1
|
Hultman M, Richter F, Larsson M, Strömberg T, Iredahl F, Fredriksson I. Robust analysis of microcirculatory flowmotion during post-occlusive reactive hyperemia. Microvasc Res 2024; 155:104715. [PMID: 39004173 DOI: 10.1016/j.mvr.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Flowmotion analysis of the microcirculatory blood flow is a method to extract information about the vessel regulatory function. It has previously shown promise when applied to measurements during a post-occlusive reactive hyperemia. However, the reperfusion peak and the following monotonic decline introduces false low frequencies that should not be interpreted as rhythmic vasomotion effect. AIM To develop and validate a robust method for flowmotion analysis of post-occlusive reactive hyperemia signals. METHOD The occlusion-induced reperfusion response contains a typical rapid increase followed by a monotonic decline to baseline. A mathematical model is proposed to detrend this transient part of the signal to enable further flowmotion analysis. The model is validated in 96 measurements on healthy volunteers. RESULTS Applying the proposed model corrects the flowmotion signal without adding any substantial new false flowmotion components. CONCLUSION Future studies should use the proposed method or equivalent when analyzing flowmotion during post-occlusive reactive hyperemia to ensure valid results.
Collapse
Affiliation(s)
- Martin Hultman
- Department of Biomedical Engineering, Linköping University, Sweden; Perimed AB, Datavägen 9A, Järfälla, Stockholm, Sweden.
| | - Freya Richter
- Primary Health Care Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Marcus Larsson
- Department of Biomedical Engineering, Linköping University, Sweden
| | - Tomas Strömberg
- Department of Biomedical Engineering, Linköping University, Sweden
| | - Fredrik Iredahl
- Primary Health Care Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ingemar Fredriksson
- Department of Biomedical Engineering, Linköping University, Sweden; Perimed AB, Datavägen 9A, Järfälla, Stockholm, Sweden
| |
Collapse
|
2
|
Tang Y, Xu F, Lei P, Li G, Tan Z. Spectral analysis of laser speckle contrast imaging and infrared thermography to assess skin microvascular reactive hyperemia. Skin Res Technol 2023; 29:e13308. [PMID: 37113098 PMCID: PMC10234160 DOI: 10.1111/srt.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/25/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Post-occlusive reactive hyperemia (PORH) test with signal spectral analysis coupled provides potential indicators for the assessment of microvascular functions. OBJECTIVE The objective of this study is to investigate the variations of skin blood flow and temperature spectra in the PORH test. Furthermore, to quantify the oscillation amplitude response to occlusion within different frequency ranges. MATERIALS AND METHODS Ten healthy volunteers participated in the PORH test and their hand skin temperature and blood flow images were captured by infrared thermography (IRT) and laser speckle contrast imaging (LSCI) system, respectively. Extracted signals from selected areas were then transformed into the time-frequency space by continuous wavelet transform for cross-correlation analysis and oscillation amplitude response comparisons. RESULTS The LSCI and IRT signals extracted from fingertips showed stronger hyperemia response and larger oscillation amplitude compared with other areas, and their spectral cross-correlations decreased with frequency. According to statistical analysis, their oscillation amplitudes in the PORH stage were obviously larger than the baseline stage within endothelial, neurogenic, and myogenic frequency ranges (p < 0.05), and their quantitative indicators of oscillation amplitude response had high linear correlations within endothelial and neurogenic frequency ranges. CONCLUSION Comparisons of IRT and LSCI techniques in recording the reaction to the PORH test were made in both temporal and spectral domains. The larger oscillation amplitudes suggested enhanced endothelial, neurogenic, and myogenic activities in the PORH test. We hope this study is also significant for investigations of response to the PORH test by other non-invasive techniques.
Collapse
Affiliation(s)
- Yuanliang Tang
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Fei Xu
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Peng Lei
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Guixiang Li
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Zhongwei Tan
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| |
Collapse
|
3
|
Flowmotion imaging analysis of spatiotemporal variations in skin microcirculatory perfusion. Microvasc Res 2023; 146:104456. [PMID: 36403668 DOI: 10.1016/j.mvr.2022.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
|
4
|
Microvascular reactivity using laser Doppler measurement in type 2 diabetes with subclinical atherosclerosis. Lasers Med Sci 2023; 38:80. [PMID: 36853518 DOI: 10.1007/s10103-023-03737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
Microangiopathy should be noted in diabetes with subclinical vascular diseases. Little is known about whether various surrogate markers of systemic arterial trees exacerbate simultaneously in preclinical atherosclerosis. To clarify the association of skin microvascular reactivity with arterial stiffness is essential to elucidating early atherosclerotic changes. The post-occlusive reactive hyperemia of skin microcirculation was evaluated in 27 control and 65 type 2 diabetic subjects, including 31 microalbuminuria (MAU) and 34 normoalbuminuria (NAU) patients. The laser Doppler skin perfusion signals were transformed into three frequency intervals for the investigation of endothelial, neurogenic, and myogenic effects on basal and reactive flow motion changes. The analysis of spectral intensity and distribution provided insight into potential significance of microvascular regulation in subclinical atherosclerotic diseases. Systemic arterial stiffness was studied by the brachial ankle pulse wave velocity (baPWV). Following occlusive ischemia, the percent change of endothelial flow motion was lower in MAU than in NAU and control groups. The MAU group revealed a relative increase in myogenic activity and a decrease in endothelial activity in normalized spectra. The baPWV showed more significant associations with reactive endothelial change (r = - 0.48, P < 0.01) and normalized myogenic value (r = - 0.37, P < 0.05) than diabetes duration and HbA1c. By multivariate regression analysis, only endothelial vasomotor changes independently contributed to the decreased baPWV (OR 3.47, 95% CI 1.63-7.42, P < 0.05). Impaired microcirculatory control is associated with increased arterial stiffness in preclinical atherosclerosis. To identify the early manifestations is necessary for at-risk patients to prevent from further vascular damage.
Collapse
|
5
|
Shirazi BR, Valentine RJ, Lang JA. Reproducibility and normalization of reactive hyperemia using laser speckle contrast imaging. PLoS One 2021; 16:e0244795. [PMID: 33412561 PMCID: PMC7790538 DOI: 10.1371/journal.pone.0244795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background Impaired perfusion indices signal potential microvascular dysfunction preceding atherosclerosis and other cardiometabolic pathologies. Post-occlusive reactive hyperemia (PORH), a vasodilatory response following a mechanically induced ischemia, is a transient increase in perfusion and can assess microvascular function. The greatest blood flow change corresponding to the first minute of hyperemia (represented by time-to-peak, hyperemic velocity, AUC within 1st min) has been shown to indicate microvascular dysfunction. However, the reproducibility of these temporal kinetic indices of the PORH response is unknown. Our aim was to examine the inter- and intra-day reproducibility and standardization of reactive hyperemia, with emphasis on the kinetic indices of PORH, using laser speckle contrast imaging (LSCI) technique. Methods and results Seventeen healthy adults (age = 24 ± 3 years) completed three PORH bouts over two lab visits. LSCI region of interest was a standardized 10 cm region on the dominant ventral forearm. A 5-min brachial artery occlusion period induced by inflating an arm cuff to 200 mmHg, preceded a 4-min hyperemic period. Inter- and intra-day reliability and reproducibility of cutaneous vascular conductance (LSCI flux / mean arterial pressure) were determined using intraclass correlation (ICC) and coefficient of variation (CV%). Maximal flow and area under the curve standardized to zero perfusion showed intra- and inter-day reliability (ICC > 0.70). Time to maximal flow (TMF) was not reproducible (inter-day CV = 18%). However, alternative kinetic indices such as 1-min AUC and overshoot rate-of-change (ORC), represented as a piecewise function (at 5s, 10s, 15s, and 20s into hyperemia), were reproducible (CV< 11%). Biological zero was a reliable normalization point. Conclusion PORH measured with LSCI is a reliable assessment of microvascular function. However, TMF or its derived hyperemic velocity are not recommended for longitudinal assessment. Piecewise ORC and 1-min AUC are reliable alternatives to assess the kinetic response of PORH.
Collapse
Affiliation(s)
| | - Rudy J. Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States of America
| | - James A. Lang
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
6
|
Clough GF, Chipperfield AJ, Thanaj M, Scorletti E, Calder PC, Byrne CD. Dysregulated Neurovascular Control Underlies Declining Microvascular Functionality in People With Non-alcoholic Fatty Liver Disease (NAFLD) at Risk of Liver Fibrosis. Front Physiol 2020; 11:551. [PMID: 32581841 PMCID: PMC7283580 DOI: 10.3389/fphys.2020.00551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background/Aims Increasing evidence shows that non-alcoholic fatty liver disease (NAFLD) is associated with dysregulation of microvascular perfusion independently of established cardio-metabolic risk factors. We investigated whether hepatic manifestations of NAFLD such as liver fibrosis and liver fat are associated with microvascular hemodynamics through dysregulation of neurovascular control. Methods Microvascular dilator (post-occlusive reactive hyperemia) and sympathetically mediated constrictor (deep inspiratory breath-hold) responses were measured at the forearm and finger, respectively, using laser Doppler fluximetry. Non-linear complexity-based analysis was used to assess the information content and variability of the resting blood flux (BF) signals, attributable to oscillatory flow-motion activity, and over multiple sampling frequencies. Results Measurements were made in 189 adults (113 men) with NAFLD, with (n = 65) and without (n = 124) type 2 diabetes mellitus (T2DM), age = 50.9 ± 11.7 years (mean ± SD). Microvascular dilator and constrictor capacity were both negatively associated with age (r = −0.178, p = 0.014, and r = −0.201, p = 0.007, respectively) and enhanced liver fibrosis (ELF) score (r = −0.155, p = 0.038 and r = −0.418, p < 0.0001, respectively). There was no association with measures of liver fat, obesity or T2DM. Lempel-Ziv complexity (LZC) and sample entropy (SE) of the BF signal measured at the two skin sites were associated negatively with age (p < 0.01 and p < 0.001) and positively with ELF score (p < 0.05 and p < 0.0001). In individuals with an ELF score ≥7.8 the influence of both neurogenic and respiratory flow-motion activity on LZC was up-rated (p < 0.0001). Conclusion Altered microvascular network functionality occurs in adults with NAFLD suggesting a mechanistic role for dysregulated neurovascular control in individuals at risk of severe liver fibrosis.
Collapse
Affiliation(s)
- Geraldine F Clough
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Chipperfield
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Marjola Thanaj
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Eleonora Scorletti
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom.,Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Christopher D Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
7
|
Williams J, Gilchrist M, Strain D, Fraser D, Shore A. The systemic microcirculation in dialysis populations. Microcirculation 2020; 27:e12613. [PMID: 32065681 DOI: 10.1111/micc.12613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
In a rapidly expanding population of patients with chronic kidney disease, including 2 million people requiring renal replacement therapy, cardiovascular mortality is 15 times greater than the general population. In addition to traditional cardiovascular risk factors, more poorly defined risks related to uremia and its treatments appear to contribute to this exaggerated risk. In this context, the microcirculation may play an important early role in cardiovascular disease associated with chronic kidney disease. Experimentally, the uremic environment and dialysis have been linked to multiple pathways causing microvascular dysfunction. Coronary microvascular dysfunction is reflected in remote and more easily studied vascular beds such as the skin. There is increasing evidence for a correlation between systemic microvascular dysfunction and adverse cardiovascular outcomes. Systemic microcirculatory changes have not been extensively investigated across the spectrum of chronic kidney disease. Recent advances in non-invasive techniques studying the microcirculation in vivo in man are increasing the data available particularly in patients on hemodialysis. Here, we review current knowledge of the systemic microcirculation in dialysis populations, explore whether non-invasive techniques to study its function could be used to detect early stage cardiovascular disease, address challenges faced in studying this patient cohort and identify potential future avenues for research.
Collapse
Affiliation(s)
- Jennifer Williams
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Foundation NHS Trust, Exeter, UK
| | - Mark Gilchrist
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Foundation NHS Trust, Exeter, UK
| | - David Strain
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Foundation NHS Trust, Exeter, UK
| | - Donald Fraser
- Wales Kidney Research Unit, Cardiff University, Cardiff, UK
| | - Angela Shore
- Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Foundation NHS Trust, Exeter, UK
| |
Collapse
|
8
|
Hodges GJ, Cheung SS. Noninvasive assessment of increases in microvascular endothelial function following repeated bouts of hyperaemia. Microvasc Res 2019; 128:103929. [PMID: 31676308 DOI: 10.1016/j.mvr.2019.103929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/07/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Spectral analyses of laser-Doppler signal can delineate underlying mechanisms in response to pharmacological agents and in cross-sectional studies of healthy and clinical populations. We tested whether spectral analyses can detect acute changes in endothelial function in response to a 6-week intervention of repeated bouts of hyperaemia. METHODS Eleven males performed forearm occlusion (5 s with 10 s rest) for 30 min, 5 times/week for 6 weeks on one arm; the other was an untreated control. Skin blood flow was measured using laser-Doppler fluxmetry (LDF), and endothelial function was assessed with and without nitric oxide (NO) synthase-inhibition with L-NAME in response to local heating (42 °C and 44 °C) and acetylcholine. A wavelet transform was used for spectral analysis of frequency intervals associated with physiological functions. RESULTS Basal measures were all unaffected by the hyperaemia intervention (all P > 0.05). In response to local skin heating to 42 °C, the 6 weeks hyperaemia intervention increased LDF, endothelial NO-independent and NO-dependent activity (all P ≤ 0.038). In response to peak local heating (44 °C) endothelial NO-independent and NO-dependent activity increased (both P ≤ 0.01); however, LDF did not (P > 0.2). In response to acetylcholine, LDF, endothelial NO-independent and NO-dependent activity all increased (all P ≤ 0.003) post-intervention. CONCLUSIONS Spectral analysis appears sufficiently sensitive to measure changes over time in cutaneous endothelial activity that are consistent with standard physiological (local heating) and pharmacological (acetylcholine) interventions of assessing cutaneous endothelial function, and may be useful not only in research but also clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Gary J Hodges
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Stephen S Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
9
|
Clough GF, Kuliga KZ, Chipperfield AJ. Flow motion dynamics of microvascular blood flow and oxygenation: Evidence of adaptive changes in obesity and type 2 diabetes mellitus/insulin resistance. Microcirculation 2018; 24. [PMID: 27809397 DOI: 10.1111/micc.12331] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
An altered spatial heterogeneity and temporal stability of network perfusion can give rise to a limited adaptive ability to meet metabolic demands. Derangement of local flow motion activity is associated with reduced microvascular blood flow and tissue oxygenation, and it has been suggested that changes in flow motion activity may provide an early indicator of declining, endothelial, neurogenic, and myogenic regulatory mechanisms and signal the onset and progression of microvascular pathophysiology. This short conference review article explores some of the evidence for altered flow motion dynamics of blood flux signals acquired using laser Doppler fluximetry in the skin in individuals at risk of developing or with cardiometabolic disease.
Collapse
Affiliation(s)
| | - Katarzyna Z Kuliga
- Faculty of Medicine, University of Southampton, Southampton, UK.,Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Andrew J Chipperfield
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Houben AJHM, Martens RJH, Stehouwer CDA. Assessing Microvascular Function in Humans from a Chronic Disease Perspective. J Am Soc Nephrol 2017; 28:3461-3472. [PMID: 28904002 DOI: 10.1681/asn.2017020157] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microvascular dysfunction (MVD) is considered a crucial pathway in the development and progression of cardiometabolic and renal disease and is associated with increased cardiovascular mortality. MVD often coexists with or even precedes macrovascular disease, possibly due to shared mechanisms of vascular damage, such as inflammatory processes and oxidative stress. One of the first events in MVD is endothelial dysfunction. With the use of different physiologic or pharmacologic stimuli, endothelium-dependent (micro)vascular reactivity can be studied. This reactivity depends on the balance between various mediators, including nitric oxide, endothelin, and prostanoids, among others. The measurement of microvascular (endothelial) function is important to understand the pathophysiologic mechanisms that contribute to MVD and the role of MVD in the development and progression of cardiometabolic/renal disease. Here, we review a selection of direct, noninvasive techniques for measuring human microcirculation, with a focus on methods, interpretation, and limitations from the perspective of chronic cardiometabolic and renal disease.
Collapse
Affiliation(s)
- Alfons J H M Houben
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; and .,CARIM School for Cardiovascular Diseases and
| | - Remy J H Martens
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; and.,School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands; and.,CARIM School for Cardiovascular Diseases and
| |
Collapse
|
11
|
Impact of long-term exposure to cigarette smoking on skin microvascular function. Microvasc Res 2014; 93:46-51. [DOI: 10.1016/j.mvr.2014.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/11/2014] [Accepted: 03/03/2014] [Indexed: 11/17/2022]
|
12
|
Bruning RS, Kenney WL, Alexander LM. Altered skin flowmotion in hypertensive humans. Microvasc Res 2014; 97:81-7. [PMID: 24418051 DOI: 10.1016/j.mvr.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/11/2013] [Accepted: 01/01/2014] [Indexed: 01/10/2023]
Abstract
Essential hypertensive humans exhibit attenuated cutaneous nitric oxide (NO)-dependent vasodilation. Using spectral analysis (fast Fourier transformation) we aimed to characterize the skin flowmotion contained in the laser-Doppler flowmetry recordings during local heating-induced vasodilation before and after concurrent pharmacological inhibition of nitric oxide synthase (NOS) in hypertensive and age-matched normotensive men and women. We hypothesized that hypertensive subjects would have lower total power spectral densities (PSDs), specifically in the frequency intervals associated with intrinsic endothelial and neurogenic control of the microvasculature. Furthermore, we hypothesized that NOS inhibition would attenuate the endothelial frequency interval. Laser-Doppler flowmetry recordings during local heating experiments from 18 hypertensive (MAP: 108±2mmHg) and 18 normotensive (MAP: 88±2mmHg) men and women were analyzed. Within site NO-dependent vasodilation was assessed by perfusion of a non-specific NOS inhibitor (N(G)-nitro-l-arginine methyl ester; l-NAME) through intradermal microdialysis during the heating-induced plateau in skin blood flow. Local heating-induced vasodilation increased total PSD for all frequency intervals (all p<0.001). Hypertensives had a lower total PSD (p=0.03) and absolute neurogenic frequency intervals (p<0.01) compared to the normotensives. When normalized as a percentage of total PSD, hypertensives had reduced neurogenic (p<0.001) and augmented myogenic contributions (p=0.04) to the total spectrum. NOS inhibition decreased total PSD (p<0.001) for both groups, but hypertensives exhibited lower absolute endothelial (p<0.01), neurogenic (p<0.05), and total PSD (p<0.001) frequency intervals compared to normotensives. These data suggest that essential hypertension results in altered neurogenic and NOS-dependent control of skin flowmotion and support the use of spectral analysis as a non-invasive technique to study vasoreactivity.
Collapse
Affiliation(s)
- R S Bruning
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802-6900, USA
| | - W L Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802-6900, USA
| | - L M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802-6900, USA.
| |
Collapse
|
13
|
Babos L, Járai Z, Nemcsik J. Evaluation of microvascular reactivity with laser Doppler flowmetry in chronic kidney disease. World J Nephrol 2013; 2:77-83. [PMID: 24255889 PMCID: PMC3832914 DOI: 10.5527/wjn.v2.i3.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the major causes of mortality in patients with chronic kidney disease (CKD). The complex process of accelerated athero- and arteriosclerosis in CKD is associated with this phenomenon, where endothelial dysfunction (ED) is one of the initial steps. Hence, the early diagnosis of ED can potentially lead to early interventions which could result in a better outcome for these patients. Several methodologies have been developed for the diagnosis of ED. Laser Doppler flowmetry (LDF) enables us to study the microcirculation continuously in a non-invasive manner. In our review we would like to focus on different tests developed for LDF, like postocclusive reactive hyperaemia, local heating, iontophoresis, microdialysis or analysis of flowmotion. We would also like to summarize the available data in CKD with these methodologies to enlighten their perspectives in the clinical use on this patient population.
Collapse
|
14
|
Thang OHD, Serné EH, Grooteman MPC, Smulders YM, Ter Wee PM, Tangelder GJ, Nubé MJ. Premature aging of the microcirculation in patients with advanced chronic kidney disease. NEPHRON EXTRA 2012; 2:283-92. [PMID: 23243413 PMCID: PMC3521446 DOI: 10.1159/000343295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Increasing age and advanced chronic kidney disease (CKD) are both associated with an attenuated vasodilator response of the skin microcirculation. In the present study, we investigated the effect of aging on microvascular reactivity in patients with advanced CKD. Methods Acetylcholine (ACh)-mediated endothelium-dependent vasodilation and sodium nitroprusside (SNP)-mediated endothelium-independent vasodilation were assessed by iontophoresis combined with laser Doppler flowmetry. Microvascular function was compared between 52 patients with advanced CKD (stage 4–5: n = 16; end-stage renal disease: n = 36) and 33 healthy control subjects. As aging has an important effect on microvascular function, both control subjects and CKD patients were divided in subgroups younger and older than 45 years. Linear regression analysis was applied to assess potential associations between microvascular function and various demographic and clinical parameters. Results There were three main findings. (1) In young patients with advanced CKD, both ACh- and SNP-mediated vasodilations were impaired if compared to young healthy controls (p = 0.04 and p = 0.056, respectively). (2) In young patients with advanced CKD, microvascular function was similar to old healthy controls and elderly patients with advanced CKD. (3) Whereas age was inversely associated with microvascular function in healthy controls (log ACh-mediated vasodilation R = −0.41; p = 0.02 and log SNP-mediated vasodilation R = −0.38; p = 0.03), no such relation was found in patients with advanced CKD. Conclusions Our results are consistent with premature aging of the microvascular vasodilatory capacity in patients with advanced CKD.
Collapse
Affiliation(s)
- Oanh H D Thang
- Department of Nephrology, Institute for Cardiovascular Research VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Zeb I, Ahmadi N, Molnar MZ, Li D, Shantouf R, Hatamizadeh P, Choi T, Kalantar-Zadeh K, Budoff MJ. Association of coronary artery calcium score and vascular dysfunction in long-term hemodialysis patients. Hemodial Int 2012; 17:216-22. [PMID: 22962941 DOI: 10.1111/j.1542-4758.2012.00739.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long-term hemodialysis patients are prone to an exceptionally high burden of cardiovascular disease and mortality. The novel temperature-based technology of digital thermal monitoring (DTM) of vascular reactivity appears associated with the severity of coronary artery disease in asymptomatic population. We hypothesized that in hemodialysis patients, the DTM and coronary artery calcium (CAC) score have a gradient association that follows that of subjects without kidney disease. We examined the cross-sectional DTM-CAC associations in a group of long-term hemodialysis patients, and their 1:1 matched normal counterpart. Area under the curve for temperature (TMP-AUC), the surrogate of the DTM index of vascular function, was assessed after a 5-minute arm-cuff reactive hyperemia test. Coronary calcium score was measured via electron beam computed tomography or multidetector computed tomography scan. We studied 105 randomly recruited hemodialysis patients (age: 58 ± 13 years, 47% men) and 105 age- and gender-matched controls. In hemodialysis patients vs. controls, TMP-AUC was significantly worse (114 ± 72 vs. 143 ± 80, P = 0.001) and CAC score was higher (525 ± 425 vs. 240 ± 332, P < 0.001). Hemodialysis patients were 14 times more likely to have CAC score >1000 as compared with controls. After adjustment for known confounders, the relative risk for case vs. control for each standard deviation decrease in TMP-AUC was 1.46 (95% confidence interval: 1.12-1.93, P = 0.007). Vascular reactivity measured via the novel DTM technology is incrementally worse across CAC scores in hemodialysis patients, in whom both measures are even worse than their age- and gender-matched controls. The DTM technology may offer a convenient and radiation-free approach to risk-stratify hemodialysis patients.
Collapse
Affiliation(s)
- Irfan Zeb
- Harold Simmons Center for Chronic Disease Research & Epidemiology, Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90509-2910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tikhonova IV, Tankanag AV, Chemeris NK. Age-related changes of skin blood flow during postocclusive reactive hyperemia in human. Skin Res Technol 2012; 19:e174-81. [DOI: 10.1111/j.1600-0846.2012.00624.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Irina V. Tikhonova
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya st. 3; Pushchino; Moscow Region; 142290; Russia
| | - Arina V. Tankanag
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya st. 3; Pushchino; Moscow Region; 142290; Russia
| | - Nikolay K. Chemeris
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya st. 3; Pushchino; Moscow Region; 142290; Russia
| |
Collapse
|
17
|
Evaluation of the EndoPAT as a Tool to Assess Endothelial Function. Int J Vasc Med 2012; 2012:904141. [PMID: 22500237 PMCID: PMC3303545 DOI: 10.1155/2012/904141] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/28/2011] [Indexed: 11/18/2022] Open
Abstract
Endothelial dysfunction is a potential target for (pharmaceutical) intervention of several systemic pathological conditions. We investigated the feasibility of the EndoPAT to evaluate acute changes in endothelial function with repeated noninvasive measurements and assessed its discriminating power in different populations.
Endothelial function was stable over a longer period of time in renally impaired patients (coefficient of variation 13%). Endothelial function in renally impaired and type 2 diabetic patients was not decreased compared to healthy volunteers (2.9 ± 1.4 and 1.8 ± 0.3, resp., versus 1.8 ± 0.5, P > 0.05). The EndoPAT did not detect an effect of robust interventions on endothelial function in healthy volunteers (glucose load: change from baseline 0.08 ± 0.50, 95% confidence interval −0.44 to 0.60; smoking: change from baseline 0.49 ± 0.92, 95% confidence interval −0.47 to 1.46). This suggests that at present the EndoPAT might not be suitable to assess (changes in) endothelial function in early-phase clinical pharmacology studies. Endothelial function as measured by the EndoPAT could be physiologically different from endothelial function as measured by conventional techniques. This should be investigated carefully before the EndoPAT can be considered a useful tool in drug development or clinical practice.
Collapse
|
18
|
Tew GA, Klonizakis M, Crank H, Briers JD, Hodges GJ. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc Res 2011; 82:326-32. [PMID: 21803051 DOI: 10.1016/j.mvr.2011.07.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/06/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare the inter-day reproducibility of post-occlusive reactive hyperaemia (PORH) and sympathetic vasomotor reflexes assessed by single-point laser Doppler flowmetry (SP-LDF), integrating-probe LDF (IP-LDF) and laser speckle contrast imaging (LSCI), and the spatial variability of PORH assessed by IP-LDF and LSCI. We also evaluated the relationship between IP-LDF and LSCI perfusion values across a broad range of skin blood flows. METHODS Eighteen healthy adults (50% male, age 27 ± 4 years) participated in this study. Using SP-LDF, IP-LDF and LSCI, indices of skin blood flow were measured on the forearm during PORH (1-, 5- and 10-min occlusions) and on the finger pad during inspiratory gasp and cold pressor tests. These tests were repeated 3-7 days later. Data were converted to cutaneous vascular conductance (CVC; laser Doppler flow/mean arterial pressure) and expressed as absolute and relative changes from pre-stimulus CVC (ΔCVC(ABS) and ΔCVC(REL), respectively), as well as normalised to peak CVC for the PORH tests. Reproducibility was expressed as within-subjects coefficients of variation (CV, in %) and intraclass correlation coefficients. RESULTS The reproducibility of PORH on the forearm was poorer when assessed with SP-LDF and IP-LDF compared to LSCI (e.g., CV for 5-min PORH ΔCVC(ABS)=35%, 27% and 19%, respectively), with no superior method of data expression. In contrast, the reproducibility of the inspiratory gasp and cold pressor test responses on the finger pad were better with SP-LDF and IP-LDF compared to LSCI (e.g., CV for inspiratory gasp ΔCVC(REL)=13%, 7% and 19%, respectively). The spatial variability of PORH responses was poorer with IP-LDF compared to LSCI (e.g., CV ranging 11-35% versus 3-16%, respectively). The association between simultaneous LSCI and IP-LDF perfusion values was non-linear. CONCLUSION The reproducibility of cutaneous PORH was better when assessed with LSCI compared to SP-LDF and IP-LDF; probably due to measuring larger skin areas (lower inter-site variability). However, when measuring sympathetic vasomotor reflexes on the finger pad, reproducibility was better with SP-LDF and IP-LDF, perhaps due to the high sensitivity of LSCI to changes in skin blood flow at low levels.
Collapse
Affiliation(s)
- Garry A Tew
- Centre for Sport and Exercise Science, Sheffield Hallam University, A125 Collegiate Hall, Sheffield, S10 2BP, UK.
| | | | | | | | | |
Collapse
|
19
|
Tikhonova IV, Tankanag AV, Chemeris NK. Time–amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human. Microvasc Res 2010; 80:58-64. [DOI: 10.1016/j.mvr.2010.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
|
20
|
Ahmadi N, Nabavi V, Nuguri V, Hajsadeghi F, Flores F, Akhtar M, Kleis S, Hecht H, Naghavi M, Budoff M. Low fingertip temperature rebound measured by digital thermal monitoring strongly correlates with the presence and extent of coronary artery disease diagnosed by 64-slice multi-detector computed tomography. Int J Cardiovasc Imaging 2009; 25:725-38. [PMID: 19634001 PMCID: PMC2729419 DOI: 10.1007/s10554-009-9476-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 07/07/2009] [Indexed: 12/04/2022]
Abstract
Previous studies showed strong correlations between low fingertip temperature rebound measured by digital thermal monitoring (DTM) during a 5 min arm-cuff induced reactive hyperemia and both the Framingham Risk Score (FRS), and coronary artery calcification (CAC) in asymptomatic populations. This study evaluates the correlation between DTM and coronary artery disease (CAD) measured by CT angiography (CTA) in symptomatic patients. It also investigates the correlation between CTA and a new index of neurovascular reactivity measured by DTM. 129 patients, age 63 ± 9 years, 68% male, underwent DTM, CAC and CTA. Adjusted DTM indices in the occluded arm were calculated: temperature rebound: aTR and area under the temperature curve aTMP-AUC. DTM neurovascular reactivity (NVR) index was measured based on increased fingertip temperature in the non-occluded arm. Obstructive CAD was defined as ≥50% luminal stenosis, and normal as no stenosis and CAC = 0. Baseline fingertip temperature was not different across the groups. However, all DTM indices of vascular and neurovascular reactivity significantly decreased from normal to non-obstructive to obstructive CAD [(aTR 1.77 ± 1.18 to 1.24 ± 1.14 to 0.94 ± 0.92) (P = 0.009), (aTMP-AUC: 355.6 ± 242.4 to 277.4 ± 182.4 to 184.4 ± 171.2) (P = 0.001), (NVR: 161.5 ± 147.4 to 77.6 ± 88.2 to 48.8 ± 63.8) (P = 0.015)]. After adjusting for risk factors, the odds ratio for obstructive CAD compared to normal in the lowest versus two upper tertiles of FRS, aTR, aTMP-AUC, and NVR were 2.41 (1.02–5.93), P = 0.05, 8.67 (2.6–9.4), P = 0.001, 11.62 (5.1–28.7), P = 0.001, and 3.58 (1.09–11.69), P = 0.01, respectively. DTM indices and FRS combined resulted in a ROC curve area of 0.88 for the prediction of obstructive CAD. In patients suspected of CAD, low fingertip temperature rebound measured by DTM significantly predicted CTA-diagnosed obstructive disease.
Collapse
Affiliation(s)
- Naser Ahmadi
- Los Angeles Biomedical Research Institute, Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Post pressure response of skin blood flowmotions in anesthetized rats with spinal cord injury. Microvasc Res 2009; 78:20-4. [DOI: 10.1016/j.mvr.2008.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/22/2008] [Indexed: 11/19/2022]
|
22
|
Rossi M, Carpi A, Galetta F, Franzoni F, Santoro G. Skin vasomotion investigation: A useful tool for clinical evaluation of microvascular endothelial function? Biomed Pharmacother 2008; 62:541-5. [DOI: 10.1016/j.biopha.2008.07.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022] Open
|