1
|
Kim JH. Interleukin-8 in the Tumor Immune Niche: Lessons from Comparative Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:25-33. [PMID: 32060885 DOI: 10.1007/978-3-030-38315-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-8 is a chemokine that is essential for inflammation and angiogenesis. IL-8 expression is elevated in tumor cell lines and tissues, as well as in peripheral blood obtained from cancer patients. Primary works have attempted to determine the biological effect of IL-8 on tumor cells, including cell proliferation, survival, and migration. More recently, IL-8 has acquired considerable attention as an immune modulator in the context of certain tumor microenvironments (TME); specifically, it can support a niche that favors tumor progression and metastasis. Tumor-derived IL-8 stimulates inflammation by interacting with the microenvironmental constituents, including fibroblasts, endothelial cells, and immune cells. However, the tumor immune system is complex, and mechanisms that construct the immune phenotype remain incompletely characterized. Herein, we will (1) address a potential role of IL-8 in regulating gene expression to establish immune landscape in tumor. Then, we will (2) review IL-8 signaling in the maintenance of stem cells and regulation of hematopoietic progenitors. Finally, (3) IL-8 functions will be discussed in naturally occurring animal cancers that offer a clinically realistic model for translational research. This chapter will provide a new insight into the tumor immune niche and help us develop immunotherapies for cancers.
Collapse
Affiliation(s)
- Jong-Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN, USA. .,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Moldobaeva A, Zhong Q, Eldridge L, Wagner EM. CD11b + interstitial macrophages are required for ischemia-induced lung angiogenesis. Physiol Rep 2018; 6:e13721. [PMID: 29894584 PMCID: PMC5997213 DOI: 10.14814/phy2.13721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/13/2023] Open
Abstract
The importance of myeloid cells in promoting neovascularization has been shown in a number of pathological settings in several organs. However, the specific role of macrophages in promoting systemic angiogenesis during pulmonary ischemia is not fully determined. Our past work suggested that cells of monocytic lineage contributed to systemic angiogenesis in the lung since clodronate-induced depletion of all macrophages resulted in attenuated neovascularization. Our current goals were to define the population of macrophages important for systemic vessel growth into the lung after the onset of pulmonary ischemia in mice. Interstitial macrophages (CD64+ MerTK+ CD11b+ ) increased significantly as did the percent of CD45+ Ly6G+ neutrophils 1 day after the induction of left lung ischemia, despite the fact there was limited cell recruitment due to complete obstruction of the left pulmonary artery in this ischemia model. Since both interstitial macrophages and neutrophils express CD11b, we used CD11b+ DTR mice and showed the critical role for these cells since CD11b+ depleted mice showed no systemic angiogenesis 7 days after the onset of ischemia when compared to control mice. Coculture of mouse aortic endothelial cells with macrophages showed increased proliferation relative to endothelial cells in culture without inflammatory cells, or pulmonary artery endothelial cells. We conclude that CD11b+ leukocytes, trapped within the lung at the onset of ischemia, contribute to growth factor release, and are critical for new blood vessel proliferation.
Collapse
Affiliation(s)
- Aigul Moldobaeva
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| | - Qiong Zhong
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| | - Lindsey Eldridge
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| | - Elizabeth M. Wagner
- Departments of Medicine and Environmental Health SciencesJohns Hopkins UniversityBaltimoreMaryland
| |
Collapse
|
3
|
Xue MQ, Liu J, Sang JF, Su L, Yao YZ. Expression characteristic of CXCR1 in different breast tissues and the relevance between its expression and efficacy of neo-adjuvant chemotherapy in breast cancer. Oncotarget 2018; 8:48930-48937. [PMID: 28454081 PMCID: PMC5564737 DOI: 10.18632/oncotarget.16893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022] Open
Abstract
Objective To investigate chemokine receptor CXCR1 expression characteristic in different breast tissues and analyze the relationship between CXCR1 expression changes in breast cancer tissue and efficacy of neo-adjuvant chemotherapy. Results Chemokine receptor CXCR1 was lowly expressed in normal breast tissues and breast fibroadenoma, but highly expressed in breast cancer. It was significantly correlated with pathological stage, tumor cell differentiation, and lymph node metastasis (P < 0.05). After neo-adjuvant chemotherapy, CXCR1 expression in breast cancer tissues decreased. Among these 104 breast cancer patients with different molecular subtypes, the survival rate with Luminal A was the highest, followed by the Luminal B breast cancer, TNBC was the worst. Materials and Methods 104 cases with breast carcinoma, 20 cases with normal breast and 20 cases with breast fibroadenoma were included and followed up. Immunohistochemistry was used to detect the expression of CXCR1 in the various tissues. The relationship between the CXCR1 expression changes in breast cancer biopsies and surgical specimens, as well as the efficacy of neo-adjuvant chemotherapy, was analyzed. Conclusions Chemokine receptor CXCR1 could be used as an indicator to predict benign or malignant breast disease, and it can even predict the malignancy degree of breast cancer, as well as its invasive ability and prognosis.
Collapse
Affiliation(s)
- Miao-Qun Xue
- Department of General Surgery, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jun Liu
- Department of General Surgery, The Jiang Bei People's Hospital of Nanjing, Nanjing 210048, China
| | - Jian-Feng Sang
- Department of General Surgery, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yong-Zhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
4
|
CXCR2 is involved in pulmonary intravascular macrophage accumulation and angiogenesis in a rat model of hepatopulmonary syndrome. Clin Sci (Lond) 2016; 131:159-168. [DOI: 10.1042/cs20160593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a lung complication in various liver diseases, with high incidence, poor prognosis and no effective non-surgical treatments in patients with hepatocirrhosis. Therefore, assessing HPS pathogenesis to explore proper therapy strategies is clinically relevant. In the present study, male Sprague–Dawley rats underwent sham operation or common bile duct ligation (CBDL). Two weeks post-surgery, the following groups were set up for 2 weeks of treatment: sham + normal saline, CBDL + CXCR2 antagonist SB225002, CBDL + tumour necrosis factor α (TNF-α) antagonist PTX and CBDL + normal saline groups. Liver and lung tissues were collected after mean arterial pressure (MAP) and portal venous pressure (PVP) measurements. Haematoxylin and eosin (H&E) staining (lung) and Masson staining (liver) were performed for pathological analyses. Finally, pulmonary tissue RNA and total protein were assessed for target effectors. The mRNA and protein levels of CXCR2 were significantly increased in the pulmonary tissue of CBDL rats. What's more, CXCR2 inhibition by SB225002 reduced the expression of CD68 and von Willebrand factor (vWf) in CBDL rats. Importantly, CXCR2 inhibition suppressed the activation of Akt and extracellular signal-regulated kinase (ERK) in CBDL rats. Antagonization of TNF-α with PTX down-regulated the expression of CXCR2. During HPS pathogenesis in rats, CXCR2 might be involved in the accumulation of pulmonary intravascular macrophages and angiogenesis, possibly by activating Akt and ERK, with additional regulation by TNF-α that enhanced pulmonary angiogenesis by directly acting on the pulmonary tissue. Finally, the present study may provide novel targets for the treatment of HPS.
Collapse
|
5
|
Lymphangiogenesis in rat asthma model. Angiogenesis 2016; 20:73-84. [PMID: 27787629 DOI: 10.1007/s10456-016-9529-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/20/2016] [Indexed: 01/04/2023]
Abstract
Although bronchial angiogenesis has been well documented in allergic asthma, lymphangiogenesis has not been widely studied. Therefore, we evaluated changes in lung lymphatics in a rat model of allergen-induced asthma using house dust mite (Der p 1; 100 μg/challenge). Additionally, properties of isolated lung lymphatic endothelial cells (CD45-, CD141+, LYVE-1+, Prox-1+) were studied in vitro. Three weeks after the onset of intranasal allergen exposure (twice-weekly), an increase in the number of lung lymphatic vessels was measured (34% increase) by lung morphometry. New lymphatic structures were seen predominantly in the peribronchial and periarterial interstitial space but also surrounding large airways. Isolated lymphatic endothelial cells from sensitized lungs showed enhanced proliferation (% Ki67+), chemotaxis, and tube formation (number and length) compared to lymphatic endothelial cells isolated from naive rat lungs. This hyper-proliferative lymphangiogenic phenotype was preserved through multiple cell passages (2-8). Lymphatic endothelial cells isolated from naive and HDM-sensitized rats produced similar in vitro levels of VEGF-C, VEGF-D, and VEGFR3 protein, each recognized as critical lymphangiogenic factors. Inhibition with anti-VEGFR (axitinib, 0.1 μM) blocked proliferation and chemotaxis. Results suggest that in vivo sensitization causes fundamental changes to lymphatic endothelium, which are retained in vitro, and may relate to VEGFR downstream signaling.
Collapse
|
6
|
Li L, Yu J, Duan Z, Dang HX. The effect of NFATc1 on vascular generation and the possible underlying mechanism in epithelial ovarian carcinoma. Int J Oncol 2016; 48:1457-66. [PMID: 26820075 DOI: 10.3892/ijo.2016.3355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
Abstract
We investigated the effect of nuclear factor of activated T cells c1 (NFATc1) on the growth and vascular generation of human ovarian carcinoma SKOV3 cell-transplanted tumors in nude mice and explored the possible underlying mechanism. NFATc1 siRNA was transfected into the SKOV3 cells, which were then subjected to immunofluorescence tests and real-time reverse transcription polymerase chain reaction (RT-PCR) to determine the transfection-induced inhibition rate. The tumor volumes in the nude mice in all groups were measured to determine the in vivo antitumor effect of NFATc1 siRNA. Immunohistochemical (IHC) methods were employed to detect NFATc1 expression in tumor tissue, combined with cytokeratin (CK) staining to label the epithelial origin of the tumor tissue. CD34 and podoplanin were used as markers for labeling microvessels and microlymphatic vessels, respectively. The densities of microvessels and microlymphatic vessels in each group were calculated and statistically analyzed. RT-PCR and western blotting were performed to detect the protein and mRNA expression levels of NFATc1, the ELR+ CXC chemokine interleukin (IL)-8, fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor BB (PDGF BB) in xenografted tumor tissue in all groups. NFATc1 was highly expressed in tumor tissue in the control groups. The intervention group exhibited a tumor growth inhibition rate of 57.08% and presented a lower tumor weight and volume compared with the two control groups. In the control groups, the microvessel densities were 12.00 ± 1.65 and 11.47 ± 0.32, respectively, and the microlymphatic vessel densities were 10.03 ± 0.96 and 9.95 ± 1.12; these values were significantly higher than in the intervention group. RT-PCR and western blot shows that NFATc1 siRNA could markedly suppress the expression of IL-8, FGF-2 and PDGF BB at the mRNA and the protein level. In conclusion, it was shown that NFATc1 siRNA significantly suppresses the growth and vascular generation of SKOV3 human ovarian carcinoma cell-transplanted tumors subcutaneously xenografted into nude mice. The downregulation of the expression of IL-8, FGF-2 and PDGF BB may be one of the mechanisms underlying the above inhibitory effects.
Collapse
Affiliation(s)
- Long Li
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jihui Yu
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhaoning Duan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong-Xing Dang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Wei J, Chen X, Li Q, Chen J, Khan N, Wang B, Cheng JW, Gordon JR, Li F. ELR-CXC chemokine antagonism and cisplatin co-treatment additively reduce H22 hepatoma tumor progression and ameliorate cisplatin-induced nephrotoxicity. Oncol Rep 2014; 31:1599-604. [PMID: 24482222 DOI: 10.3892/or.2014.2996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum) is one of the most commonly used agents for the chemotherapy of various types of cancers, but its use is limited by its dose-dependent side-effects (e.g., nephrotoxicity). The ELR-CXC chemokines are potent tumor growth, metastatic and angiogenic factors and can foster tumor resistance to chemotherapeutic agents. They are also potent proinflammatory agents. The aim of the present study was to evaluate the added effects of combining cisplatin chemotherapy with ELR-CXC chemokine antagonism in a mouse H22 hepatoma cancer cell model. The mice were injected with tumor cells and were then treated with cisplatin (12.5 or 2 mg/kg doses), either alone or together with the chemokine antagonist CXCL8(3-72)K11R/G31P (G31P) (50 µg/kg). At varying time-points renal function was examined using blood urea nitrogen (BUN) and serum creatinine (SCr) as read-outs for the toxic effects of cisplatin, while tumor growth and metastasis were assessed as endpoints. High-dose cisplatin therapy reduced the tumor burden by 52%, while co-delivery of G31P further augmented the tumor growth-suppressive effects of this dose of cisplatin to 71%; G31P by itself and low-dose cisplatin reduced the tumor burden by 19 and 39%, respectively. G31P also reduced the nephrotoxic effects of high-dose cisplatin to the effects observed in the low-dose cisplatin-treated animals. These data confirm the beneficial effects of combined cisplatin chemotherapy and ELR-CXC chemokine anatagonism in the context of both tumor progression and adverse side-effects.
Collapse
Affiliation(s)
- Jing Wei
- Department of Immunology, Dalian Medical University, Dalian 116044, P.R. China
| | - Xiangyu Chen
- Department of Immunology, Dalian Medical University, Dalian 116044, P.R. China
| | - Qiang Li
- Jilin Medical College, Jilin 132013, P.R. China
| | - Jifei Chen
- Department of Immunology, Dalian Medical University, Dalian 116044, P.R. China
| | - Noman Khan
- Department of Immunology, Dalian Medical University, Dalian 116044, P.R. China
| | - Bing Wang
- Department of Immunology, Dalian Medical University, Dalian 116044, P.R. China
| | - Jya-Wei Cheng
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - John R Gordon
- Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian 116044, P.R. China
| |
Collapse
|
8
|
Different microvascular permeability responses elicited by the CXC chemokines MIP-2 and KC during leukocyte recruitment: Role of LSP1. Biochem Biophys Res Commun 2012; 423:484-9. [DOI: 10.1016/j.bbrc.2012.05.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022]
|
9
|
Lopez-Dee ZP, Chittur SV, Patel B, Stanton R, Wakeley M, Lippert B, Menaker A, Eiche B, Terry R, Gutierrez LS. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects. PLoS One 2012; 7:e34590. [PMID: 22509329 PMCID: PMC3318003 DOI: 10.1371/journal.pone.0034590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/02/2012] [Indexed: 12/31/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein with regulatory functions in inflammation and cancer. The type 1 repeats (TSR) domains of TSP-1 have been shown to interact with a wide range of proteins that result in the anti-angiogenic and anti-tumor properties of TSP-1. To ascertain possible functions and evaluate potential therapeutic effects of TSRs in inflammatory bowel disease, we conducted clinical, histological and microarray analyses on a mouse model of induced colitis. We used dextran sulfate sodium (DSS) to induce colitis in wild-type (WT) mice for 7 days. Simultaneously, mice were injected with either saline or one form of TSP-1 derived recombinant proteins, containing either (1) the three type 1 repeats of the TSP-1 (3TSR), (2) the second type 1 repeat (TSR2), or (3) TSR2 with the RFK sequence (TSR2+RFK). Total RNA isolated from the mice colons were processed and hybridized to mouse arrays. Array data were validated by real-time qPCR and immunohistochemistry. Histological and disease indices reveal that the mice treated with the TSRs show different patterns of leukocytic infiltration and that 3TSR treatment was the most effective in decreasing inflammation in DSS-induced colitis. Transcriptional profiling revealed differentially expressed (DE) genes, with the 3TSR-treated mice showing the least deviation from the WT-water controls. In conclusion, this study shows that 3TSR treatment is effective in attenuating the inflammatory response to DSS injury. In addition, the transcriptomics work unveils novel genetic data that suggest beneficial application of the TSR domains in inflammatory bowel disease.
Collapse
Affiliation(s)
- Zenaida P. Lopez-Dee
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Sridar V. Chittur
- Center for Functional Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
| | - Bhumi Patel
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Rebecca Stanton
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Michelle Wakeley
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Brittany Lippert
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Anastasya Menaker
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Bethany Eiche
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Robert Terry
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Linda S. Gutierrez
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Eldridge L, Moldobaeva A, Wagner EM. Increased hyaluronan fragmentation during pulmonary ischemia. Am J Physiol Lung Cell Mol Physiol 2011; 301:L782-8. [PMID: 21821727 DOI: 10.1152/ajplung.00079.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hyaluronan (HA), a glycosaminoglycan critical to the lung extracellular matrix, has been shown to dissociate into low-molecular-weight (LMW) HA fragments following exposure to injurious stimuli. In the present study we questioned whether lung HA changed during ischemia and whether changes had an effect on subsequent angiogenesis. After left pulmonary artery ligation (LPAL) in mice, we analyzed left lung homogenates immediately after the onset of ischemia (0 h) and intermittently for 14 days. The relative expression of HA synthase (HAS)1, HAS2, and HAS3 was determined by real-time RT-PCR, total HA in the lung was measured by an ELISA-like assay, gel electrophoresis was performed to determine changes in HA size distribution, and the activity of hyaluronidases was determined by zymography. A 50% increase in total HA was measured 16 h after the onset of ischemia and remained elevated for up to 7 days. Furthermore, a fourfold increase in LMW HA fragments (495-30 kDa) was observed by 4 h after LPAL. Both HAS1 and HAS2 showed increased expression 4-16 h after LPAL, yet no changes were seen in hyaluronidase activity. These results suggest that both HA fragmentation and activation of HA synthesis contribute to increased HA levels during lung ischemia. Delivery of LMW HA fragments in an in vitro tube formation assay or directly to the ischemic mouse lung in vivo both resulted in increased angiogenesis. We conclude that ischemic injury results in matrix fragmentation, which leads to stimulation of neovascularization.
Collapse
Affiliation(s)
- Lindsey Eldridge
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
11
|
Zhang H, Yang R, Wang Z, Lin G, Lue TF, Lin CS. Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration. J Sex Med 2010; 8:437-46. [PMID: 21114767 DOI: 10.1111/j.1743-6109.2010.02128.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Previously we reported that paracrine actions likely mediated the therapeutic effects of adipose tissue-derived stem cells (ADSCs) on a rat model of cavernous nerve (CN) injury. AIM To identify potential neurotrophic factors in ADSC's secretion, test the most promising one, and identify the molecular mechanism of its neurotrophic action. METHODS Rat major pelvic ganglia (MPG) were cultured in conditioned media of ADSC and penile smooth muscle cells (PSMCs). Cytokine expression in these two media was probed with a cytokine antibody array. CXCL5 cytokine was quantified in these two media by enzyme-linked immunosorbent assay (ELISA). Activation of Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) by CXCL5 was tested in neuroblastoma cell lines BE(2)C and SH-SY5Y as well as in Schwann cell line RT4-D6P2T by Western blot. Involvement of CXCL5 and JAK/STAT in ADSC-conditioned medium's neurotrophic effects was confirmed with anti-CXCL5 antibody and JAK inhibitor AG490, respectively. MAIN OUTCOME MEASURES Neurotrophic effects of ADSC and PSMC-conditioned media were quantified by measuring neurite length in MPG cultures. Secretion of CXCL5 in these two media was quantified by ELISA. Activation of JAK/STAT by CXCL5 was quantified by densitometry on Western blots for STAT1 and STAT3 phosphorylation. RESULTS MPG neurite length was significantly longer in ADSC than in PSMC-conditioned medium. CXCL5 was secreted eight times higher in ADSC than in PSMC-conditioned medium. Anti-CXCL5 antibody blocked the neurotrophic effects of ADSC-conditioned medium. CXCL5 activated JAK/STAT concentration-dependently from 0 to 50 ng/mL in RT4-D6P2T Schwann cells. At 50 ng/mL, CXCL5 activated JAK/STAT time-dependently, peaking at 45 minutes. AG490 blocked these activities as well as the neurotrophic effects of ADSC-conditioned medium. CONCLUSIONS CXCL5 was secreted by ADSC at a high level, promoted MPG neurite growth, and activated JAK/STAT in Schwann cells. CXCL5 may contribute to ADSC's therapeutic efficacy on CN injury-induced ED.
Collapse
Affiliation(s)
- Haiyang Zhang
- Knuppe Molecular Urology Laboratory-Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|