1
|
Garcia SM, Matheson B, Morales-Loredo JH, Jernigan NL, Kanagy NL, Resta TC, Clark RM, Shekarriz R, Gonzalez Bosc LV. Hydrogen sulfide and miR21 are suitable biomarkers of hypoxic exposure. Am J Physiol Regul Integr Comp Physiol 2022; 323:R900-R909. [PMID: 36250874 PMCID: PMC9678419 DOI: 10.1152/ajpregu.00199.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
Abstract
Hypoxia is the reduction of alveolar partial pressure of oxygen ([Formula: see text]). Military members and people who practice recreational activities from moderate to high altitudes are at risk for hypoxic exposure. Hypoxemia's signs and symptoms vary from asymptomatic to severe responses, such as excessive hypoxic ventilatory responses and residual neurobehavioral impairment. Therefore, it is essential to identify hypoxia-induced biomarkers to indicate people with exposure to hypoxia. Advances have been made in understanding physiological responses to hypoxia, including elevations in circulating levels of endothelin 1 (ET-1) and microRNA 21 (miR-21) and reduction in circulating levels of hydrogen sulfide (H2S). Although the levels of these factors change upon exposure to hypoxia, it is unclear if these changes are sustained on return to normoxia. We hypothesize that hypoxia-induced ET-1 and miR-21 remain elevated, whereas hypoxia-reduction in H2S sustains after returning to normoxic conditions. To test this hypothesis, we exposed male rats to 6 h of 12% O2 and measured circulating levels of ET-1 and miR-21, pre, during, and posthypoxia. We found that ET-1 plasma levels increased in response to hypoxia but returned to normal levels within 30 min after the restoration of normoxia. miR-21 plasma levels and transdermal H2S emissions decreased in response to hypoxia, remaining decreased on return to normoxia, thus following the biomarker criteria. Therefore, this study supports a unique role for plasma miR21 and transdermal H2S as hypoxia biomarkers that could be used to identify individuals after exposure to hypoxia.
Collapse
Affiliation(s)
- Selina M Garcia
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjamin Matheson
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Juan H Morales-Loredo
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ross M Clark
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
2
|
Nordine M, Treskatsch S, Habazettl H, Gunga HC, Brauns K, Dosel P, Petricek J, Opatz O. Orthostatic Resiliency During Successive Hypoxic, Hypoxic Orthostatic Challenge: Successful vs. Unsuccessful Cardiovascular and Oxygenation Strategies. Front Physiol 2021; 12:712422. [PMID: 34776997 PMCID: PMC8578448 DOI: 10.3389/fphys.2021.712422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Rapid environmental changes, such as successive hypoxic-hypoxic orthostatic challenges (SHHOC) occur in the aerospace environment, and the ability to remain orthostatically resilient (OR) relies upon orchestration of physiological counter-responses. Counter-responses adjusting for hypoxia may conflict with orthostatic responses, and a misorchestration can lead to orthostatic intolerance (OI). The goal of this study was to pinpoint specific cardiovascular and oxygenation factors associated with OR during a simulated SHHOC. Methods: Thirty one men underwent a simulated SHHOC consisting of baseline (P0), normobaric hypoxia (Fi02 = 12%, P1), and max 60 s of hypoxic lower body negative pressure (LBNP, P2). Alongside anthropometric variables, non-invasive cardiovascular, central and peripheral tissue oxygenation parameters, were recorded. OI was defined as hemodynamic collapse during SHHOC. Comparison of anthropometric, cardiovascular, and oxygenation parameters between OR and OI was performed via Student’s t-test. Within groups, a repeated measures ANOVA test with Holm-Sidak post hoc test was performed. Performance diagnostics were performed to assess factors associated with OR/OI (sensitivity, specificity, positive predictive value PPV, and odd’s ratio OR). Results: Only 9/31 were OR, and 22/31 were OI. OR had significantly greater body mass index (BMI), weight, peripheral Sp02, longer R-R Interval (RRI) and lower heart rate (HR) at P0. During P1 OR exhibited significantly higher cardiac index (CI), stroke volume index (SVI), and lower systemic vascular resistance index (SVRI) than OI. Both groups exhibited a significant decrease in cerebral oxygenation (TOIc) with an increase in cerebral deoxygenated hemoglobin (dHbc), while the OI group showed a significant decrease in cerebral oxygenated hemoglobin (02Hbc) and peripheral oxygenation (TOIp) with an increase in peripheral deoxygenated hemoglobin (dHbp). During P2, OR maintained significantly greater CI, systolic, mean, and diastolic pressure (SAP, MAP, DAP), with a shortened RRI compared to the OI group, while central and peripheral oxygenation were not different. Body weight and BMI both showed high sensitivity (0.95), low specificity (0.33), a PPV of 0.78, with an OR of 0.92, and 0.61. P0 RRI showed a sensitivity of 0.95, specificity of 0.22, PPV 0.75, and OR of 0.99. Delta SVI had the highest performance diagnostics during P1 (sensitivity 0.91, specificity 0.44, PPV 0.79, and OR 0.8). Delta SAP had the highest overall performance diagnostics for P2 (sensitivity 0.95, specificity 0.67, PPV 0.87, and OR 0.9). Discussion: Maintaining OR during SHHOC is reliant upon greater BMI, body weight, longer RRI, and lower HR at baseline, while increasing CI and SVI, minimizing peripheral 02 utilization and decreasing SVRI during hypoxia. During hypoxic LBNP, the ability to remain OR is dependent upon maintaining SAP, via CI increases rather than SVRI. Cerebral oxygenation parameters, beyond 02Hbc during P1 did not differ between groups, suggesting that the during acute hypoxia, an increase in cerebral 02 consumption, coupled with increased peripheral 02 utilization does seem to play a role in OI risk during SHHOC. However, cardiovascular factors such as SVI are of more value in assessing OR/OI risk. The results can be used to implement effective aerospace crew physiological monitoring strategies.
Collapse
Affiliation(s)
- Michael Nordine
- Department of Anaesthesiology and Intensive Care Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helmut Habazettl
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharins Brauns
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petr Dosel
- Military University Hospital, Institute of Aviation Medicine, Prague, Czechia
| | - Jan Petricek
- Military University Hospital, Institute of Aviation Medicine, Prague, Czechia
| | - Oliver Opatz
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Coombs GB, Akins JD, Patik JC, Vizcardo-Galindo GA, Figueroa-Mujica R, Tymko MM, Stacey BS, Iannetelli A, Bailey DM, Villafuerte FC, Ainslie PN, Brothers RM. Global Reach 2018: Nitric oxide-mediated cutaneous vasodilation is reduced in chronic, but not acute, hypoxia independently of enzymatic superoxide formation. Free Radic Biol Med 2021; 172:451-458. [PMID: 34129928 DOI: 10.1016/j.freeradbiomed.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 01/15/2023]
Abstract
We tested the hypotheses that 1) cutaneous microvascular function is impaired by acute normobaric and chronic hypobaric hypoxia and 2) that the superoxide free radical (via NADPH oxidase or xanthine oxidase) contributes to this impairment via nitric oxide (NO) scavenging. Local heating-induced cutaneous hyperemia (39 °C) was measured in the forearm of 11 male lowlanders at sea level (SL) and following 14-18 days at high altitude (HA; 4340 m in Cerro de Pasco, Peru), and compared to 11 highlanders residing permanently at this elevation. Cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial pressure) was not different during 39 °C [control site: 73 (19) vs. 71 (18)%max; P = 0.68] between normoxia and acute normobaric hypoxia (FIO2 = 0.125; equivalent to HA), respectively. At HA, CVC was reduced during 39 °C in lowlanders compared to SL [control site: 54 (14) vs. 73 (19)%max; P < 0.01] and was lower in Andean highlanders compared to lowlanders at HA [control site: 50 (24) vs. 54 (14)%max; P = 0.02]. The NO contribution to vasodilation during 39 °C (i.e., effect of NO synthase inhibition) was reduced in lowlanders at HA compared to SL [control site: 41 (11) vs 49 (10)%max; P = 0.04] and in Andean highlanders compared to lowlanders at HA [control site: 32 (21) vs. 41 (11)%max; P = 0.01]. Intradermal administration (cutaneous microdialysis) of the superoxide mimetic Tempol, inhibition of xanthine oxidase (via allopurinol), or NADPH oxidase (via apocynin) had no influence on cutaneous endothelium-dependent dilation during any of the conditions (all main effects of drug P > 0.05). These results suggest that time at HA impairs NO-mediated cutaneous vasodilation independent of enzymatic superoxide formation.
Collapse
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - John D Akins
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jordan C Patik
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA; Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Romulo Figueroa-Mujica
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Francisco C Villafuerte
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
4
|
Meng Z, Gao H, Li T, Ge P, Xu Y, Gao B. Effects of Eight Weeks Altitude Training on the Aerobic Capacity and Microcirculation Function in Trained Rowers. High Alt Med Biol 2021; 22:24-31. [PMID: 33719550 DOI: 10.1089/ham.2020.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meng, Zhijun, Huan Gao, Tao Li, Peng Ge, Yixiao Xu, and Binghong Gao. Effects of eight weeks altitude training on the aerobic capacity and microcirculation function in trained rowers. High Alt Med Biol. 22:24-31, 2021. Background: The mechanism of aerobic improvement after altitude training (AT) has not been resolved yet. Few studies have looked at microcirculation changes after AT in athletes. Materials and Methods: Thirty-three male rowers were recruited and divided into either the AT (n = 18, altitude 2,280 m) or the sea level training (ST group, n = 15, altitude 50 m) for 8 weeks training. Microcirculation function was monitored using a laser Doppler flowmeter. VO2peak and ergometer 5 km time trial (Er5k) were conducted. Results: Within the AT group there was an 8.8% increment in VO2peak from pre- to post-training (4,708.9 ± 455.2 vs. 5,123.3 ± 391.2 ml/min, p < 0.01), whereas in ST group there was a 3.1% increase of VO2peak from pre- to post-training (4,975.4 ± 501.1 vs. 5,128.0 ± 499.3 m/min, p = 0.125). Er5k performance in AT group was significantly improved (1,040.3 ± 26.3 vs. 1,033.2 ± 27.5 seconds, p = 0.038), whereas in ST group Er5k performance was not improved (1,059.6 ± 30.9 vs. 1,060.4 ± 33.2 seconds, p = 0.819). Postocclusive reactive hyperemia reserve and heat reserve in the forearm of AT subjects increased significantly after 8 weeks. Meanwhile, the AT group's resting blood flow and cutaneous vascular conductance (CVC) of the thigh were higher after AT. For the ST group, resting blood flow and CVC in the thigh decreased significantly at third week post-training. There was a low correlation between the change of VO2peak and blood flow of the thigh (r = 0.45, p = 0.01). Conclusions: Trained rowers benefit more from 8 weeks of AT than from 8 weeks ST in terms of aerobic capacity. We have found that 8 weeks of AT increases thigh blood flow and improves endothelial function.
Collapse
Affiliation(s)
- Zhijun Meng
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China.,The Research Institute of Sports Science of Yunnan Province, Kunming, China
| | - Huan Gao
- The First Research Center of Competitive Sports, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Tao Li
- The First Research Center of Competitive Sports, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Peng Ge
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yixiao Xu
- Center of Laboratory, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Katarzynska J, Cholewinski T, Sieron L, Marcinek A, Gebicki J. Flowmotion Monitored by Flow Mediated Skin Fluorescence (FMSF): A Tool for Characterization of Microcirculatory Status. Front Physiol 2020; 11:702. [PMID: 32636761 PMCID: PMC7317028 DOI: 10.3389/fphys.2020.00702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 01/20/2023] Open
Abstract
Oscillations in the microcirculation, known as flowmotion, are a well-recognized characteristic of cutaneous blood flow. Since flowmotion reflects the microcirculatory status of the vascular system, which is very often impaired in many diseases and disorders, a quantitative assessment of skin flowmotion could potentially be used to screen for early symptoms of such conditions. In this study, skin flowmotion was monitored using the Flow Mediated Skin Fluorescence (FMSF) technique. The flowmotion parameter was used for quantitative assessment of basal flowmotion both at rest (FM) and during reperfusion [FM(R)] following the post-occlusive reactive hyperemia (PORH). The study population was composed of healthy volunteers between the ages of 30 and 72 (n = 75). The FM parameter showed an inverse dependence relative to age, while the FM(R) parameter was inversely correlated to blood pressure. The FM(R) parameter reflects the strong effect of hypoxia on flowmotion, which is mainly due to increased myogenic activity in the vessels. The FMSF technique appears to be uniquely suited for the analysis of basal flowmotion and the hypoxia response, and may be used for the characterization of microcirculatory status.
Collapse
Affiliation(s)
| | | | | | - Andrzej Marcinek
- Angionica Ltd., Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jerzy Gebicki
- Angionica Ltd., Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
6
|
Coombs GB, Cramer MN, Ravanelli N, Imbeault P, Jay O. Normobaric hypoxia does not alter the critical environmental limits for thermal balance during exercise‐heat stress. Exp Physiol 2020; 106:359-369. [DOI: 10.1113/ep088466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/18/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Geoff B. Coombs
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences University of British Columbia (Okanagan) Kelowna BC Canada
| | - Matthew N. Cramer
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
- Defence Research and Development Canada Toronto Research Centre Toronto ON Canada
| | - Nicholas Ravanelli
- Cardiovascular Prevention and Rehabilitation Centre and Research Centre Montreal Heart Institute Montreal QC Canada
- Département de pharmacologie et physiologie Université de Montréal Montreal QC Canada
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
| | - Ollie Jay
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
- University of Sydney, Faculty of Medicine and Health Thermal Ergonomics Laboratory Sydney NSW Australia
- University of Sydney Charles Perkins Centre Sydney NSW Australia
| |
Collapse
|
7
|
Lancaster G, Debevec T, Millet GP, Poussel M, Willis SJ, Mramor M, Goričar K, Osredkar D, Dolžan V, Stefanovska A. Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans. J Physiol 2020; 598:2001-2019. [PMID: 31957891 PMCID: PMC7317918 DOI: 10.1113/jp278829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS High altitude-induced hypoxia in humans evokes a pattern of breathing known as periodic breathing (PB), in which the regular oscillations corresponding to rhythmic expiration and inspiration are modulated by slow periodic oscillations. The phase coherence between instantaneous heart rate and respiration is shown to increase significantly at the frequency of periodic breathing during acute and sustained normobaric and hypobaric hypoxia. It is also shown that polymorphism in specific genes, NOTCH4 and CAT, is significantly correlated with this coherence, and thus with the incidence of PB. Differences in phase shifts between blood flow signals and respiratory and PB oscillations clearly demonstrate contrasting origins of the mechanisms underlying normal respiration and PB. These novel findings provide a better understanding of both the genetic and the physiological mechanisms responsible for respiratory control during hypoxia at altitude, by linking genetic factors with cardiovascular dynamics, as evaluated by phase coherence. ABSTRACT Periodic breathing (PB) occurs in most humans at high altitudes and is characterised by low-frequency periodic alternation between hyperventilation and apnoea. In hypoxia-induced PB the dynamics and coherence between heart rate and respiration and their relationship to underlying genetic factors is still poorly understood. The aim of this study was to investigate, through novel usage of time-frequency analysis methods, the dynamics of hypoxia-induced PB in healthy individuals genotyped for a selection of antioxidative and neurodevelopmental genes. Breathing, ECG and microvascular blood flow were simultaneously monitored for 30 min in 22 healthy males. The same measurements were repeated under normoxic and hypoxic (normobaric (NH) and hypobaric (HH)) conditions, at real and simulated altitudes of up to 3800 m. Wavelet phase coherence and phase difference around the frequency of breathing (approximately 0.3 Hz) and around the frequency of PB (approximately 0.06 Hz) were evaluated. Subjects were genotyped for common functional polymorphisms in antioxidative and neurodevelopmental genes. During hypoxia, PB resulted in increased cardiorespiratory coherence at the PB frequency. This coherence was significantly higher in subjects with NOTCH4 polymorphism, and significantly lower in those with CAT polymorphism (HH only). Study of the phase shifts clearly indicates that the physiological mechanism of PB is different from that of the normal respiratory cycle. The results illustrate the power of time-evolving oscillatory analysis content in obtaining important insight into high altitude physiology. In particular, it provides further evidence for a genetic predisposition to PB and may partly explain the heterogeneity in the hypoxic response.
Collapse
Affiliation(s)
| | - Tadej Debevec
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
- Department of AutomationBiocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
| | | | - Mathias Poussel
- Department of Pulmonary Function Testing and Exercise PhysiologyCHRU de NancyNancyFrance
| | - Sarah J. Willis
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - Minca Mramor
- University Children's HospitalUniversity Medical Center LjubljanaLjubljanaSlovenia
| | - Katja Goričar
- Pharmacogenetics LaboratoryInstitute of BiochemistryFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Damjan Osredkar
- University Children's HospitalUniversity Medical Center LjubljanaLjubljanaSlovenia
| | - Vita Dolžan
- Pharmacogenetics LaboratoryInstitute of BiochemistryFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
8
|
Meng Z, Gao B, Gao H, Ge P, Li T, Wang Y. Four weeks of hypoxia training improves cutaneous microcirculation in trained rowers. Physiol Res 2019; 68:757-766. [PMID: 31424257 DOI: 10.33549/physiolres.934175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypoxia training can improve endurance performance. However, the specific benefits mechanism of hypoxia training is controversial, and there are just a few studies on the peripheral adaptation to hypoxia training. The main objective of this study was to observe the effects of hypoxia training on cutaneous blood flow (CBF), hypoxia-inducible factor (HIF), nitric oxide (NO), and vascular endothelial growth factor (VEGF). Twenty rowers were divided into two groups for four weeks of training, either hypoxia training (Living High, Exercise High and Training Low, HHL) or normoxia training (NOM). We tested cutaneous microcirculation by laser Doppler flowmeter and blood serum parameters by ELISA. HHL group improved the VO(2peak) and power at blood lactic acid of 4 mmol/l (P(4)) significantly. The CBF and the concentration of moving blood cells (CMBC) in the forearm of individuals in the HHL group increased significantly at the first week. The HIF level of the individuals in the HHL group increased at the fourth week. The NO of HHL group increased significantly at the fourth week. In collusion, four weeks of HHL training resulted in increased forearm cutaneous blood flow and transcutaneous oxygen pressure. HHL increases rowers' NO and VEGF, which may be the mechanism of increased blood flow. The increased of CBF seems to be related with improving performance.
Collapse
Affiliation(s)
- Z Meng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China, School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
9
|
Martini R, Bagno A. The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations. Clin Hemorheol Microcirc 2018; 70:213-229. [DOI: 10.3233/ch-189903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Romeo Martini
- Department of Cardio-Thorax and Vascular Sciences, Unit of Angiology, Azienda Ospedaliera Universitaria di Padova, Italy
| | - Andrea Bagno
- Department of Industrial Engineering, Università di Padova, Italy
| |
Collapse
|
10
|
Treml B, Kleinsasser A, Stadlbauer KH, Steiner I, Pajk W, Pilch M, Burtscher M, Knotzer H. Cutaneous Microvascular Blood Flow and Reactivity in Hypoxia. Front Physiol 2018; 9:160. [PMID: 29559919 PMCID: PMC5845666 DOI: 10.3389/fphys.2018.00160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/19/2018] [Indexed: 01/04/2023] Open
Abstract
As is known, hypoxia leads to an increase in microcirculatory blood flow of the skin in healthy volunteers. In this pilot study, we investigated microcirculatory blood flow and reactive hyperemia of the skin in healthy subjects in normobaric hypoxia. Furthermore, we examined differences in microcirculation between hypoxic subjects with and without short-term acclimatization, whether or not skin microvasculature can acclimatize. Fourty-six healthy persons were randomly allocated to either short-term acclimatization using intermittent hypoxia for 1 h over 7 days at an FiO2 0.126 (treatment, n = 23) or sham short-term acclimatization for 1 h over 7 days at an FiO2 0.209 (control, n = 23). Measurements were taken in normoxia and at 360 and 720 min during hypoxia (FiO2 0.126). Microcirculatory cutaneous blood flow was assessed with a laser Doppler flowmeter on the forearm. Reactive hyperemia was induced by an ischemic stimulus. Measurements included furthermore hemodynamics, blood gas analyses and blood lactate. Microcirculatory blood flow increased progressively during hypoxia (12.3 ± 7.1–19.0 ± 8.1 perfusion units; p = 0.0002) in all subjects. The magnitude of the reactive hyperemia was diminished during hypoxia (58.2 ± 14.5–40.3 ± 27.4 perfusion units; p = 0.0003). Short-term acclimatization had no effect on microcirculatory blood flow. When testing for a hyperemic response of the skin's microcirculation we found a diminished signal in hypoxia, indicative for a compromised auto-regulative circulatory capacity. Furthermore, hypoxic short-term acclimatization did not affect cutaneous microcirculatory blood flow. Seemingly, circulation of the skin was unable to acclimatize using a week-long short-term acclimatization protocol. A potential limitation of our study may be the 7 days between acclimatization and the experimental test run. However, there is evidence that the hypoxic ventilatory response, an indicator of acclimatization, is increased for 1 week after short-term acclimatization. Then again, 1 week is what one needs to get from home to a location at significant altitude.
Collapse
Affiliation(s)
- Benedikt Treml
- Department of General and Surgical Intensive Care, Medical University Innsbruck, Innsbruck, Austria
| | - Axel Kleinsasser
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Karl-Heinz Stadlbauer
- Department of Anesthesiology and Critical Care Medicine, Klinikum Vöcklabruck, Vöcklabruck, Austria
| | - Iris Steiner
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Pajk
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Pilch
- Department of Pediatrics, County Hospital Kufstein, Kufstein, Austria
| | - Martin Burtscher
- Department of Sport Science, Medical Section, University Innsbruck, Innsbruck, Austria
| | - Hans Knotzer
- Department of Anesthesiology and Critical Care Medicine II, Klinikum Wels-Grieskirchen, Wels, Austria
| |
Collapse
|
11
|
Boos CJ, Vincent E, Mellor A, O'Hara J, Newman C, Cruttenden R, Scott P, Cooke M, Matu J, Woods DR. The Effect of Sex on Heart Rate Variability at High Altitude. Med Sci Sports Exerc 2018; 49:2562-2569. [PMID: 28731986 DOI: 10.1249/mss.0000000000001384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is evidence suggesting that high altitude (HA) exposure leads to a fall in heart rate variability (HRV) that is linked to the development of acute mountain sickness (AMS). The effects of sex on changes in HRV at HA and its relationship to AMS are unknown. METHODS HRV (5-min single-lead ECG) was measured in 63 healthy adults (41 men and 22 women) 18-56 yr of age at sea level (SL) and during a HA trek at 3619, 4600, and 5140 m, respectively. The main effects of altitude (SL, 3619 m, 4600 m, and 5140 m) and sex (men vs women) and their potential interaction were assessed using a factorial repeated-measures ANOVA. Logistic regression analyses were performed to assess the ability of HRV to predict AMS. RESULTS Men and women were of similar age (31.2 ± 9.3 vs 31.7 ± 7.5 yr), ethnicity, and body and mass index. There was main effect for altitude on heart rate, SD of normal-to-normal (NN) intervals (SDNN), root mean square of successive differences (RMSSD), number of pairs of successive NN differing by >50 ms (NN50), NN50/total number of NN, very low-frequency power, low-frequency (LF) power, high-frequency (HF) power, and total power (TP). The most consistent effect on post hoc analysis was reduction in these HRV measures between 3619 and 5140 m at HA. Heart rate was significantly lower and SDNN, RMSSD, LF power, HF power, and TP were higher in men compared with women at HA. There was no interaction between sex and altitude for any of the HRV indices measured. HRV was not predictive of AMS development. CONCLUSIONS Increasing HA leads to a reduction in HRV. Significant differences between men and women emerge at HA. HRV was not predictive of AMS.
Collapse
Affiliation(s)
- Christopher John Boos
- 1Department of Cardiology, Poole Hospital NHS Foundation trust, Poole, UNITED KINGDOM; 2Department of Postgraduate Medical Education, Bournemouth University, Bournemouth, UNITED KINGDOM; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UNITED KINGDOM; 4Defence Medical Services, Lichfield, UNITED KINGDOM; 5Department of Anaesthetics, James Cook University Hospital, Middlesbrough, UNITED KINGDOM; 6Department of Medicine, Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, UNITED KINGDOM; and 7Department of Academic Medicine, University of Newcastle, Newcastle upon Tyne, UNITED KINGDOM
| | | | | | | | | | | | | | | | | | | |
Collapse
|