1
|
Rico-Fontalvo J, Reina M, Soler MJ, Unigarro-Palacios M, Castañeda-González JP, Quintero JJ, Raad-Sarabia M, de Moraes TP, Daza-Arnedo R. Kidney effects of Glucagon-Like Peptide 1 (GLP1): from molecular foundations to a pharmacophysiological perspective. J Bras Nefrol 2024; 46:e20240101. [PMID: 39514688 PMCID: PMC11548866 DOI: 10.1590/2175-8239-jbn-2024-0101en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024] Open
Abstract
GLP1 receptor agonists (GLP1-RAs) are drugs that mimic the effects of the incretin hormone GLP1 and were initially introduced in medicine for the treatment of diabetes in 2005 and for obesity in 2014. Over time, data from secondary and exploratory objectives of large randomized controlled-trials suggested that GLP1-RAs could also exert renal action by slowing the progression of kidney disease in patients with and without diabetes. Based on this rationale, the Flow study (1 mg semaglutide vs placebo) was designed and recruitment began in 2019 until May 2021. The recently published results confirmed the effect of semaglutide in reducing the composite renal outcome. However, similar to SGLT2 inhibitors, the potential mechanisms behind the renal effects of GLP1-RAs still need to be elucidated. The aim of this review is to address the different physiological mechanisms of GLP1-RAs at the renal level, using evidence from experimental studies and current scientific literature.
Collapse
Affiliation(s)
- Jorge Rico-Fontalvo
- Asociación Colombiana de Nefrología e HTA, Comité de Riñón, Diabetes y Metabolismo, Bogotá, Colombia
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Departamento de Nefrología, Barranquilla, Colombia
| | - Maricely Reina
- Fundación Universitaria de Ciencias de la Salud, Hospital San José, Departamento de Nefrología, Bogotá, Colombia
| | - María José Soler
- Hospital Universitario Vall de Hebron, Servicio de Nefrología, Barcelona, España
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain. Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, España
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0031), Spain
| | - Mario Unigarro-Palacios
- Fundación Universitaria de Ciencias de la Salud, Hospital San José, Departamento de Endocrinología, Bogotá, Colombia
| | | | | | - María Raad-Sarabia
- Universidad del Sinú, Departamento de Medicina Interna, Cartagena, Colombia
| | | | - Rodrigo Daza-Arnedo
- Asociación Colombiana de Nefrología e HTA, Comité de Riñón, Diabetes y Metabolismo, Bogotá, Colombia
| |
Collapse
|
2
|
Jarade C, Zolotarova T, Moiz A, Eisenberg MJ. GLP-1-based therapies for the treatment of resistant hypertension in individuals with overweight or obesity: a review. EClinicalMedicine 2024; 75:102789. [PMID: 39246720 PMCID: PMC11377134 DOI: 10.1016/j.eclinm.2024.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Despite the availability of a wide range of antihypertensive agents, a significant proportion of individuals with resistant hypertension (RHTN) struggle to achieve blood pressure (BP) control. Obesity ranks among the most significant modifiable risk factors for RHTN, with 56-91% of patients with RHTN classified as overweight or obese. Glucagon-like peptide-1 receptor agonist (GLP-1 RAs) are a class of anti-obesity medications that have recently demonstrated efficacy in reducing BP and improving cardiovascular (CV) outcomes in individuals with overweight or obesity. Among the available GLP-1-based therapies, liraglutide, semaglutide, and tirzepatide have been approved for chronic weight management in this population. Tirzepatide, a dual GLP-1 and glucose-dependent insulinotropic polypeptide receptor agonist, has the greatest effect on weight loss and BP reduction compared to GLP-1 RAs alone. To our knowledge, no trials have directly evaluated the effect of GLP-1 RAs or dual GLP-1/GIP receptor agonists on RHTN management. In this review article, we propose that targeting weight loss through GLP-1-based therapies should be explored as a treatment option for individuals with RHTN who are overweight or obese.
Collapse
Affiliation(s)
- Candace Jarade
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Tetiana Zolotarova
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Areesha Moiz
- Graduate Program in Clinical and Translational Research, McGill University, Montreal, QC, Canada
| | - Mark J Eisenberg
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Graduate Program in Clinical and Translational Research, McGill University, Montreal, QC, Canada
- Departments of Medicine and of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Division of Cardiology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Lian K, Zhang K, Kan C, Hou N, Han F, Sun X, Qiu H, Guo Z. Emerging therapeutic landscape: Incretin agonists in chronic kidney disease management. Life Sci 2024; 351:122801. [PMID: 38862060 DOI: 10.1016/j.lfs.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The increasing incidence of chronic kidney disease (CKD) poses a significant public health concern, prompting heightened attention to its treatment. Incretins, including glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, are intestinal peptides released after nutrient intake, known for their hypoglycemic effects in diabetes management. Recent advancements highlight the promising outcomes of GLP-1 receptor agonists in reducing CKD risk factors and improving renal outcomes. The multifaceted functions of GLP-1, such as its anti-obesity, anti-hypertensive, anti-hyperglycemic, anti-lipid, anti-inflammatory, and endothelial function protective properties, contribute to its potential as a therapeutic agent for CKD. Although experiments suggest the potential benefits of incretin in CKD, a comprehensive understanding of its specific mechanisms is still lacking. This review aims to provide a detailed examination of current evidence and potential future directions, emphasizing the promising yet evolving landscape of incretin agonists in the context of CKD.
Collapse
Affiliation(s)
- Kexin Lian
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China; Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Zhentao Guo
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
4
|
Martins FL, Ribeiro-Silva JC, Nistala R, Girardi ACC. Bidirectional relation between dipeptidyl peptidase 4 and angiotensin II type I receptor signaling. Am J Physiol Cell Physiol 2024; 326:C1203-C1211. [PMID: 38581656 PMCID: PMC11193519 DOI: 10.1152/ajpcell.00734.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 04/08/2024]
Abstract
Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.
Collapse
Affiliation(s)
- Flavia L Martins
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
- Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Joao Carlos Ribeiro-Silva
- Department of Ophthalmology & Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
5
|
Ribeiro-Silva JC, Tavares CAM, Girardi ACC. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: A mini-review of the potential mechanisms. Curr Opin Pharmacol 2023; 69:102355. [PMID: 36857807 DOI: 10.1016/j.coph.2023.102355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/03/2023]
Abstract
The incretin hormone glucagon-like peptide 1 (GLP-1) is a key component of the signaling mechanisms promoting glucose homeostasis. Clinical and experimental studies demonstrated that GLP-1 receptor agonists, including GLP-1 itself, have favorable effects on blood pressure and reduce the risk of major cardiovascular events, independently of their effect on glycemic control. GLP-1 receptors are present in the hypothalamus and brainstem, the carotid body, the vasculature, and the kidneys. These organs are involved in blood pressure regulation, have their function altered in hypertension, and are positively benefited by the treatment with GLP-1 receptor agonists. Here, we discuss the potential mechanisms whereby activation of GLP-1R signaling exerts blood pressure-lowering effects beyond glycemic control.
Collapse
Affiliation(s)
- Joao Carlos Ribeiro-Silva
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caio A M Tavares
- Unidade de Cardiogeriatria, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Academic Research Organization (ARO), Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Adriana C C Girardi
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Li X, Song Y, Guo T, Xiao G, Li Q. Effect of Glucagon-like Peptide 1 Receptor Agonists on the Renal Protection in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. DIABETES & METABOLISM 2022; 48:101366. [PMID: 35760374 DOI: 10.1016/j.diabet.2022.101366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND . - Glucagon-like peptide 1(GLP-1) receptor agonists are used in patients with type 2 diabetes as hypoglycemic drugs; a growing body of evidence has clarified their renoprotective benefits. We performed a meta-analysis to summarize the most recent evidence on the renal benefits of GLP-1 receptor agonists from clinical trials of patients with type 2 diabetes. METHODS . - This meta-analysis used a fixed-effects model to estimate the risk ratio (RR) with 95% confidence intervals (CIs) to investigate the effect of GLP-1 receptor agonists on the renal protection. The outcomes were a composite renal outcome, estimated glomerular filtration rate (eGFR) decrease, new macroalbuminuria, doubling of serum creatinine, end-stage renal disease (ESRD) and renal death. We also checked the composite renal outcome of the patient subgroups based on the structural source of human GLP-1 or exendin-4. RESULTS . - Among the 12 articles screened, seven studies involving 48101 patients met pre-specified criteria and were included. In general, the use of GLP-1 receptor agonists reduced the risk of the composite renal outcome by 17% (RR 0•83 [95% CI 0•79-0•88]; P < 0•00001), with no significant interaction in subgroups analysis (P = 0.66); the risk of new-onset of persistent macroalbuminuria was reduced by 25% (RR 0•75 [95%CI 0•69-0•81]; P < 0•00001) compared to placebo. However, GLP-1 receptor agonists had no significant effect on eGFR decrease (RR 0•92 [95% CI 0•83-1.01]; P = 0•09), doubling of serum creatinine (RR 0•97 [95% CI 0•78-1.21]; P = 0•79), or end-stage renal disease (RR 0•81 [95% CI 0•62-1.06]; P = 0•12) compared to placebo or insulin glargine (AWARD-7) in patients with type 2 diabetes. CONCLUSION . - GLP-1 receptor agonists, regardless of their structural homology, have significant benefits in reducing the risk of the composite renal outcome, especially in new macroalbuminuria compared with placebo or insulin glargine in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Endocrinology and Metabolic Diseases, Dalian University Affiliated Xinhua Hospital, Dalian Liaoning 116021, China
| | - Yujie Song
- Department of Endocrinology and Metabolic Diseases, Dalian University Affiliated Xinhua Hospital, Dalian Liaoning 116021, China
| | - Tao Guo
- Department of Endocrinology and Metabolic Diseases, Dalian University Affiliated Xinhua Hospital, Dalian Liaoning 116021, China
| | - Guiying Xiao
- Department of Endocrinology and Metabolic Diseases, Dalian University Affiliated Xinhua Hospital, Dalian Liaoning 116021, China
| | - Qiumei Li
- Department of Endocrinology and Metabolic Diseases, Dalian University Affiliated Xinhua Hospital, Dalian Liaoning 116021, China.
| |
Collapse
|
7
|
Habib HA, Heeba GH, Khalifa MMA. Comparative effects of incretin-based therapy on early-onset diabetic nephropathy in rats: Role of TNF-α, TGF-β and c-caspase-3. Life Sci 2021; 278:119624. [PMID: 34004254 DOI: 10.1016/j.lfs.2021.119624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/09/2022]
Abstract
AIMS Diabetic nephropathy, a major threat to diabetic patients, is considered as the main reason for end-stage renal disease. Fortunately, incretin-based therapy has been aroused as considerable source to attenuate diabetic renal damage. This study aimed to investigate whether superior protective effects on the progression of diabetic kidney are exerted by glucagon-like peptide-1 analog, exenatide, or dipeptidyl peptidase-4 inhibitor, sitagliptin. MATERIALS AND METHODS Male Wistar rats were fed high-fat diet for 2 weeks followed by injection of low dose streptozotocin to induce type 2 diabetes mellitus. Four weeks after induction of diabetes, diabetic rats were administered vehicle, exenatide (5 μg/kg/day, SC) or sitagliptin (10 mg/kg/day, orally) for 4 weeks. KEY FINDINGS Different incretin mimetic agents improved renal function as evident by significant decreases in serum creatinine and urea levels with decline in urinary microalbuminuria and marked improvement in histological alterations. Both treated diabetic rats also exhibited a significant improvement in metabolic intolerance with more pronounced effect of exenatide on glucose regulation. Ameliorated renal oxidative stress alongside significant downregulation in transforming growth factor-beta, tumor necrosis factor-alpha and cleaved-caspase-3 protein expressions in renal tissues were recorded in treated diabetic rats. SIGNIFICANCE Administration of either exenatide or sitagliptin showed ameliorative effects on early diabetic nephropathy without notable differences between their renal protective effects. However, further clinical studies are still required to ensure their comparative promising effects on the management of renal complication of diabetes.
Collapse
Affiliation(s)
- Heba A Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
8
|
Habib HA, Heeba GH, Khalifa MMA. Effect of combined therapy of mesenchymal stem cells with GLP-1 receptor agonist, exenatide, on early-onset nephropathy induced in diabetic rats. Eur J Pharmacol 2021; 892:173721. [PMID: 33159934 DOI: 10.1016/j.ejphar.2020.173721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy is the principal cause of end-stage renal failure and current interventions for its recession remains unsatisfactory. Mesenchymal stem cells (MSCs) hold an attractive source for renovating injured tissues. Unfortunately, limited self-renewal and migration capacity of MSCs after transplantation hinder their clinical applicability which demands a new policy for enhancing their biological functions. This study aimed to investigate whether the renoprotective potential of adipose-derived MSCs (ADMSCs) in diabetic rats could be promoted by exenatide, a glucagon-like peptide-1 (GLP-1) analogue. These effects were studied in type 2 diabetes mellitus rats which were administrated ADMSCs, exenatide or their combination four weeks post-induction. Four weeks later, renal function parameters were evaluated. To address the possible underlying mechanisms, parameters indicating glycolipid metabolism tolerance and oxidative stress biomarkers were assessed in renal tissues alongside evaluation of protein expression of tumor necrosis factor-alpha, transforming growth factor-beta1 and cleaved caspase-3. The results showed that the combined therapy had superior renoprotective effect as evident by significant improvement in kidney function and renal architecture changes through rebalancing of inflammatory, fibrotic and apoptotic markers. Based on these outcomes, ADMSCs with exenatide were supposed to effectively ameliorate diabetic renal dysfunction compared to ADMSCs solely, presenting a promise therapy for diabetic nephropathy with further clinical studies warranted to validate this effect.
Collapse
Affiliation(s)
- Heba A Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt.
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
9
|
Puglisi S, Rossini A, Poli R, Dughera F, Pia A, Terzolo M, Reimondo G. Effects of SGLT2 Inhibitors and GLP-1 Receptor Agonists on Renin-Angiotensin-Aldosterone System. Front Endocrinol (Lausanne) 2021; 12:738848. [PMID: 34745006 PMCID: PMC8567993 DOI: 10.3389/fendo.2021.738848] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Sodium-glucose cotransporters inhibitors (SGLT2-i) and GLP-1 receptor agonists (GLP1-RA) are glucose-lowering drugs that are proved to reduce the cardiovascular (CV) risk in type 2 diabetes mellitus (T2DM). In this process, the renin-angiotensin-aldosterone system (RAAS) is assumed to play a role. The inhibition of SGLT2 improves hyperglycemia hampering urinary reabsorption of glucose and inducing glycosuria. This "hybrid" diuretic effect, which couples natriuresis with osmotic diuresis, potentially leads to systemic RAAS activation. However, the association between SGLT2-i and systemic RAAS activation is not straightforward. Available data indicate that SGLT2-i cause plasma renin activity (PRA) increase in the early phase of treatment, while PRA and aldosterone levels remain unchanged in chronic treated patients. Furthermore, emerging studies provide evidence that SGLT2-i might have an interfering effect on aldosterone/renin ratio (ARR) in patients with T2DM, due to their diuretic and sympathoinhibition effects. The cardio- and reno-protective effects of GLP-1-RA are at least in part related to the interaction with RAAS. In particular, GLP1-RA counteract the action of angiotensin II (ANG II) inhibiting its synthesis, increasing the inactivation of its circulating form and contrasting its action on target tissue like glomerular endothelial cells and cardiomyocytes. Furthermore, GLP1-RA stimulate natriuresis inhibiting Na+/H+ exchanger NHE-3, which is conversely activated by ANG II. Moreover, GLP1 infusion acutely reduces circulating aldosterone, but this effect does not seem to be chronically maintained in patients treated with GLP1-RA. In conclusion, both SGLT2-i and GLP1-RA seem to have several effects on RAAS, though additional studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Soraya Puglisi
- Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Alessandro Rossini
- Endocrinology and Diabetes Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Roberta Poli
- Metabolic Disease and Diabetes Unit, San Luigi Gonzaga Hospital, Orbassano, Italy
- *Correspondence: Roberta Poli,
| | - Francesca Dughera
- Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Anna Pia
- Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Massimo Terzolo
- Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Giuseppe Reimondo
- Internal Medicine, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| |
Collapse
|
10
|
Vitale M, Haxhi J, Cirrito T, Pugliese G. Renal protection with glucagon-like peptide-1 receptor agonists. Curr Opin Pharmacol 2020; 54:91-101. [PMID: 33027748 DOI: 10.1016/j.coph.2020.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
There is an unmet need for renoprotective drugs for more pronounced reduction of albuminuria beyond that provided by renin-angiotensin system (RAS) blockers and for effective slowdown of eGFR decline independent of albuminuria. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have proven effective in reducing prespecified secondary composite kidney outcomes in cardiovascular outcome trials. However, GLP-1 RAs showed a prevailing anti-albuminuric effect, additional to that of RAS blockers, and a non-significant risk reduction in worsening of kidney function, at variance with sodium-glucose cotransporter 2 inhibitors. Mechanisms underlying renal protection with GLP-1 RAs are porly understood. Though treatment with GLP-1 RAs resulted in better glycaemic, blood pressure and body weight control versus placebo, correction for on-trial changes in these parameters did not significantly affect results. Anti-inflammatory/anti-oxidant effects via intracellular signalling through protein kinase A, natriuretic effect via inhibition of sodium-hydrogen exchanger 3 and reduction of hyperfiltration have been proposed as direct renoprotective effects.
Collapse
Affiliation(s)
- Martina Vitale
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Endocrine and Metabolic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Endocrine and Metabolic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Tiziana Cirrito
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Endocrine and Metabolic Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Endocrine and Metabolic Unit, Sant'Andrea University Hospital, Rome, Italy.
| |
Collapse
|
11
|
Liang R, Wang M, Fu C, Liang H, Deng H, Tan Y, Xu F, Cai M. Liraglutide protects against high-fat diet-induced kidney injury by ameliorating apoptosis. Endocr Connect 2020; 9:946-954. [PMID: 33027757 PMCID: PMC7583131 DOI: 10.1530/ec-20-0294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity is associated with the development and progression of chronic kidney disease. Emerging evidence suggests that glucagon-like peptide-1 receptor agonist could reduce renal damage and albuminuria. Sirtuin 1 (SIRT1) was considered as a crucial regulator in metabolism-related kidney disease. Herein, the role of SIRT1 in liraglutide-ameliorated high-fat diet (HFD)-induced kidney injury was illustrated. METHODS Male C57BL/6 mice were fed HFD for 20 weeks to induce kidney injury that was then treated with liraglutide for 8 weeks to estimate its protective effect on the kidney. Also, the mechanism of the drug in SV40 MES 13 (SV40) mouse mesangial cells was elucidated. RESULTS Liraglutide treatment ameliorated HFD-induced metabolic disorders, including hyperglycemia, increasing body weight, and insulin resistance. In addition, kidney weight, urine albumin-to-creatinine, and kidney morphological changes such as vacuolated tubules, glomerulomegaly, thickened glomerular basement membrane, and tubulointerstitial fibrosis were also significantly ameliorated. Furthermore, apoptotic cells and apoptosis markers were downregulated in the kidney of liraglutide-treated mice. In addition, the expression of SIRT1 protein was upregulated, whereas thioredoxin-interacting protein (TXNIP), which serves as a mediator of oxidative stress and apoptosis in metabolism disease, was downregulated by liraglutide. In SV40 cells, the effect of liraglutide on reversing the upregulation of cleaved caspase-3 induced by high glucose (30 mM) was hampered when SIRT1 was knocked down; also, the downregulation of TXNIP by liraglutide was blocked. CONCLUSIONS Liraglutide might have a beneficial effect on metabolism-related kidney damage by inhibiting apoptosis via activation of SIRT1 and suppression of TXNIP pathway.
Collapse
Affiliation(s)
- Riying Liang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meijun Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Chang Fu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Hongrong Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Ying Tan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|
12
|
Yang M, Ma X, Xuan X, Deng H, Chen Q, Yuan L. Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Front Pharmacol 2020; 11:432. [PMID: 32322207 PMCID: PMC7156971 DOI: 10.3389/fphar.2020.00432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and represents a potential therapeutic target for NAFLD. Glucagon-like peptide-1 (GLP-1) signaling has been shown to regulate the RAS within various local tissues. In this study, we aimed to investigate the functional relationship between GLP-1 and the local RAS in the liver during NAFLD. Wild-type and ACE2 knockout mice were used to establish a high-fat-induced NAFLD model. After the mice were treated with liraglutide (a GLP-1 analogue) for 4 weeks, the key RAS component genes were up-regulated in the liver of NAFLD mice. Liraglutide treatment regulated the RAS balance, preventing a reduction in fatty acid oxidation gene expression and increasing gluconeogenesis and the expression of inflammation-related genes caused by NAFLD, which were impaired in ACE2 knockout mice. Liraglutide-treated HepG2 cells exhibited activation of the ACE2/Ang1-7/Mas axis, increased fatty acid oxidation gene expression, and decreased inflammation, which could be reversed by A779 and AngII. These results indicate that the local RAS in the liver becomes overactivated in response to NAFLD. Moreover, ACE2 knockout increases the severity of liver steatosis. Liraglutide has a negative and antagonistic effect on the ACE/AngII/AT1R axis, a positive impact on the ACE2/Ang1-7/Mas axis, and is mediated through the PI3K/AKT pathway. This may represent a potential new mechanism by which liraglutide improves NAFLD.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Ma
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuping Xuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Renal Tubular Glucagon-Like Peptide-1 Receptor Expression Is Increased in Early Sepsis but Reduced in Chronic Kidney Disease and Sepsis-Induced Kidney Injury. Int J Mol Sci 2019; 20:ijms20236024. [PMID: 31795376 PMCID: PMC6929157 DOI: 10.3390/ijms20236024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is common in patients with sepsis and causes renal ischemia. Glucagon-like peptide-1 (GLP-1) protects the vascular system and the kidney, and GLP-1 receptor (GLP-1R) is expressed in the kidney. Renal GLP-1R activity is decreased in chronic kidney disease (CKD), but is increased by the inflammatory response; however, the effect of AKI on GLP-1R expression is unknown. We investigated the role of GLP-1 by assessing GLP-1R expression in the renal cortex in animals with AKI-related sepsis, CKD, and CKD-with-sepsis. We generated a model of CKD by 5/6 nephrectomy, and sepsis induced by cecal perforation, in male Sprague-Dawley rats. We compared renal GLP-1R expression at 3, 6, 12, 24, and 72 h after cecal perforation, and in CKD and CKD-with-sepsis. We performed blood and urine tests, western blotting (WB), and immunohistochemistry (IHC) to assay GLP-1R expression in renal tubules. The CKD-with-sepsis group showed the lowest kidney function, urine volume, and serum glucose and albumin levels. GLP-1R expression in renal tubules was decreased at 3 h, increased at 24 h, and decreased at 72 h after sepsis induction. GLP-1R expression was decreased at 8 weeks after CKD and was lowest in the CKD-with-sepsis group. The WB results were verified against those obtained by IHC. GLP-1R expression in renal tubules is increased in early sepsis, which may explain the protective effect of endogenous GLP-1 against sepsis-related inflammation.
Collapse
|
14
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
15
|
Kang Z, Zeng J, Zhang T, Lin S, Gao J, Jiang C, Fan R, Yin D. Hyperglycemia induces NF-κB activation and MCP-1 expression via downregulating GLP-1R expression in rat mesangial cells: inhibition by metformin. Cell Biol Int 2019; 43:940-953. [PMID: 31136032 DOI: 10.1002/cbin.11184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022]
Abstract
Hyperglycemia impairs glucagon-like peptide-1 receptor (GLP-1R) signaling in multiple cell types and thereby potentially attenuates the therapeutic effects of GLP-1R agonists. We hypothesized that the downregulation of GLP-1R by hyperglycemia might reduce the renal-protective effects of GLP-1R agonists in diabetic nephropathy (DN). In this study, we examined the effects of high glucose on the expression of GLP-1R and its signaling pathways in the HBZY-1 rat mesangial cell line. We found that high glucose reduced GLP-1R messenger RNA (mRNA) levels in HBZY-1 cells and in the renal cortex in db/db mice comparing with control groups. In consistence, GLP-1R agonist exendin-4 induced CREB phosphorylation was attenuated by high glucose but not low glucose treatment, which is paralleled with abrogated anti-inflammatory functions in HBZY-1 cells linked with nuclear factor-κB (NF-κB) activation. In consistence, GLP-1R inhibition aggravated the high glucose-induced activation of NF-κB and MCP-1 protein levels in cultured HBZY-1 cells while overexpression of GLP-1R opposite effects. We further proved that metformin restored high glucose-inhibited GLP-1R mRNA expression and decreased high glucose evoked inflammation in HBZY-1 cells. On the basis of these findings, we conclude that high glucose lowers GLP-1R expression and leads to inflammatory responses in mesangial cells, which can be reversed by metformin. These data support the rationale of combinative therapy of metformin with GLP-1R agonists in DN.
Collapse
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China.,Department of Basic Medical Research, Qingyuan hospital affiliated to Jinan University, Qingyuan, 511518, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Tian Zhang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Shuyun Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Chonghe Jiang
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14183, Stockholm, Sweden
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| |
Collapse
|
16
|
Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne) 2018; 9:672. [PMID: 30532733 PMCID: PMC6266510 DOI: 10.3389/fendo.2018.00672] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its "incretin effect" in restoring glucose homeostasis in diabetics, however, it is now apparent that it has a broader range of physiological effects in the body. Both in vitro and in vivo studies have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling, alter gene expression, and influence neuroprotective pathways. A substantial body of evidence has accumulated with respect to how GLP-1 and its analogs act to restore and maintain normal cellular functions. These findings have prompted several clinical trials which have reported GLP-1 analogs improve cardiac function, restore lung function and reduce mortality in patients with obstructive lung disease, influence blood pressure and lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically, GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have shed light on additional downstream pathways stimulated by chronic GLP-1 exposure, findings which have direct relevance to our understanding of the potential therapeutic effects of longer lasting analogs recently developed for clinical use. In this review, we provide a comprehensive description of the diverse roles for GLP-1 across multiple tissues, describe downstream pathways stimulated by acute and chronic exposure, and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human disease.
Collapse
Affiliation(s)
| | | | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
17
|
Coppolino G, Leporini C, Rivoli L, Ursini F, di Paola ED, Cernaro V, Arturi F, Bolignano D, Russo E, De Sarro G, Andreucci M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol Res 2018; 129:274-294. [PMID: 29223646 DOI: 10.1016/j.phrs.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
18
|
Jia X, Alam M, Ye Y, Bajaj M, Birnbaum Y. GLP-1 Receptor Agonists and Cardiovascular Disease: a Meta-Analysis of Recent Cardiac Outcome Trials. Cardiovasc Drugs Ther 2018; 32:65-72. [DOI: 10.1007/s10557-018-6773-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Kanozawa K, Noguchi Y, Sugahara S, Nakamura S, Yamamoto H, Kaneko K, Kono R, Sato S, Ogawa T, Hasegawa H, Katayama S. The renoprotective effect and safety of a DPP-4 inhibitor, sitagliptin, at a small dose in type 2 diabetic patients with a renal dysfunction when changed from other DPP-4 inhibitors: REAL trial. Clin Exp Nephrol 2017; 22:825-834. [PMID: 29275488 DOI: 10.1007/s10157-017-1521-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND We conducted the multicenter, prospective, open-label study in type 2 diabetic (T2DM) patients with renal dysfunction, to clarify the efficacy and the safety in relation to renal function and glycemic control, and the economic effect when other dipeptidyl peptidase-4 (DPP-4) inhibitors were switched to a small dose of sitagliptin depending on their renal function. METHODS Vildagliptin, alogliptin, or linagliptin received for more than 2 months were changed to sitagliptin at 25 or 12.5 mg/day depending on their renal function in 49 T2DMs. Renal function and glycemic control, and the drug cost were assessed during 6 months. RESULTS Estimated glomerular filtration rate was not changed in patients not on hemodialysis (n = 29). The HbA1c levels were not altered in all of the patients including those on hemodialysis (n = 20). The active glucagon-like peptide-1 levels or other renal parameters were not altered significantly. There were no adverse events to be related to the drugs. The daily drug expense was reduced by 88.1 yen per patient. CONCLUSION Switching to a small dose of sitagliptin according to the renal function in T2DM patients with renal dysfunction demonstrated the same efficacy and safety as those with other full-dose DPP-4 inhibitors, indicating a therapeutic option with a high cost performance.
Collapse
Affiliation(s)
- Koichi Kanozawa
- Division of Nephrology and Hypertension, Blood Purification Center, Saitama Medical Center, Saitama Medical University, 1981, Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Yuichi Noguchi
- Department of Endocrinology and Diabetes, Saitama Medical University, 38, Morohongo, Moroyama-machi Iruma-gun, Saitama, 350-0451, Japan
| | - Souichi Sugahara
- Shingashi Kidney Centre, 39-1, Shimoshingashi, Kawagoe-shi, Saitama, 350-1136, Japan
| | - Satoko Nakamura
- Sekishin Health Care Clinic, 25-18, Wakita Honcho, Kawagoe-shi, Saitama, 350-1123, Japan
| | - Hirohisa Yamamoto
- Kawagoe Ekimae Clinic, Ishikawa Kinenkai Medical Group, Kawagoe Ekimae Bld. 2F, 16-23, Wakita Honcho, Kawagoe-shi, Saitama, 350-1123, Japan
| | - Keiko Kaneko
- Higashi-Hannou Ekimae Clinic, Takahasi Bld.2, 3F, 3-5, Yanagicho, Hanno-shi, Saitama, 357-0035, Japan
| | - Rika Kono
- Iruma Ekimae Clinic, Yokota Square Bld.4, 5F, 1-2-30, Toyooka, Iruma-shi, Saitama, 358-0003, Japan
| | - Saeko Sato
- Division of Nephrology and Hypertension, Blood Purification Center, Saitama Medical Center, Saitama Medical University, 1981, Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Tomonari Ogawa
- Division of Nephrology and Hypertension, Blood Purification Center, Saitama Medical Center, Saitama Medical University, 1981, Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Hajime Hasegawa
- Division of Nephrology and Hypertension, Blood Purification Center, Saitama Medical Center, Saitama Medical University, 1981, Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Shigehiro Katayama
- Kawagoe Clinic, Saitama Medical University, 21-7 Wakita Honcho, Kawagoe-shi, Saitama, 350-1123, Japan
| |
Collapse
|
20
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
21
|
Birnbaum Y, Ye Y, Bajaj M. Type 2 diabetes and cardiovascular disease: A metabolic overview of recent clinical trials. J Diabetes Complications 2017; 31:291-294. [PMID: 27780670 DOI: 10.1016/j.jdiacomp.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yochai Birnbaum
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; The Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mandeep Bajaj
- Endocrinology and Diabetes Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Le Y, Zheng Z, Xue J, Cheng M, Guan M, Xue Y. Effects of exendin-4 on the intrarenal renin-angiotensin system and interstitial fibrosis in unilateral ureteral obstruction mice: Exendin-4 and unilateral ureteral obstruction. J Renin Angiotensin Aldosterone Syst 2016; 17:17/4/1470320316677918. [PMID: 27913661 PMCID: PMC5843888 DOI: 10.1177/1470320316677918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/03/2016] [Indexed: 01/13/2023] Open
Abstract
Objective: The objective of this article is to investigate the renoprotecive effects of exendin-4 in a mouse model of unilateral ureteral obstruction (UUO) and explore the putative mechanisms. Methods: Male Balbc mice underwent sham operation or UUO surgery, and then received intraperitoneal injection of vehicle or exendin-4, respectively. After 14 days, mice were sacrificed and the left kidneys were collected and analyzed by histology, immunohistochemistry, Western blot, quantitative real-time reverse transcription polymerase chain reaction, radioimmunoassay and enzyme-linked immunosorbent assay. Results: As compared to the sham group, mice that underwent UUO surgery developed more severe tubular injury and interstitial fibrosis, as well as higher expression of fibronectin (FN), collagen-1 (Col-1) and α-smooth muscle actin (α-SMA). Also, we observed higher expression of angiotensin-converting enzyme (ACE) while lower expression of angiotensin-converting enzyme 2 (ACE2), higher levels of intrarenal angiotensin II (Ang II) while lower levels of intrarenal angiotensin-(1–7), and higher expression of transforming growth factor β1 (TGF-β1) and phosphorylation of Smad3 (p-Smad3) in the obstructed kidneys. Impressively, these pathologic changes were significantly attenuated in the mice group of UUO treated with exendin-4. Conclusion: Our present study indicates for the first time that exendin-4 exerts renoprotective effects in an experimental model of UUO, partly through regulating the balance of the intrarenal renin-angiotensin system and then inhibiting the Ang II-mediated TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ying Le
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Junyu Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Mengling Cheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| |
Collapse
|
23
|
Skov J, Pedersen M, Holst JJ, Madsen B, Goetze JP, Rittig S, Jonassen T, Frøkiaer J, Dejgaard A, Christiansen JS. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab 2016; 18:581-9. [PMID: 26910107 DOI: 10.1111/dom.12651] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effects of a single dose of 1.2 mg liraglutide, a once-daily glucagon-like peptide-1 (GLP-1) receptor agonist, on key renal variables in patients with type 2 diabetes. METHODS The study was a placebo-controlled, double-blind, crossover trial in 11 male patients with type 2 diabetes. Measurements included (51) Cr-EDTA plasma clearance estimated glomerular filtration rate (GFR) and MRI-based renal blood flow (RBF), tissue perfusion and oxygenation. RESULTS Liraglutide had no effect on GFR [95% confidence interval (CI) -6.8 to 3.6 ml/min/1.73 m(2) ] or on RBF (95% CI -39 to 30 ml/min) and did not change local renal blood perfusion or oxygenation. The fractional excretion of lithium increased by 14% (p = 0.01) and sodium clearance tended to increase (p = 0.06). Liraglutide increased diastolic and systolic blood pressure (3 and 6 mm Hg) and heart rate (2 beats per min; all p < 0.05). Angiotensin II (ANG II) concentration decreased by 21% (p = 0.02), but there were no effects on other renin-angiotensin system components, atrial natriuretic peptides (ANPs), methanephrines or excretion of catecholamines. CONCLUSIONS Short-term liraglutide treatment did not affect renal haemodynamics but decreased the proximal tubular sodium reabsorption. Blood pressure increased with short-term as opposed to long-term treatment. Catecholamine levels were unchanged and the results did not support a GLP-1-ANP axis. ANG II levels decreased, which may contribute to renal protection by GLP-1 receptor agonists.
Collapse
Affiliation(s)
- J Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | - M Pedersen
- Comparative Medicine Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - J J Holst
- Department of Biomedical Sciences, NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Madsen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - J P Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - S Rittig
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - T Jonassen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Frøkiaer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
| | | | - J S Christiansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Birnbaum Y, Bajaj M, Qian J, Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care 2016; 4:e000227. [PMID: 27547413 PMCID: PMC4985834 DOI: 10.1136/bmjdrc-2016-000227] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) receptor activation delays the progression of diabetic nephropathy (DN) in rodents. The NOD-like receptor 3 (Nlrp3) inflammasome plays an important role in DN. Dipeptidyl peptidase-4 inhibitors (DPP4I) inhibit the degradation of endogenous GLP-1 and various other active substances. We assessed whether DPP4I attenuates diabetes-induced activation of the inflammasome and progression of DN in mice with type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). METHODS BTBR (T2DM), Akita (T1DM) and their matched non-diabetic control (wild-type (WT)) mice received 8-week treatment with Saxagliptin (Saxa) or vehicle. RESULTS Kidney weight and kidney/body weight ratio increased in the BTBR and Akita mice compared to their WT mice. Saxa attenuated these changes in the BTBR, but not in the Akita mice and had no effect in the WT mice. Serum blood urea nitrogen and creatinine significantly increased in the BTBR and Akita mice. Saxa attenuated the increase in the BTBR and Akita mice. Saxa improved glycemic control in the BTBR mice, but had no effect on glucose levels in the Akita and WT mice. Serum C reactive protein, tumor necrosis factor α (TNFα), interleukin (IL)-1β, IL-6 and IL-18 were significantly higher in the BTBR and Akita mice than in the WT mice. Saxa attenuated the increase in the BTBR and Akita mice. Kidney and adipose protein levels of apoptosis-associated speck-like protein 1, NLRP3, TNFα and Caspase-1 were higher in the BTBR and Akita mice than in the WT mice. Saxa reduced the levels in both types of diabetic mice. CONCLUSIONS Saxa attenuated diabetes-induced activation of the inflammasome and progression of DN. As Saxa did not affect glucose levels in the Akita mice, these effects are independent of glucose lowering.
Collapse
Affiliation(s)
- Yochai Birnbaum
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mandeep Bajaj
- Section of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jinqiao Qian
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
25
|
Wu MH, Liu J, Gao Y, Hu GC. Advances in understanding relationship between GLP-1 based drugs and the kidney. Shijie Huaren Xiaohua Zazhi 2015; 23:5004-5010. [DOI: 10.11569/wcjd.v23.i31.5004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The drugs based on glucagon-like peptide-1 (GLP-1) not only lower urinary protein, but also increase urine sodium excretion and improve the pathological changes of kidney disease. However, the mechanism is not very clear and may be associated with atrial natriuretic peptide, renin angiotensin axis, and oxidative stress. This review focuses on the progress in understanding the relationship between GLP-1 and the kidney.
Collapse
|
26
|
Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) Signaling Pathway in Mice. Int J Mol Sci 2015; 16:20195-211. [PMID: 26343632 PMCID: PMC4613197 DOI: 10.3390/ijms160920195] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 07/23/2015] [Accepted: 08/16/2015] [Indexed: 02/05/2023] Open
Abstract
Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.
Collapse
|
27
|
von Scholten BJ, Hansen TW, Goetze JP, Persson F, Rossing P. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): long-term effect on kidney function in patients with type 2 diabetes. J Diabetes Complications 2015; 29:670-4. [PMID: 25935863 DOI: 10.1016/j.jdiacomp.2015.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
AIMS In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim was to investigate the long-term effect on kidney function. METHODS We included 30 patients in a one-year extension study, all initially treated with liraglutide for seven weeks. During follow-up 23 were treated with liraglutide and seven untreated. Primary outcome was change in GFR ((51)Cr-EDTA plasma clearance). RESULTS Patients were 61.5 (10.0) years and HbA(1c) 60.1 (13.8) mmol/mol. Baseline GFR was 100.6 (24.9) mL/min/1.73 m(2) and was reduced by 11 (95% CI: 6.6-15.7, p < 0.001) mL/min/1.73 m(2), independent of change in 24-h systolic blood pressure (SBP), weight, UAER or HbA(1c) (p≥0.33). Geometric mean (IQR) of UAER was 25.5 (9.9-50.9) mg/d and was reduced by 27 (95% CI: 5-44; p = 0.020)%, and 24-h SBP was reduced by 8.2 (p = 0.048) mmHg. No changes occurred in untreated patients. CONCLUSIONS Long-term treatment with liraglutide was associated with a reduction in measured GFR similar to the effect during short-term treatment, suggesting a metabolic or haemodynamic reversible effect and not structural changes. Moreover, UAER and 24-h SBP were reduced. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01499108.
Collapse
Affiliation(s)
| | | | | | | | - Peter Rossing
- Steno Diabetes Center, Gentofte, Denmark; Aarhus University, Denmark; University of Copenhagen, Denmark
| |
Collapse
|
28
|
Yamagishi SI, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc Diabetol 2015; 14:2. [PMID: 25582643 PMCID: PMC4298871 DOI: 10.1186/s12933-015-0176-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) consist of heterogenous group of macroprotein derivatives, which are formed by non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids, and whose process has progressed at an accelerated rate under diabetes. Non-enzymatic glycation and cross-linking of protein alter its structural integrity and function, contributing to the aging of macromolecules. Furthermore, engagement of receptor for AGEs (RAGE) with AGEs elicits oxidative stress generation and subsequently evokes proliferative, inflammatory, and fibrotic reactions in a variety of cells. Indeed, accumulating evidence has suggested the active involvement of accumulation of AGEs in diabetes-associated disorders such as diabetic microangiopathy, atherosclerotic cardiovascular diseases, Alzheimer's disease and osteoporosis. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins, gut hormones secreted from the intestine in response to food intake, both of which augment glucose-induced insulin release, suppress glucagon secretion, and slow gastric emptying. Since GLP-1 and GIP are rapidly degraded and inactivated by dipeptidyl peptidase-4 (DPP-4), inhibition of DPP-4 and/or DPP-4-resistant GLP-1 analogues have been proposed as a potential target for the treatment of diabetes. Recently, DPP-4 has been shown to cleave multiple peptides, and blockade of DPP-4 could exert diverse biological actions in GLP-1- or GIP-independent manner. This article summarizes the crosstalk between AGEs-RAGE axis and DPP-4-incretin system in the development and progression of diabetes-associated disorders and its therapeutic intervention, especially focusing on diabetic vascular complications.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
29
|
Abstract
The incretin hormone, glucagon-like peptide-1 (GLP-1), stimulates insulin secretion and forms the basis of a new drug class for diabetes treatment. GLP-1 has several extra-pancreatic properties which include effects on kidney function. Although renal GLP-1 receptors have been identified, their exact localization and physiological role are incompletely understood. GLP-1 increases natriuresis through inhibition of the sodium-hydrogen ion exchanger isoform 3 in the proximal tubule. This may in part explain why GLP-1 receptor agonists have antihypertensive effects. Glomerular filtration rate is regulated by GLP-1, but the mechanisms are complex and may depend on e.g. glycaemic conditions. Atrial natriuretic peptide or the renin-angiotensin system may be involved in the signalling of GLP-1-mediated renal actions. Several studies in rodents have shown that GLP-1 therapy is renoprotective beyond metabolic improvements in models of diabetic nephropathy and acute kidney injury. Inhibition of renal inflammation and oxidative stress probably mediate this protection. Clinical studies supporting GLP-1-mediated renal protection exist, but they are few and with limitations. However, acute and chronic kidney diseases are major global health concerns and measures improving renal outcome are highly needed. Therefore, the renoprotective potential of GLP-1 therapy need to be thoroughly investigated in humans.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, 8000, Aarhus, Denmark,
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Incretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system. RECENT FINDINGS Activation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed. SUMMARY The GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases.
Collapse
|
31
|
Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int 2014; 86:701-11. [PMID: 25007170 DOI: 10.1038/ki.2014.236] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/26/2014] [Accepted: 05/15/2014] [Indexed: 01/18/2023]
Abstract
Incretin-based drugs, i.e., glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are widely used for the treatment of type 2 diabetes. In addition to the primary role of incretins in stimulating insulin secretion from pancreatic β-cells, they have extra pancreatic functions beyond glycemic control. Indeed, recent studies highlight the potential beneficial effects of incretin-based therapy in diabetic kidney disease (DKD). Experimental studies using various diabetic models suggest that incretins protect the vascular endothelium from injury by binding to GLP-1 receptors, thereby ameliorating oxidative stress and the local inflammatory response, which reduces albuminuria and inhibits glomerular sclerosis. In addition, there is some evidence that GLP-1 receptor agonists and DPP-4 inhibitors mediate sodium excretion and diuresis to lower blood pressure. The pleiotropic actions of DPP-4 inhibitors are ascribed primarily to their effects on GLP-1 signaling, but other substrates of DPP-4, such as brain natriuretic peptide and stromal-derived factor-1α, may have roles. In this review, we summarize recent studies of the roles of incretin-based therapy in ameliorating DKD and its complications.
Collapse
Affiliation(s)
- Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Higashijima
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Hwang HJ, Jung TW, Ryu JY, Hong HC, Choi HY, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH, Yoo HJ. Dipeptidyl petidase-IV inhibitor (gemigliptin) inhibits tunicamycin-induced endoplasmic reticulum stress, apoptosis and inflammation in H9c2 cardiomyocytes. Mol Cell Endocrinol 2014; 392:1-7. [PMID: 24813659 DOI: 10.1016/j.mce.2014.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/07/2014] [Accepted: 04/29/2014] [Indexed: 01/05/2023]
Abstract
The direct effects of dipeptidyl peptidase-IV (DPP-IV) inhibitors on endoplasmic reticulum (ER) stress-induced apoptosis and inflammation in cardiomyocytes have not been elucidated. H9c2 cell viability, which was reduced by tunicamycin, was increased after DPP-IV inhibitor gemigliptin treatment. Gemigliptin significantly decreased the tunicamycin-mediated increase in glucose regulated protein 78 (GRP78) expression and ER stress-mediated signaling molecules such as protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C-EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α)/c-Jun N-terminal kinase (JNK)-p38. Furthermore, gemigliptin effectively induced Akt phosphorylation in a dose-dependent manner. Using flow cytometry and Hoechst staining, we showed that treatment with Akt inhibitor significantly blocked the anti-apoptotic effects mediated by gemigliptin. The reduction in tunicamycin-induced GRP78 level and PERK/CHOP pathway activity by gemigliptin was reversed after treatment with Akt inhibitor. In conclusion, gemigliptin effectively inhibited ER stress-induced apoptosis and inflammation in cardiomyocytes via Akt/PERK/CHOP and IRE1α/JNK-p38 pathways, suggesting its direct protective role in cardiovascular diseases.
Collapse
Affiliation(s)
- Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ja Young Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ho Cheol Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hae Yoon Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dong Seop Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J Diabetes Investig 2014; 4:108-30. [PMID: 24843641 PMCID: PMC4019264 DOI: 10.1111/jdi.12065] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine on ingestion of various nutrients to stimulate insulin secretion from pancreatic β-cells glucose-dependently. GIP and GLP-1 undergo degradation by dipeptidyl peptidase-4 (DPP-4), and rapidly lose their biological activities. The actions of GIP and GLP-1 are mediated by their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which are expressed in pancreatic β-cells, as well as in various tissues and organs. A series of investigations using mice lacking GIPR and/or GLP-1R, as well as mice lacking DPP-4, showed involvement of GIP and GLP-1 in divergent biological activities, some of which could have implications for preventing diabetes-related microvascular complications (e.g., retinopathy, nephropathy and neuropathy) and macrovascular complications (e.g., coronary artery disease, peripheral artery disease and cerebrovascular disease), as well as diabetes-related comorbidity (e.g., obesity, non-alcoholic fatty liver disease, bone fracture and cognitive dysfunction). Furthermore, recent studies using incretin-based drugs, such as GLP-1 receptor agonists, which stably activate GLP-1R signaling, and DPP-4 inhibitors, which enhance both GLP-1R and GIPR signaling, showed that GLP-1 and GIP exert effects possibly linked to prevention or treatment of diabetes-related complications and comorbidities independently of hyperglycemia. We review recent findings on the extrapancreatic effects of GIP and GLP-1 on the heart, brain, kidney, eye and nerves, as well as in the liver, fat and several organs from the perspective of diabetes-related complications and comorbidities.
Collapse
Affiliation(s)
| | - Daisuke Yabe
- Division of Diabetes Clinical Nutrition and Endocrinology Kansai Electric Power Hospital Osaka Japan
| |
Collapse
|
34
|
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne) 2014; 5:23. [PMID: 24592256 PMCID: PMC3938116 DOI: 10.3389/fendo.2014.00023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS) are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g., diabetes) and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans. Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations, we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unifies the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
- *Correspondence: Jeppe Skov, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, Aarhus DK-8000, Denmark e-mail:
| | | | - Jørgen Frøkiær
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
35
|
Muskiet MHA, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol 2013; 10:88-103. [PMID: 24375052 DOI: 10.1038/nrneph.2013.272] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease worldwide, and is associated with a high risk of cardiovascular morbidity and mortality. Intensive control of glucose levels and blood pressure is currently the mainstay of both prevention and treatment of diabetic nephropathy. However, this strategy cannot fully prevent the development and progression of diabetic nephropathy, and an unmet need remains for additional novel therapies. The incretin-based agents--agonists of glucagon-like peptide 1 receptor (GLP-1R) and inhibitors of dipeptidyl peptidase 4 (DPP-4), an enzyme that degrades glucagon-like peptide 1--are novel blood-glucose-lowering drugs used in the treatment of type 2 diabetes mellitus (T2DM). Therapeutic agents from these two drug classes improve pancreatic islet function and induce extrapancreatic effects that ameliorate various phenotypic defects of T2DM that are beyond glucose control. Agonists of GLP-1R and inhibitors of DPP-4 reduce blood pressure, dyslipidaemia and inflammation, although only GLP-1R agonists decrease body weight. Both types of incretin-based agents inhibit renal tubular sodium reabsorption and decrease glomerular pressure as well as albuminuria in rodents and humans. In rodents, incretin-based therapies also prevent onset of the morphological abnormalities of diabetic nephropathy.
Collapse
Affiliation(s)
- Marcel H A Muskiet
- Diabetes Centre, Department of Internal Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Mark M Smits
- Diabetes Centre, Department of Internal Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Linde M Morsink
- Diabetes Centre, Department of Internal Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Michaela Diamant
- Diabetes Centre, Department of Internal Medicine, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
36
|
Picatoste B, Ramírez E, Caro-Vadillo A, Iborra C, Egido J, Tuñón J, Lorenzo Ó. Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms. PLoS One 2013; 8:e78330. [PMID: 24302978 PMCID: PMC3840053 DOI: 10.1371/journal.pone.0078330] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022] Open
Abstract
Background Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. Methods Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for invitro assays. Results Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. Conclusions Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.
Collapse
Affiliation(s)
- Belén Picatoste
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - Elisa Ramírez
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | | | - Cristian Iborra
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - José Tuñón
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
| | - Óscar Lorenzo
- Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
Skov J, Dejgaard A, Frøkiær J, Holst JJ, Jonassen T, Rittig S, Christiansen JS. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 2013; 98:E664-71. [PMID: 23463656 DOI: 10.1210/jc.2012-3855] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Glucagon-like peptide-1 (GLP-1) is an incretin hormone with multiple actions in addition to control of glucose homeostasis. GLP-1 is known to cause natriuresis in humans, but the effects on basic renal physiology are still partly unknown. SUBJECTS AND METHODS Twelve healthy young males were examined in a randomized, controlled, double-blinded, single-day, crossover trial to evaluate the effects of 2 hours GLP-1 infusion on kidney functions. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were assessed with (51)Cr-EDTA and (123)I-hippuran, respectively, using a constant infusion renal clearance technique based on timed urine sampling. RESULTS GLP-1 had no significant effect on either GFR [+1.9%, 95% confidence interval (-0.8; 4.6%)] or RPF [+2.4%, 95% confidence interval (-3.6; 8.8%)]. Fractional urine excretion of lithium increased 9% (P = .013) and renal sodium clearance increased 40% (P = .007). Angiotensin II decreased 19% (P = .003), whereas renin, aldosterone, and the urinary excretion of angiotensinogen showed no significant changes. glp-1 did not affect blood pressure but induced a small transient increase in heart rate. CONCLUSION The results indicate that although GLP-1 markedly reduces proximal tubule sodium reabsorption, the acute effects on GFR and RPF are very limited in healthy humans. The finding of GLP-1's ability to reduce angiotensin II concentration is novel and should be further elucidated.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|