Bioeng 2024; 8:041503. [PMID: 39431050 PMCID: PMC11488978 DOI: 10.1063/5.0231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
In cardiovascular therapeutics, procedures such as heart transplants and coronary artery bypass graft are pivotal. However, an acute shortage of organ donors increases waiting times of patients, which is reflected in negative effects on the outcome for the patient. Post-procedural complications such as thrombotic events and atherosclerotic developments may also have grave clinical implications. To address these challenges, tissue engineering is emerging as a solution, using textile technologies to synthesize biomimetic scaffolds resembling natural tissues. This comprehensive analysis explains methodologies including electrospinning, electrostatic flocking, and advanced textile techniques developed from weaving, knitting, and braiding. These techniques are evaluated in the context of fabricating cardiac patches, vascular graft constructs, stent designs, and state-of-the-art wearable sensors. We also closely examine the interaction of distinct process parameters with the biomechanical and morphological attributes of the resultant scaffolds. The research concludes by combining current findings and recommendations for subsequent investigation.
Collapse
Affiliation(s)
- Abiola Bakare
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | | | - Nick Tucker
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - A. Manikandan
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shahrol Mohamaddan
- Innovative Global Program College of Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
2
|
Medagedara MH, Ranasinghe A, Lalitharatne TD, Gopura RARC, Nandasiri GK. Advancements in Textile-Based sEMG Sensors for Muscle Fatigue Detection: A Journey from Material Evolution to Technological Integration. ACS Sens 2024; 9:4380-4401. [PMID: 39240819 DOI: 10.1021/acssensors.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Textile-based surface electromyography (sEMG) electrodes have emerged as a prominent tool in muscle fatigue assessment, marking a significant shift toward innovative, noninvasive methods. This review examines the transition from metallic fibers to novel conductive polymers, elastomers, and advanced material-based electrodes, reflecting on the rapid evolution of materials in sEMG sensor technology. It highlights the pivotal role of materials science in enhancing sensor adaptability, signal accuracy, and longevity, crucial for practical applications in health monitoring, while examining the balance of clinical precision with user comfort. Additionally, it maps the global sEMG research landscape of diverse regional contributors and their impact on technological progress, focusing on the integration of Eastern manufacturing prowess with Western technological innovations and exploring both the opportunities and challenges in this global synergy. The integration of such textile-based sEMG innovations with artificial intelligence, nanotechnology, energy harvesting, and IoT connectivity is also anticipated as future prospects. Such advancements are poised to revolutionize personalized preventive healthcare. As the exploration of textile-based sEMG electrodes continues, the transformative potential not only promises to revolutionize integrated wellness and preventive healthcare but also signifies a seamless transition from laboratory innovations to real-world applications in sports medicine, envisioning the future of truly wearable material technologies.
Collapse
Affiliation(s)
- M Hansika Medagedara
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Anuradha Ranasinghe
- School of Mathematics, Computer Science and Engineering, Faculty of Science, Liverpool Hope University, Hope Park - Liverpool L16 9JD, United Kigdom
| | - Thilina D Lalitharatne
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kigdom
| | - R A R C Gopura
- Bionics Laboratory, Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Gayani K Nandasiri
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| |
Collapse
|
3
|
Wan X, Shen Y, Luo T, Xu M, Cong H, Chen C, Jiang G, He H. All-Textile Piezoelectric Nanogenerator Based on 3D Knitted Fabric Electrode for Wearable Applications. ACS Sens 2024; 9:2989-2998. [PMID: 38771707 DOI: 10.1021/acssensors.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Flexible, air permeable and elastic self-powered sensors for human motion monitoring and assisted medical rehabilitation have recently become a hot research topic. However, most current piezoelectric sensors can not account for many characteristics. Addressing this challenge, an all-textile piezoelectric sensor (ATPS) based on 3D structured knitted fabric electrodes is reported. The ATPS consists of a piezoelectric element polyvinylidene fluoride nanofiber membrane, flexible knitted fabric electrodes, and an elastic self-adhesive bandage. Based on the flexible and efficient knitting technology, the sensor has the advantages of low cost, flexibility, simple structure, and convenient large-area manufacturing. Experimental and finite element simulation results show that the knitting pattern of fabric electrodes can enhance the piezoelectric output of ATPS. The optimal ATPS has a high voltage response sensitivity of up to 0.68 V/kPa. The proposed ATPS responds to a wide range of input forces from 0.098 to 724 N in self-powered mode, verifying its feasibility as a tactile sensor for human motion detection and recognition (throat swallowing, wrist bending, elbow bending, knee bending, walking slowly, running fast) and as a pressure sensor (Morse code, digit recognition) and demonstrating its potential for motion tracking, medical rehabilitation, and human-computer interaction.
Collapse
Affiliation(s)
- Xiaoqian Wan
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunchu Shen
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Tian Luo
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Mingming Xu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Honglian Cong
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoyu Chen
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Gaoming Jiang
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Kumar V, Alam MN, Park SS. Review of Recent Progress on Silicone Rubber Composites for Multifunctional Sensor Systems. Polymers (Basel) 2024; 16:1841. [PMID: 39000697 PMCID: PMC11244113 DOI: 10.3390/polym16131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The latest progress (the year 2021-2024) on multifunctional sensors based on silicone rubber is reported. These multifunctional sensors are useful for real-time monitoring through relative resistance, relative current change, and relative capacitance types. The present review contains a brief overview and literature survey on the sensors and their multifunctionalities. This contains an introduction to the different functionalities of these sensors. Following the introduction, the survey on the types of filler or rubber and their fabrication are briefly described. The coming section deals with the fabrication methodology of these composites where the sensors are integrated. The special focus on mechanical and electro-mechanical properties is discussed. Electro-mechanical properties with a special focus on response time, linearity, and gauge factor are reported. The next section of this review reports the filler dispersion and its role in influencing the properties and applications of these sensors. Finally, various types of sensors are briefly reported. These sensors are useful for monitoring human body motions, breathing activity, environment or breathing humidity, organic gas sensing, and, finally, smart textiles. Ultimately, the study summarizes the key takeaway from this review article. These conclusions are focused on the merits and demerits of the sensors and are followed by their future prospects.
Collapse
Affiliation(s)
- Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Md Najib Alam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sang Shin Park
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
5
|
Shen D, Wang J, Koncar V, Goyal K, Tao X. Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4114. [PMID: 39000892 PMCID: PMC11244496 DOI: 10.3390/s24134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024]
Abstract
This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, focusing on enhancing athletic performance analysis and fatigue detection. Utilizing low-resistance silver fibers, our electrodes demonstrate significantly reduced skin-to-electrode impedance, facilitating improved signal quality and reliability, especially during physical activities. The garment system, embedded with these electrodes, offers a non-invasive, comfortable solution for continuous ECG and EMG monitoring, addressing the limitations of traditional Ag/AgCl electrodes, such as skin irritation and signal degradation over time. Through various experimentation, including impedance measurements and biosignal acquisition during cycling activities, we validate the system's effectiveness in capturing high-quality physiological data. Our findings illustrate the electrodes' superior performance in both dry and wet conditions. This study not only advances the field of intelligent garments and biopotential monitoring, but also provides valuable insights for the application of intelligent sports wearables in the future.
Collapse
Affiliation(s)
- Deyao Shen
- College of Fashion and Design, Donghua University, Shanghai 200051, China
- École Nationale Supérieure des Arts et Industries Textiles-ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, University of Lille, F-59000 Lille, France
- Key Laboratory of Clothing Design and Technology, Donghua University, Ministry of Education, Shanghai 200051, China
| | - Jianping Wang
- College of Fashion and Design, Donghua University, Shanghai 200051, China
- Key Laboratory of Clothing Design and Technology, Donghua University, Ministry of Education, Shanghai 200051, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
| | - Vladan Koncar
- École Nationale Supérieure des Arts et Industries Textiles-ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, University of Lille, F-59000 Lille, France
| | - Krittika Goyal
- Department of Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Xuyuan Tao
- École Nationale Supérieure des Arts et Industries Textiles-ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, University of Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
7
|
Fortes Ferreira A, Alves H, da Silva HP, Marques N, Fred A. Exploring the electrical robustness of conductive textile fasteners for wearable devices in different human motion conditions. Sci Rep 2024; 14:7872. [PMID: 38570536 PMCID: PMC10991394 DOI: 10.1038/s41598-024-56733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Conventional snap fasteners used in clothing are often used as electrical connectors in e-textile and wearable applications for signal transmission due to their wide availability and ease of use. Nonetheless, limited research exists on the validation of these fasteners, regarding the impact of contact-induced high-amplitude artefacts, especially under motion conditions. In this work, three types of fasteners were used as electromechanical connectors, establishing the interface between a regular sock and an acquisition device. The tested fasteners have different shapes and sizes, as well as have different mechanisms of attachment between the plug and receptacle counterparts. Experimental evaluation was performed under static conditions, slow walking, and rope jumping at a high cadence. The tests were also performed with a test mass of 140 g. Magnetic fasteners presented excellent electromechanical robustness under highly dynamic human movement with and without the additional mass. On the other hand, it was demonstrated that the Spring snap buttons (with a spring-based engaging mechanism) presented a sub-optimal performance under high motion and load conditions, followed by the Prong snap fasteners (without spring), which revealed a high susceptibility to artefacts. Overall, this work provides further evidence on the importance and reliability of clothing fasteners as electrical connectors in wearable systems.
Collapse
Affiliation(s)
- Afonso Fortes Ferreira
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Lisbon, Portugal.
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal.
| | - Helena Alves
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Lisbon, Portugal.
| | - Hugo Plácido da Silva
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal.
- Instituto de Telecomunicações (IT), Lisbon, Portugal.
| | | | - Ana Fred
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
- Instituto de Telecomunicações (IT), Lisbon, Portugal
| |
Collapse
|
8
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
9
|
Wang B, Qi J, An X, Wang Y. Heterogeneous fusion of biometric and deep physiological features for accurate porcine cough recognition. PLoS One 2024; 19:e0297655. [PMID: 38300934 PMCID: PMC10833553 DOI: 10.1371/journal.pone.0297655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Accurate identification of porcine cough plays a vital role in comprehensive respiratory health monitoring and diagnosis of pigs. It serves as a fundamental prerequisite for stress-free animal health management, reducing pig mortality rates, and improving the economic efficiency of the farming industry. Creating a representative multi-source signal signature for porcine cough is a crucial step toward automating its identification. To this end, a feature fusion method that combines the biological features extracted from the acoustic source segment with the deep physiological features derived from thermal source images is proposed in the paper. First, acoustic features from various domains are extracted from the sound source signals. To determine the most effective combination of sound source features, an SVM-based recursive feature elimination cross-validation algorithm (SVM-RFECV) is employed. Second, a shallow convolutional neural network (named ThermographicNet) is constructed to extract deep physiological features from the thermal source images. Finally, the two heterogeneous features are integrated at an early stage and input into a support vector machine (SVM) for porcine cough recognition. Through rigorous experimentation, the performance of the proposed fusion approach is evaluated, achieving an impressive accuracy of 98.79% in recognizing porcine cough. These results further underscore the effectiveness of combining acoustic source features with heterogeneous deep thermal source features, thereby establishing a robust feature representation for porcine cough recognition.
Collapse
Affiliation(s)
- Buyu Wang
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Jingwei Qi
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Inner Mongolia, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaoping An
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Inner Mongolia, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yuan Wang
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Inner Mongolia, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose-Physical Properties. MICROMACHINES 2023; 15:82. [PMID: 38258201 PMCID: PMC10819598 DOI: 10.3390/mi15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
11
|
Royo I, Fernández-García R, Gil I. Microwave Resonators for Wearable Sensors Design: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9103. [PMID: 38005491 PMCID: PMC10675034 DOI: 10.3390/s23229103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The field of flexible electronics is undergoing an exponential evolution due to the demand of the industry for wearable devices, wireless communication devices and networks, healthcare sensing devices and the technology around the Internet of Things (IoT) framework. E-tex tiles are attracting attention from within the healthcare areas, amongst others, for providing the possibility of developing continuous patient monitoring solutions and customized devices to accommodate each patient's specific needs. This review paper summarizes multiple approaches investigated in the literature for wearable/flexible resonators working as antenna-based systems, sensors and filters with special attention paid to the integration to flexible materials, especially textiles. This review manuscript provides a general overview of the flexible resonators' advantages and drawbacks, materials, fabrication techniques and processes and applications. Finally, the main challenges and future prospects of wearable resonators are discussed.
Collapse
Affiliation(s)
- Iris Royo
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain; (R.F.-G.); (I.G.)
| | | | | |
Collapse
|
12
|
Gawlik A, Brückner U, Schmidl G, Wagner V, Paa W, Plentz J. Amorphous Silicon Thin-Film Solar Cells on Fabrics as Large-Scale Detectors for Textile Personal Protective Equipment in Active Laser Safety. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4841. [PMID: 37445156 DOI: 10.3390/ma16134841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Laser safety is starting to play an increasingly important role, especially when the laser is used as a tool. Passive laser safety systems quickly reach their limits and, in some cases, provide inadequate protection. To counteract this, various active systems have been developed. Flexible and especially textile-protective materials pose a special challenge. The market still lacks personal protective equipment (PPE) for active laser safety. Covering these materials with solar cells as large-area optical detectors offers a promising possibility. In this work, an active laser protection fabric with amorphous silicon solar cells is presented as a large-scale sensor for continuous wave and pulsed lasers (down to ns). First, the fabric and the solar cells were examined separately for irradiation behavior and damage. Laser irradiation was performed at wavelengths of 245, 355, 532, and 808 nm. The solar cell sensors were then applied directly to the laser protection fabric. The damage and destruction behavior of the active laser protection system was investigated. The results show that the basic safety function of the solar cell is still preserved when the locally damaged or destroyed area is irradiated again. A simple automatic shutdown system was used to demonstrate active laser protection within 50 ms.
Collapse
Affiliation(s)
- Annett Gawlik
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Department of Functional Interfaces, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Uwe Brückner
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Department of Functional Interfaces, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Gabriele Schmidl
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Department of Functional Interfaces, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Volker Wagner
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Department of Functional Interfaces, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Wolfgang Paa
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Department of Functional Interfaces, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Jonathan Plentz
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Department of Functional Interfaces, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| |
Collapse
|
13
|
Nizioł M, Jankowski-Mihułowicz P, Węglarski M. The Influence of the Washing Process on the Impedance of Textronic Radio Frequency Identification Transponder Antennas. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4639. [PMID: 37444952 DOI: 10.3390/ma16134639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Antennas dedicated to RFID systems created on textile substrates should maintain strictly defined parameters. During washing, the materials from which such antennas are made are exposed to mechanical and chemical exposure-degradation of the parameters characterizing those materials may occur, which in turn may lead to a change in the parameters of the antenna. For research purposes, four groups of model dipole antennas (sewn with two types of conductive threads on two fabrics) were created and then they were subjected to several washing processes. After each stage of the experiment, the impedance parameters of the demonstration antennas were measured using indirect measurements. Based on the obtained results, it was found that these parameters change their values during washing, and that this is influenced by a number of factors, e.g., shrinkage of the substrate fabric.
Collapse
Affiliation(s)
- Magdalena Nizioł
- Department of Metrology and Diagnostic Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland
| | - Piotr Jankowski-Mihułowicz
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland
| | - Mariusz Węglarski
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland
| |
Collapse
|
14
|
Sanchaniya JV, Lasenko I, Kanukuntla SP, Mannodi A, Viluma-Gudmona A, Gobins V. Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1949. [PMID: 37446465 DOI: 10.3390/nano13131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
This research investigated the use of electrospun nanofibers as reinforcing laminates in textiles to enhance their mechanical properties for use as smart and technical textile applications. Crimping plays a crucial role in textiles. Because of crimp, fabrics have extensibility, compressibility, and improved quality. Although crimping is inevitable for fabrics used in smart textiles, it is also a disadvantage as it could weaken the fibers and reduce their strength and efficiency. The study focused on preparing laminated textile composites by electrospinning a polyacrylonitrile (PAN) polymer onto textile fabric. The research examined the effect of electrospun nanofibers on the fabric by using a tensile testing machine and scanning electron microscopy. The results revealed that the prepared laminated textile was crimp-free because of the orientation of the nanofibers directly electrospun on the fabric, which exhibited perfect bonding between the laminates. Additionally, the nanofiber-reinforced composite fabrics demonstrated a 75.5% increase in the elastic moduli and a 20% increase in elongation at breaking. The study concluded that the use of electrospun nanofibers as laminates in textile composites could enhance the elastic properties, and prepared laminated composites will have the advantages of nanofibers, such as crimp-free elastic regions. Furthermore, the mechanical properties of the laminated textile composite were compared with those of the micromechanical models, providing a deeper understanding of the behavior of these laminated composites.
Collapse
Affiliation(s)
- Jaymin Vrajlal Sanchaniya
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Inga Lasenko
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
| | - Sai Pavan Kanukuntla
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Anunand Mannodi
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Arta Viluma-Gudmona
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
| | - Valters Gobins
- Laboratory of Environmental Genetics, Institute of Biology, Faculty of Biology, Latvian University, Jelgavas Street 1, LV-1004 Riga, Latvia
| |
Collapse
|
15
|
Meena JS, Khanh TD, Jung SB, Kim JW. Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns. ACS APPLIED MATERIALS & INTERFACES 2023; 15:29486-29498. [PMID: 37296075 DOI: 10.1021/acsami.3c06060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The increasing prevalence of health problems stemming from sedentary lifestyles and evolving workplace cultures has placed a substantial burden on healthcare systems. Consequently, remote health wearable monitoring systems have emerged as essential tools to track individuals' health and well-being. Self-powered triboelectric nanogenerators (TENGs) have exhibited significant potential for use as emerging detection devices capable of recognizing body movements and monitoring breathing patterns. However, several challenges remain to be addressed in order to fulfill the requirements for self-healing ability, air permeability, energy harvesting, and suitable sensing materials. These materials must possess high flexibility, be lightweight, and have excellent triboelectric charging effects in both electropositive and electronegative layers. In this work, we investigated self-healable electrospun polybutadiene-based urethane (PBU) as a positive triboelectric layer and titanium carbide (Ti3C2Tx) MXene as a negative triboelectric layer for the fabrication of an energy-harvesting TENG device. PBU consists of maleimide and furfuryl components as well as hydrogen bonds that trigger the Diels-Alder reaction, contributing to its self-healing properties. Moreover, this urethane incorporates a multitude of carbonyl and amine groups, which create dipole moments in both the stiff and the flexible segments of the polymer. This characteristic positively influences the triboelectric qualities of PBU by facilitating electron transfer between contacting materials, ultimately resulting in high output performance. We employed this device for sensing applications to monitor human motion and breathing pattern recognition. The soft and fibrous-structured TENG generates a high and stable open-circuit voltage of up to 30 V and a short-circuit current of 4 μA at an operation frequency of 4.0 Hz, demonstrating remarkable cyclic stability. A significant feature of our TENG is its self-healing ability, which allows for the restoration of its functionality and performance after sustaining damage. This characteristic has been achieved through the utilization of the self-healable PBU fibers, which can be repaired via a simple vapor solvent method. This innovative approach enables the TENG device to maintain optimal performance and continue functioning effectively even after multiple uses. After integration with a rectifier, the TENG can charge various capacitors and power 120 LEDs. Moreover, we employed the TENG as a self-powered active motion sensor, attaching it to the human body to monitor various body movements for energy-harvesting and sensing purposes. Additionally, the device demonstrates the capability to recognize breathing patterns in real time, offering valuable insights into an individual's respiratory health.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do ,Republic of Korea
| | - Tran Duc Khanh
- Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|