1
|
Wang YY, Chen PW, Chen YH, Yeh MY. Research on advanced photoresponsive azobenzene hydrogels with push-pull electronic effects: a breakthrough in photoswitchable adhesive technologies. MATERIALS HORIZONS 2024. [PMID: 39453280 DOI: 10.1039/d4mh01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Smart materials that adapt to various stimuli, such as light, hold immense potential across many fields. Photoresponsive molecules like azobenzenes, which undergo E-Z photoisomerization when exposed to light, are particularly valuable for applications in smart coatings, light-controlled adhesives, and photoresists in semiconductors and integrated circuits. Despite advances in using azobenzene moieties for stimuli-responsive adhesives, the role of push-pull electronic effects in regulating reversible adhesion remains largely unexplored. In this study, we investigate for the first time photo-controlled hydrogel adhesives of azobenzene with different push-pull electronic groups. We synthesized the monomers 4-methoxyazobenzene acrylate (ABOMe), azobenzene acrylate (ABH), and 4-nitroazobenzene acrylate (ABNO2), and examined their effects on reversible adhesion properties. By incorporating these azobenzene monomers into acrylamide, dialdehyde-functionalized poly(ethylene glycol), and [3-(methacryloylamino)propyl]-trimethylammonium chloride, we prepared ABOMe, ABH, and ABNO2 ionic hydrogels. Our research findings demonstrate that only the ABOMe ionic hydrogel exhibits reversible adhesion. This is due to its distinct transition state mechanism compared to ABH and ABNO2, which enables efficient E-Z photoisomerization and drives its reversible adhesion properties. Notably, the ABOMe ionic hydrogel reveals an outstanding skin adhesion strength of 360.7 ± 10.1 kPa, surpassing values reported in current literature. This exceptional adhesion is attributed to Schiff base reactions, monopole-quadrupole interactions, π-π interactions, and hydrogen bonding with skin amino acids. Additionally, the ABOMe hydrogel exhibits excellent reversible self-healing capabilities, significantly enhancing its potential for injectable medical applications. This research underscores the importance of integrating multifunctional properties into a single system, opening new possibilities for innovative and durable adhesive materials.
Collapse
Affiliation(s)
- Yun-Ying Wang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Peng-Wen Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Yu-Hsin Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| |
Collapse
|
2
|
Sun Z, Ou Q, Dong C, Zhou J, Hu H, Li C, Huang Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220167. [PMID: 39439497 PMCID: PMC11491309 DOI: 10.1002/exp.20220167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Conductive polymer hydrogels (CPHs) are gaining considerable attention in developing wearable electronics due to their unique combination of high conductivity and softness. However, in the absence of interactions, the incompatibility between hydrophobic conductive polymers (CPs) and hydrophilic polymer networks gives rise to inadequate bonding between CPs and hydrogel matrices, thereby significantly impairing the mechanical and electrical properties of CPHs and constraining their utility in wearable electronic sensors. Therefore, to endow CPHs with good performance, it is necessary to ensure a stable and robust combination between the hydrogel network and CPs. Encouragingly, recent research has demonstrated that incorporating supramolecular interactions into CPHs enhances the polymer network interaction, improving overall CPH performance. However, a comprehensive review focusing on supramolecular CPH (SCPH) for wearable sensing applications is currently lacking. This review provides a summary of the typical supramolecular strategies employed in the development of high-performance CPHs and elucidates the properties of SCPHs that are closely associated with wearable sensors. Moreover, the review discusses the fabrication methods and classification of SCPH sensors, while also exploring the latest application scenarios for SCPH wearable sensors. Finally, it discusses the challenges of SCPH sensors and offers suggestions for future advancements.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE)Faculty of Innovation EngineeringMacau University of Science and TechnologyMacao TaipaPeople's Republic of China
| | - Chao Dong
- Chemistry and Physics DepartmentCollege of Art and ScienceThe University of Texas of Permian BasinOdessaTexasUSA
| | - Jinsheng Zhou
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Huiyuan Hu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Chong Li
- Guangdong Polytechnic of Science and TechnologyZhuhaiPeople's Republic of China
| | - Zhandong Huang
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
3
|
Lazar MM, Damaschin RP, Volf I, Dinu MV. Deep Cleaning of Crystal Violet and Methylene Blue Dyes from Aqueous Solution by Dextran-Based Cryogel Adsorbents. Gels 2024; 10:546. [PMID: 39330148 PMCID: PMC11431740 DOI: 10.3390/gels10090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Polysaccharides have recently attracted growing attention as adsorbents for various pollutants, since they can be extracted from a variety of renewable sources at low cost. An interesting hydrophilic and biodegradable polysaccharide is dextran (Dx), which is well-known for its applications in the food industry and in medicine. To extend the application range of this biopolymer, in this study, we investigated the removal of crystal violet (CV) and methylene blue (MB) dyes from an aqueous solution by Dx-based cryogels using the batch technique. The cryogel adsorbents, consisting of cross-linked Dx embedding a polyphenolic (PF) extract of spruce bark, were prepared by the freeze-thawing approach. It was shown that the incorporation of PF into the Dx-based matrix induced a decrease in porosity, pore sizes and swelling ratio values. Moreover, the average pore sizes of the DxPF cryogels loaded with dyes further decreased from 42.30 ± 7.96 μm to 23.68 ± 2.69 μm, indicating a strong interaction between the functional groups of the cryogel matrix and those of the dye molecules. The sorption performances of the DxPF adsorbents were evaluated in comparison to those of the Dx cryogels and of the PF extract. The experimental sorption capacities of the DxPF cryogel adsorbents were higher in comparison to those of the Dx cryogels and the PF extract. The DxPF cryogels, particularly those with the highest PF contents (sample DxPF2), demonstrated sorption capacities of 1.2779 ± 0.0703 mmol·g-1, for CV, and 0.3238 ± 0.0121 mmol·g-1, for MB. The sorption mechanisms were analyzed using mathematical models, including Langmuir, Freundlich, Sips and Dubinin-Radushkevich isotherms, and kinetic models, like pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD). The sorption process was best described by the Sips isotherm and PSO kinetic models, indicating chemisorption as the dominant mechanism. This study outlines the importance of developing advanced renewable materials for environmental applications.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Roxana P Damaschin
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iași, 73 Prof. Dr. Docent D. Mangeron Street, 700050 Iași, Romania
| | - Irina Volf
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iași, 73 Prof. Dr. Docent D. Mangeron Street, 700050 Iași, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
4
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2024:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
5
|
Ao M, Ma H, Guo M, Dai X, Zhang X. Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia. Hum Cell 2024; 37:381-393. [PMID: 38159195 DOI: 10.1007/s13577-023-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus, this study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.
Collapse
Affiliation(s)
- Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
| |
Collapse
|
6
|
Lee C, Huang HS, Wang YY, Zhang YS, Chakravarthy RD, Yeh MY, Lin HC, Wei J. Stretchable, Adhesive, and Biocompatible Hydrogel Based on Iron-Dopamine Complexes. Polymers (Basel) 2023; 15:4378. [PMID: 38006102 PMCID: PMC10674470 DOI: 10.3390/polym15224378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Hydrogels' exceptional mechanical strength and skin-adhesion characteristics offer significant advantages for various applications, particularly in the fields of tissue adhesion and wearable sensors. Herein, we incorporated a combination of metal-coordination and hydrogen-bonding forces in the design of stretchable and adhesive hydrogels. We synthesized four hydrogels, namely PAID-0, PAID-1, PAID-2, and PAID-3, consisting of acrylamide (AAM), N,N'-methylene-bis-acrylamide (MBA), and methacrylic-modified dopamine (DA). The impact of different ratios of iron (III) ions to DA on each hydrogel's performance was investigated. Our results demonstrate that the incorporation of iron-dopamine complexes significantly enhances the mechanical strength of the hydrogel. Interestingly, as the DA content increased, we observed a continuous and substantial improvement in both the stretchability and skin adhesiveness of the hydrogel. Among the hydrogels tested, PAID-3, which exhibited optimal mechanical properties, was selected for adhesion testing on various materials. Impressively, PAID-3 demonstrated excellent adhesion to diverse materials and, combined with the low cytotoxicity of PAID hydrogel, holds great promise as an innovative option for biomedical engineering applications.
Collapse
Affiliation(s)
- Celine Lee
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - He-Shin Huang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - Yun-Ying Wang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - You-Sheng Zhang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., East Dist., Hsinchu City 300093, Taiwan;
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.L.); (H.-S.H.); (Y.-Y.W.); (Y.-S.Z.)
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., East Dist., Hsinchu City 300093, Taiwan;
| | - Jeng Wei
- Heart Center, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Beitou Dist., Taipei City 112401, Taiwan
| |
Collapse
|