1
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
2
|
Wang Z, Li J, Liu R, Jia X, Liu H, Xie T, Chen H, Pan L, Ma Z. Synthesis, characterization and anticancer properties: A series of highly selective palladium(II) substituted-terpyridine complexes. J Inorg Biochem 2023; 244:112219. [PMID: 37058991 DOI: 10.1016/j.jinorgbio.2023.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Ten new palladium(II) complexes [PdCl(L1-10)]Cl have been synthesized by the reaction of palladium(II) chloride and ten 4'-(substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen(L1), p-hydroxyl(L2), m-hydroxyl (L3), o-hydroxyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), or iodo (L10). Their structures were confirmed by FT-IR, 1H NMR, elemental analysis and/or single crystal X-ray diffraction analysis. Their in vitro anticancer activities were investigated based on five cell lines, including four cancer cell lines (A549, Eca-109, Bel-7402, MCF-7) and one normal cell line (HL-7702). The results show that these complexes possess a strong killing effect on the cancer cells but a weak proliferative inhibition on the normal cells, implying their high inhibitory selectivity for the proliferation of the cancer cell lines. Flow cytometry characterization reveals that these complexes affect cell proliferation mainly in the G0/G1 phase and induce the late apoptotic of the cells. The quantity of palladium(II) ion in extracted DNA was determined by ICP-MS, which proved that these complexes target genomic DNA. And the strong affinity of the complexes with CT-DNA were confirmed by UV-Vis spectrum and circular dichroism (CD). The possible binding modes of the complexes with DNA were further explored by molecular docking. As the concentration of complexes 1-10 gradually increases, the fluorescence intensity of bovine serum albumin (BSA) decreases by a static quenching mechanism.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Aydinlik S, Uvez A, Kiyan HT, Gurel-Gurevin E, Yilmaz VT, Ulukaya E, Armutak EI. Palladium (II) complex and thalidomide intercept angiogenic signaling via targeting FAK/Src and Erk/Akt/PLCγ dependent autophagy pathways in human umbilical vein endothelial cells. Microvasc Res 2021; 138:104229. [PMID: 34339726 DOI: 10.1016/j.mvr.2021.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
The current study assessed the effects of the thalidomide and palladium (II) saccharinate complex of terpyridine on the suppression of angiogenesis-mediated cell proliferation. The viability was assessed after treatment with palladium (II) complex (1.56-100 μM) and thalidomide (0.1-400 μM) alone by using ATP assay for 48 h. Palladium (II) complex was found to inhibit growth statistically significant in a dose-dependent manner in HUVECs and promoted PARP-1 cleavage through the production of ROS. On the other hand, thalidomide did not cause any significant change in cell viability. Moreover, cell death was observed to be manifested as late apoptosis due to Annexin V/SYTOX staining after palladium (II) complex treatment however, thalidomide did not demonstrate similar results. Thalidomide and palladium (II) complex also suppressed HUVEC migration and capillary-like structure tube formation in vitro in a time-dependent manner. Palladium (II) complex (5 mg/ml) treatment showed a strong antiangiogenic effect similar to positive control thalidomide (5 mg/ml) and successfully disrupted the vasculature and reduced the thickness of the vessels compared to control (agar). Furthermore, suppression of autophagy enhanced the cell death and anti-angiogenic effect of thalidomide and palladium (II) complex. We also showed that being treated with thalidomide and palladium (II) complex inhibited phosphorylation of the signaling regulators downstream of the VEGFR2. These results provide evidence for the regulation of endothelial cell functions that are relevant to angiogenesis through the suppression of the FAK/Src/Akt/ERK1/2 signaling pathway. Our results also indicate that PLC-γ1 phosphorylation leads to activation of p-Akt and p-Erk1/2 which cause stimulation on cell proliferation at lower doses. Hence, we demonstrated that palladium (II) and thalidomide can induce cell death via the Erk/Akt/PLCγ signaling pathway and that this pathway might be a novel mechanism.
Collapse
Affiliation(s)
- Seyma Aydinlik
- Department of Biology, Faculty of Arts and Science, Uludag University, Bursa, Turkey
| | - Ayca Uvez
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, 34500 Buyukcekmece/Istanbul, Turkey
| | - Hulya Tuba Kiyan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Ebru Gurel-Gurevin
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Veysel Turan Yilmaz
- Department of Chemistry, Faculty of Arts and Science, Uludag University, Bursa, Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, 34500 Buyukcekmece/Istanbul, Turkey.
| |
Collapse
|
4
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
5
|
Laser speckle contrast analysis (LASCA) technology for the semiquantitative measurement of angiogenesis in in-ovo-tumor-model. Microvasc Res 2020; 133:104072. [PMID: 32949573 DOI: 10.1016/j.mvr.2020.104072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The process of angiogenesis is a key element for tumor growth and proliferation and therefore one of the determining factors for aggressiveness and malignancy. A better understanding of the underlying processes of tumor induced angiogenesis is crucial for superior cancer treatment. Furthermore, the PeriCam perfusion speckle imager (PSI) system high resolution (HR) model by PERIMED presents a noninvasive method for semi-quantitative measurement of blood perfusion, based on laser speckle contrast analysis (LASCA). Aim of the present study was to utilize the chick chorioallantoic membrane (CAM) model as an in-ovo-tumor-model which enables rapid neovascularization of tumors while allowing real-time observation of the microcirculation via LASCA. METHODS Fertilized chicken eggs were grafted with embryonal/alveolar rhabdomyosarcoma cells or primary sarcoma tumors. The blood perfusion was measured before and after tumor growth using LASCA. The procedure is accelerated and simplified through the integrated PIMSoft software which provides real-time graphs and color-coded images during the measurement. RESULTS Sarcoma cells and primary sarcoma tumors exhibited satisfactory growth processes on the CAM. LASCA visualized microcirculation accurately and enabled an extensive investigation of the angiogenic potential of sarcoma cells on the CAM. We were able to show that sarcoma cells and primary sarcoma tumors induced larger quantities of neovasculature on the CAM than the controls. CONCLUSIONS The utilization of LASCA for the investigation of tumor angiogenesis within the CAM model appears to be a highly beneficial, cost-efficient and easily practicable procedure. The proposed model can be used as a drug-screening model for individualized cancer therapy, especially with regards to anti-angiogenic agents.
Collapse
|
6
|
Zych D, Slodek A, Krompiec S, Malarz K, Mrozek-Wilczkiewicz A, Musiol R. 4′-Phenyl-2,2′:6′,2′′-terpyridine Derivatives Containing 1-Substituted-2,3-Triazole Ring: Synthesis, Characterization and Anticancer Activity. ChemistrySelect 2018. [DOI: 10.1002/slct.201801204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dawid Zych
- Institute of Chemistry; Faculty of Mathematics; Physics and Chemistry; University of Silesia, Szkolna 9; 40-007 Katowice Poland
| | - Aneta Slodek
- Institute of Chemistry; Faculty of Mathematics; Physics and Chemistry; University of Silesia, Szkolna 9; 40-007 Katowice Poland
| | - Stanisław Krompiec
- Institute of Chemistry; Faculty of Mathematics; Physics and Chemistry; University of Silesia, Szkolna 9; 40-007 Katowice Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research; Faculty of Mathematics; Physics and Chemistry; University of Silesia, 75 Pułku Piechoty 1 A; 41-500 Chorzów Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research; Faculty of Mathematics; Physics and Chemistry; University of Silesia, 75 Pułku Piechoty 1 A; 41-500 Chorzów Poland
| | - Robert Musiol
- Institute of Chemistry; Faculty of Mathematics; Physics and Chemistry; University of Silesia, Szkolna 9; 40-007 Katowice Poland
| |
Collapse
|
7
|
Sayin K, Üngördü A. Investigation of anticancer properties of caffeinated complexes via computational chemistry methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:147-155. [PMID: 29223460 DOI: 10.1016/j.saa.2017.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Computational investigations were performed for 1,3,7-trimethylpurine-2,6-dione, 3,7-dimethylpurine-2,6-dione, their Ru(II) and Os(III) complexes. B3LYP/6-311++G(d,p)(LANL2DZ) level was used in numerical calculations. Geometric parameters, IR spectrum, 1H-, 13C and 15N NMR spectrum were examined in detail. Additionally, contour diagram of frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) maps, MEP contour and some quantum chemical descriptors were used in the determination of reactivity rankings and active sites. The electron density on the surface was similar to each other in studied complexes. Quantum chemical descriptors were investigated and the anticancer activity of complexes were more than cisplatin and their ligands. Additionally, molecular docking calculations were performed in water between related complexes and a protein (ID: 3WZE). The most interact complex was found as Os complex. The interaction energy was calculated as 342.9kJ/mol.
Collapse
Affiliation(s)
- Koray Sayin
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey.
| | - Ayhan Üngördü
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|