1
|
Jackson DG. Lymphatic trafficking of immune cells and insights for cancer metastasis. Clin Exp Metastasis 2024; 41:381-386. [PMID: 37606814 PMCID: PMC11374813 DOI: 10.1007/s10585-023-10229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Most cancers and in particular carcinomas metastasise via the lymphatics to draining lymph nodes from where they can potentially achieve systemic dissemination by invasion of high endothelial blood venules (HEVs) in the paracortex [1, 2]. Currently however, the mechanisms by which tumours invade and migrate within the lymphatics are incompletely understood, although it seems likely they exploit at least some of the normal physiological mechanisms used by immune cells to access lymphatic capillaries and traffic to draining lymph nodes in the course of immune surveillance, immune modulation and the resolution of inflammation [3, 4]. Typically these include directional guidance via chemotaxis, haptotaxis and durotaxis, adhesion to the vessel surface via receptors including integrins, and junctional re-modelling by MMPs (Matrix MetalloProteinases) and ADAMs (A Disintegrin And Metalloproteinases) [5-7]. This short review focusses on a newly emerging mechanism for lymphatic entry that involves the large polysaccharide hyaluronan (HA) and its key lymphatic and immune cell receptors respectively LYVE-1 (Lymphatic Vessel Endothelial receptor) and CD44, and outlines recent work which indicates this axis may also be used by some tumours to aid nodal metastasis.
Collapse
Affiliation(s)
- David G Jackson
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
2
|
Md Yusof K, Rosli R, Abdullah M, Avery-Kiejda KA. The Roles of Non-Coding RNAs in Tumor-Associated Lymphangiogenesis. Cancers (Basel) 2020; 12:cancers12113290. [PMID: 33172072 PMCID: PMC7694641 DOI: 10.3390/cancers12113290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lymphatic system plays key roles in the bodies’ defence against disease, including cancer. The expansion of this system is termed lymphangiogenesis and it is orchestrated by factors and conditions within the microenvironment. One approach to prevent cancer progression is by interfering with these microenvironment factors that promote this process and that facilitate the spread of cancer cells to distant organs. One of these factors are non-coding RNAs. This review will summarize recent findings of the distinct roles played by non-coding RNAs in the lymphatic system within normal tissues and tumours. Understanding the mechanisms involved in this process can provide new avenues for therapeutic intervention for inhibiting the spread of cancer. Abstract Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Kelly A. Avery-Kiejda
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence:
| |
Collapse
|
3
|
Lymphangiogenesis, lymphatic systemomics, and cancer: context, advances and unanswered questions. Clin Exp Metastasis 2018; 35:419-424. [PMID: 29808352 DOI: 10.1007/s10585-018-9907-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022]
Abstract
Ever since it was discovered that endothelial cells line lymphatic vessels, investigators have been working on unraveling the mechanisms that control the growth of this distinctive endothelium and its role in normal physiology and human disease. Recent technological advances have ushered in a new era of "omics" research on the lymphatic system. Research on the genome, transcriptome, proteome, and metabolome of lymphatics has increased our understanding of the biology of the lymphatic vasculature. Here, we introduce the context-lymphatic "systemomics," then briefly review some of the latest advances in research on tumor-associated lymphatic vessels highlighting several "omic" studies that have shed light on mechanisms controlling the growth and function of tumor-associated lymphatic vessels. We conclude by returning, with unanswered questions, to the larger context of cancer and the lymphatic system as a vasculature, circulation, route of entry and transport, and control center of the immune network.
Collapse
|
4
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
5
|
Chen D, Zheng J, Li H, Wang Q, Jiao X. Computer-assisted morphometric analysis of lymphatic vessel changes in hamster tongue carcinogenesis. J Oral Pathol Med 2010; 39:518-24. [PMID: 20618615 DOI: 10.1111/j.1600-0714.2010.00903.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND To characterize lymphangiogenesis in early-stage hamster tongue carcinoma development, morphological features and spatial relationships of lymphatic vessels. METHODS Lymphatic vessels were examined histochemically, using 5'-Nase-ALPase enzyme and combined light and electron microscopy to measure lymphatic vessel area (LVA) and lymphatic vessel density (LVD). RESULTS In atypical hyperplastic tissues, LVA was found to be 1429.97 and LVD was found to be 39, in carcinoma in situ LVA was 2538.33 and LVD was 48, and in micro-invasive carcinoma LVA was 5733.74 and LVD was 59. Increased lymphangiogenesis was seen in pre-neoplastic states and in early-stage oral squamous cell carcinoma (OSCC). Small regular lymphatic vessels predominated in atypical hyperplasia, and large, irregular lymphatic vessels in early-stage OSCC. Lymphatic endothelial vessels were stretched and porous over large areas. CONCLUSIONS Newly formed lymphatics and patulous intercellular junctions may be optimally suited for tumor cell metastasis through lymphatic channels in early- and middle-phase carcinogenesis. Lymphatic capillary LVA and LVD became enlarged, and positively correlated, with malignancy, but show no correlation with 7,12-dimethylbenz[a]anthracene-induced time.
Collapse
Affiliation(s)
- Dong Chen
- Harbin Medical University Stomatological Hospital, Nangang District, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
6
|
Carman CV. Mechanisms for transcellular diapedesis: probing and pathfinding by 'invadosome-like protrusions'. J Cell Sci 2009; 122:3025-35. [PMID: 19692589 DOI: 10.1242/jcs.047522] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immune-system functions require that blood leukocytes continuously traffic throughout the body and repeatedly cross endothelial barriers (i.e. diapedese) as they enter (intravasate) and exit (extravasate) the circulation. The very earliest studies to characterize diapedesis directly in vivo suggested the coexistence of two distinct migratory pathways of leukocytes: between (paracellular pathway) and directly through (transcellular pathway) individual endothelial cells. In vivo studies over the past 50 years have demonstrated significant use of the transcellular diapedesis pathway in bone marrow, thymus, secondary lymphoid organs, various lymphatic structures and peripheral tissues during inflammation and across the blood-brain barrier and blood-retinal barrier during inflammatory pathology. Recently, the first in vitro reports of transcellular diapedesis have emerged. Together, these in vitro and in vivo observations suggest a model of migratory pathfinding in which dynamic 'invadosome-like protrusions' formed by leukocytes have a central role in both identifying and exploiting endothelial locations that are permissive for transcellular diapedesis. Such 'probing' activity might have additional roles in this and other settings.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Abstract
The lymphatic system is best known for draining interstitial fluid from the tissues and returning it to the blood circulation. However, the lymphatic system also provides the means for immune surveillance in the immune system, acting as conduits that convey soluble antigens and antigen-presenting cells from the tissues to the lymph nodes, where primary lymphocyte responses are generated. One macromolecule that potentially unites these two functions is the large extracellular matrix glycosaminoglycan hyaluronan (HA), a chemically simple copolymer of GlcNAc and GlcUA that fulfills a diversity of functions from danger signal to adhesive substratum, depending upon chain length and particular interaction with its many different binding proteins and a small but important group of receptors. The two most abundant of these receptors are CD44, which is expressed on leukocytes that traffic through the lymphatics, and LYVE-1, which is expressed almost exclusively on lymphatic endothelium. Curiously, much of the HA within the tissues is turned over and degraded in lymph nodes, by a poorly understood process that occurs in the medullary sinuses. Indeed there are several mysterious aspects to HA in the lymphatics. Here we cover some of these by reviewing recent findings in the biology of lymphatic endothelial cells and their possible roles in HA homeostasis together with fresh insights into the complex and enigmatic nature of LYVE-1, its regulation of HA binding by sialylation and self-association, and its potential function in leukocyte trafficking.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK. David.
| |
Collapse
|
8
|
Carman CV, Springer TA. Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 2008; 20:533-40. [PMID: 18595683 DOI: 10.1016/j.ceb.2008.05.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/12/2008] [Accepted: 05/19/2008] [Indexed: 12/31/2022]
Abstract
Trans-cellular migration, the movement of one cell directly through another, seems an unlikely, counterintuitive, and even bizarre process. Trans-cellular migration has been reported for nearly half a century in leukocyte transendothelial migration in vivo, but is not well enough accepted to widely feature in textbook accounts of diapedesis. Recently, the first in vitro and additional in vivo observations of trans-cellular diapedesis have been reported. Mechanisms by which this occurs are just beginning to be elucidated and point to podosome-like protrusive activities in leukocytes and specific fusogenic functions in endothelial cells. Emerging evidence for a quantitatively significant contribution of trans-cellular migration to leukocyte trafficking in increasingly diverse settings suggests that this phenomenon represents an important and physiologic cell biological process.
Collapse
Affiliation(s)
- Christopher V Carman
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
9
|
Effect of P2 receptor on the intracellular calcium increase by cancer cells in human umbilical vein endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:429-36. [PMID: 18210093 DOI: 10.1007/s00210-007-0259-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/24/2007] [Indexed: 12/14/2022]
Abstract
One of the important functions of vascular endothelial cells is as a barrier between blood and vascular tissue. This led us to speculate that cancer cells affect endothelial cells during metastasis. In the present study, we investigated the influence of human fibrosarcoma cells (HT-1080) on human umbilical vein endothelial cells (HUVEC), particularly intracellular calcium ion levels ([Ca2+]i), which are known to be an important intracellular signal transduction factor. HUVEC were treated with a fluorescent marker, and the fluorescence intensity of [Ca2+]i was then measured by phase contrast microscopic imaging. Extracellular adenosine triphosphate (ATP) release was measured using the chemiluminescence of luciferin-luciferase and a photon counting imaging system. HT-1080 (5x10(4) cells per dish) was found to increase [Ca2+]i in HUVEC. This [Ca2+]i rise was significantly reduced by U-73122 (phospholipase C inhibitor, 1 microM) and thapsigargin (calcium pump inhibitor, 1 microM). Interestingly, the [Ca2+]i rise in HUVEC was also significantly reduced by pyridoxalphosphare-6-azophenyl-2', 4'-disulfonic acid, a P2Y receptor antagonist (100 microM) and apyrase, a nucleotidase inhibitor (2 U/ml). In addition, we observed ATP release from HT-1080. These results suggest that [Ca2+]i in HUVEC was increased through the phospholipase C-IP3 pathway via ATP release from cancer cells. We previously reported that extracellular ATP increased [Ca2+]i and enhanced macromolecular permeability via the P2Y receptor. In tumor metastasis, cancer cells may exploit these regulatory mechanisms in the endothelial cell layer.
Collapse
|
10
|
Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialized junctions between endothelial cells of lymphatic vessels. ACTA ACUST UNITED AC 2007; 204:2349-62. [PMID: 17846148 PMCID: PMC2118470 DOI: 10.1084/jem.20062596] [Citation(s) in RCA: 718] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recirculation of fluid and cells through lymphatic vessels plays a key role in normal tissue homeostasis, inflammatory diseases, and cancer. Despite recent advances in understanding lymphatic function (Alitalo, K., T. Tammela, and T.V. Petrova. 2005. Nature. 438:946–953), the cellular features responsible for entry of fluid and cells into lymphatics are incompletely understood. We report the presence of novel junctions between endothelial cells of initial lymphatics at likely sites of fluid entry. Overlapping flaps at borders of oak leaf–shaped endothelial cells of initial lymphatics lacked junctions at the tip but were anchored on the sides by discontinuous button-like junctions (buttons) that differed from conventional, continuous, zipper-like junctions (zippers) in collecting lymphatics and blood vessels. However, both buttons and zippers were composed of vascular endothelial cadherin (VE-cadherin) and tight junction–associated proteins, including occludin, claudin-5, zonula occludens–1, junctional adhesion molecule–A, and endothelial cell–selective adhesion molecule. In C57BL/6 mice, VE-cadherin was required for maintenance of junctional integrity, but platelet/endothelial cell adhesion molecule–1 was not. Growing tips of lymphatic sprouts had zippers, not buttons, suggesting that buttons are specialized junctions rather than immature ones. Our findings suggest that fluid enters throughout initial lymphatics via openings between buttons, which open and close without disrupting junctional integrity, but most leukocytes enter the proximal half of initial lymphatics.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 2007; 25:677-94. [PMID: 17160713 DOI: 10.1007/s10555-006-9026-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lymphatic metastasis of tumor cells represents a series of extremely complex and sequential processes that include dissemination and invasion into surrounding stromal tissues from primary tumors, penetration into lymphatic walls and implantation in regional lymph nodes, and extravasation or proliferation in parenchyma of target organs. Recent developments in lymphatic biology and research, especially the application of unique molecular markers specific for lymphatic endothelial cells (LECs), LYVE-1, Prox-1 and podoplanin have provided exciting new insights into the tumor microenvironment and LEC-tumor cell interface. To date, established factors for determining the behavior and prognosis of primary tumors have been emphasized morphologically and physiologically, i.e., lymphatic impairment and vessel density, dysfunction of lymphatic valves, interstitial fluid pressure, as well as a series of lymphangiogenic growth factors including VEGF-C/-D, and other cytokines and chemokines. Increasing knowledge of the tumor biological significance in lymphatics within the tumors (intratumoral lymphatics, ITLs) and at the tumor periphery (peritumoral lymphatics, PTLs) has greatly promoted understanding of tumor access into the lymphatic system by inducing lymphangiogenesis or by co-opting preexisting lymphatics. Therefore, the targeting PTLs and ITLs, which have been proposed as an important route for antimetastatic approach, are deemed worthy of further study in various animal tumor models and human tumors.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Department of Anatomy, Biology and Medicine, Oita University Faculty of Medicine, Oita 879-5593, Japan.
| |
Collapse
|
12
|
Azzali G. Tumor cell transendothelial passage in the absorbing lymphatic vessel of transgenic adenocarcinoma mouse prostate. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:334-46. [PMID: 17200205 PMCID: PMC1762681 DOI: 10.2353/ajpath.2007.060447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The distribution and fine structure of the tumor-associated absorbing lymphatic vessel in the tumor mass of prostate adenocarcinoma and of seminal vesicle metastasis in transgenic mice was studied for the purpose of understanding the modality of tumor cell transendothelial passage from the extravasal matrix into the lymphatic vessel. In the tumor mass, two main cell populations were identified: stromal tumor cells and the invasive phenotype tumor (IPT) cells, having characteristics such as a highly electron-dense matrix rich in small granules lacking a dense core and massed nuclear chromatin, which is positive to immunostaining with anti-SV40 large T antigen antibody. Based on the ultrastructural pictures of different moments of the IPT cell transendothelial passage by ultrathin serial sections of the tumor-associated absorbing lymphatic vessel, the manner of its transendothelial passage through the intraendothelial channel, without involving intercellular contacts, was demonstrated. The presence of IPT cells in the parenchyma of satellite lymph node highlights its significant role in metastatic diffusion. The intraendothelial channel is the reply to the lack of knowledge regarding the intravasation of the tumor cell into the lymphatic circulation. The lymphatic endothelium would organize this channel on the basis of tumor cell-endothelial cell-extravasal matrix molecular interactions, which are as yet unidentified.
Collapse
Affiliation(s)
- Giacomo Azzali
- Lymphatology Laboratory, Section of Human Anatomy, Department of Human Anatomy, Pharmacology, and Forensic Medicine, University of Parma, Via Gramsci, 14 (Ospedale Maggiore), 43100, Parma, Italy.
| |
Collapse
|
13
|
Galanzha EI, Tuchin VV, Zharov VP. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening. World J Gastroenterol 2007; 13:192-218. [PMID: 17226898 PMCID: PMC4065947 DOI: 10.3748/wjg.v13.i2.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed.
Collapse
Affiliation(s)
- Ekaterina I Galanzha
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, United States.
| | | | | |
Collapse
|
14
|
Blei F. Literature watch. Emerging roles of the Angiopoietin-Tie and the ephrin-Eph systems as regulators of cell trafficking. Lymphat Res Biol 2006; 4:167-76. [PMID: 17034297 DOI: 10.1089/lrb.2006.4.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|