1
|
Ozdemir D, Arslan S, Artac M, Karaarslan F. Topical menthol for chemotherapy-induced peripheral neuropathy: a randomised controlled trial in breast cancer. BMJ Support Palliat Care 2024; 15:79-86. [PMID: 39038990 DOI: 10.1136/spcare-2023-004483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVES Chemotherapy-induced peripheral neuropathy (CIPN) symptom is one of the side effects of paclitaxel in breast cancer patients. This randomised controlled study was conducted to investigate the effect of topical menthol applied on the hands and feet of breast cancer patients receiving chemotherapy on CIPN symptoms. METHODS 60 breast cancer patients receiving chemotherapy were randomly assigned to an intervention group (n=30), which received topical menthol treatment, or a control group (n=30), which received standard care. Both groups continued their routine pharmacological treatments throughout the study. The intervention group applied 1% menthol topically to their hands and feet two times a day. The effect of the intervention on CIPN symptoms was evaluated 3 weeks and 6 weeks after the intervention. RESULTS The intervention group showed a significantly greater improvement in CIPN symptoms over time compared with the control group, with an effect size of η2=0.214 for the group×time interaction. Additionally, the intervention group exhibited a notable positive change in the exposure subscale of the CIPN rating scale, with an effect size of η2=0.114. CONCLUSIONS Topical application of menthol significantly mitigates the symptoms of CIPN in breast cancer patients. This study supports the use of menthol as an effective adjunctive treatment for CIPN. TRIAL REGISTRATION NUMBER NCT05429814.
Collapse
Affiliation(s)
| | - Selda Arslan
- Department of Internal Medicine Nursing, Necmettin Erbakan University, Nursing Faculty, Meram, Turkey
| | - Mehmet Artac
- Department of Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Meram, Turkey
| | | |
Collapse
|
2
|
Versteeg N, Wellauer V, Wittenwiler S, Aerenhouts D, Clarys P, Clijsen R. Short-term cutaneous vasodilatory and thermosensory effects of topical methyl salicylate. Front Physiol 2024; 15:1347196. [PMID: 38706945 PMCID: PMC11066213 DOI: 10.3389/fphys.2024.1347196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Methyl salicylate, the main compound of wintergreen oil, is widely used in topical applications. However, its vascular and thermosensory effects are not fully understood. The primary aim was to investigate the effects of topical methyl salicylate on skin temperature (Tskin), skin microcirculation (MCskin) and muscle oxygen saturation (SmO2) compared to a placebo gel. The secondary aim was to assess thermosensory responses (thermal sensation, thermal comfort) and to explore to which extent these sensations correspond to the physiological responses over time. Methods 21 healthy women (22.2 ± 2.9 years) participated in this single-blind, randomized controlled trial. Custom-made natural wintergreen oil (12.9%), containing methyl salicylate (>99%) and a placebo gel, 1 g each, were applied simultaneously to two paravertebral skin areas (5 cm × 10 cm, Th4-Th7). Tskin (infrared thermal imaging), MCskin (laser speckle contrast imaging) and SmO2 (deep tissue oxygenation monitoring) and thermosensation (Likert scales) were assessed at baseline (BL) and at 5-min intervals during a 45 min post-application period (T0-T45). Results Both gels caused an initial decrease in Tskin, with Tskin(min) at T5 for both methyl salicylate (BL-T5: Δ-3.36°C) and placebo (BL-T5: Δ-3.90°C), followed by a gradual increase (p < .001). Methyl salicylate gel resulted in significantly higher Tskin than placebo between T5 and T40 (p < .05). For methyl salicylate, MCskin increased, with MCskin(max) at T5 (BL-T5: Δ88.7%). For placebo, MCskin decreased (BL-T5: Δ-17.5%), with significantly lower values compared to methyl salicylate between T0 and T45 (p < .05). Both gels had minimal effects on SmO2, with no significant differences between methyl salicylate and placebo (p > .05). Thermal sensation responses to topical methyl salicylate ranged from "cool" to "hot", with more intense sensations reported at T5. Discussion The findings indicate that topical methyl salicylate induces short-term cutaneous vasodilation, but it may not enhance skeletal muscle blood flow. This study highlights the complex sensory responses to its application, which may be based on the short-term modulation of thermosensitive transient receptor potential channels.
Collapse
Affiliation(s)
- Ninja Versteeg
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Vanessa Wellauer
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Selina Wittenwiler
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Dirk Aerenhouts
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
3
|
Yang C, Peng X, Shi Y, Zhang Y, Feng M, Tian Y, Zhang J, Cen S, Li Z, Dai X, Jing Z, Shi X. Umbilical therapy for promoting transdermal delivery of topical formulations: Enhanced effect and underlying mechanism. Int J Pharm 2024; 652:123834. [PMID: 38262583 DOI: 10.1016/j.ijpharm.2024.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Umbilical paste therapy is a promising method to promote transdermal drug delivery of topical formulations. This work investigated the effect and mechanism of transdermal drug delivery through the umbilical skin. The transdermal permeation studies showed the phenomenon of higher cumulative penetration and faster penetration rates for drug through the umbilical skin compared with non-umbilical skin, namely umbilical pro-permeability. This special transdermal permeability of drugs is influenced by their molecular weight, logP value, ability to form hydrogen bonds, and molecular volume. The underlying mechanism of umbilical pro-permeability was elucidated from unique structure and regulation the effect of drugs on microcirculation in the umbilical skin. Mechanistic studies revealed that this phenomenon was not only associated with the structural and physiological properties of the skin but also to the interactions between drugs and different skin layers. The umbilical pro-permeation is attributed to the thinner stratum corneum layer, differences in stratum corneum lipid composition and keratin structure, and lower levels of intercellular tight junction proteins in the viable epidermis and dermis layer of the skin. Our research indicated that umbilical paste therapy enhanced the transdermal delivery and absorption of drugs by stimulating local blood flow through mast cell activation. Surprisingly, skin temperature modulation and calcitonin gene-related peptide and substance P levels did not appear to significantly affect this process. In conclusion, umbilical drug administration, as a straightforward and non-invasive approach to enhance transdermal drug delivery, presents novel concepts for continued investigation and practical implementation of transdermal drug delivery systems.
Collapse
Affiliation(s)
- Chang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanshuang Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - MinFang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianmin Zhang
- Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China
| | - Zhenlong Jing
- Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China.
| |
Collapse
|
4
|
Sokolov AY, Mengal M, Berkovich R. Menthol dural application alters meningeal arteries tone and enhances excitability of trigeminocervical neurons in rats. Brain Res 2024; 1825:148725. [PMID: 38128811 DOI: 10.1016/j.brainres.2023.148725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Headaches, including migraines, can have a causal relationship to exposure to cold, and this relationship may be both positive and negative, as cold can both provoke and alleviate cephalgia. The role of thermoreceptors responsible for transduction of low temperatures belongs to the transient receptor potential cation channel subfamily melastatin member 8 (TRPM8). These channels mediate normal cooling sensation and have a role in both cold pain and cooling-mediated analgesia; they are seen as a potential target for principally new anti-migraine pharmaceuticals. Using a validated animal migraine models, we evaluated effects of menthol, the TRPM8-agonist, on trigeminovascular nociception. In acute experiments on male rats, effects of applied durally menthol solution in various concentrations on the neurogenic dural vasodilatation (NDV) and firing rate of dura-sensitive neurons of the trigeminocervical complex (TCC) were assessed. Application of menthol solution in concentrations of 5 % and 10 % was associated with NDV suppression, however amplitude reduction of the dilatation response caused not by the vascular dilatation degree decrease, but rather due to the significant increase of the meningeal arterioles' basal tone. In electrophysiological experiments the 1 % and 30 % menthol solutions intensified TCC neuron responses to the dural electrical stimulation while not changing their background activity. Revealed in our study excitatory effects of menthol related to the vascular as well as neuronal branches of the trigeminovascular system indicate pro-cephalalgic effects of TRPM8-activation and suggest feasibility of further search for new anti-migraine substances among TRPM8-antagonists.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia; St. Petersburg Medico-Social Institute, Saint Petersburg, Russia.
| | - Miran Mengal
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Regina Berkovich
- LAC+USC General Hospital and Neurology Clinic, Regina Berkovich MD, PhD Inc., Los Angeles, CA, USA
| |
Collapse
|
5
|
Miranda Neto M, Meireles ACF, Alcântara MA, de Magalhães Cordeiro AMT, Silva AS. Peppermint essential oil (Mentha piperita L.) increases time to exhaustion in runners. Eur J Nutr 2023; 62:3411-3422. [PMID: 37665425 DOI: 10.1007/s00394-023-03235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC) RBR-75zt25z.
Collapse
Affiliation(s)
- Manoel Miranda Neto
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, University City, João Pessoa, Paraíba, 58059-900, Brazil
| | - Ana Carolina Freitas Meireles
- Laboratory of Physical Training Studies Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maristela Alves Alcântara
- Food Technology Department, Center for Technology and Regional Development, Federal University of Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | | | - Alexandre Sérgio Silva
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, University City, João Pessoa, Paraíba, 58059-900, Brazil.
- Associate Postgraduate Program in Physical Education, University of Pernambuco/Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
6
|
Behringer EJ. Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am J Physiol Heart Circ Physiol 2023; 325:H1012-H1038. [PMID: 37624095 PMCID: PMC10908410 DOI: 10.1152/ajpheart.00288.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.
Collapse
Affiliation(s)
- Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
7
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
8
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
9
|
Van Skike CE, DeRosa N, Galvan V, Hussong SA. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer's disease. GeroScience 2023; 45:1987-1996. [PMID: 37052770 PMCID: PMC10400743 DOI: 10.1007/s11357-023-00786-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Peripheral artery disease (PAD), defined as reduced blood flow to the lower limbs, is a serious disorder that can lead to loss of function in the lower extremities and even loss of limbs. One of the main risk factors for PAD is age, with up to 25% of adults over the age of 55 and up to 40% over the age of 80 presenting with some form of the disease. While age is the largest risk factor for PAD, other risk factors include atherosclerosis, smoking, hypertension, and diabetes. Furthermore, previous studies have suggested that the incidence of PAD is significantly increased in patients with Alzheimer's disease (AD). Attenuation of mTOR with rapamycin significantly improves cerebral blood flow and heart function in aged rodents as well as in mouse models of atherosclerosis, atherosclerosis-driven cognitive impairment, and AD. In this study, we show that rapamycin treatment improves peripheral blood flow in aged mice and in mouse models of atherosclerosis and AD. Inhibition of mTOR with rapamycin ameliorates deficits in baseline hind paw perfusion in aged mice and restores levels of blood flow to levels indistinguishable from those of young controls. Furthermore, rapamycin treatment ameliorates peripheral blood flow deficits in mouse models of atherosclerosis and AD. These data indicate that mTOR is causally involved in the reduction of blood flow to lower limbs associated with aging, atherosclerosis, and AD-like progression in model mice. Rapamycin or other mTOR inhibitors may have potential as interventions to treat peripheral artery disease and other peripheral circulation-related conditions.
Collapse
Affiliation(s)
- Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA
| |
Collapse
|
10
|
Wang G, Hurr C. Effects of cutaneous administration of an over-the-counter menthol cream during temperate-water immersion for exercise-induced hyperthermia in men. Front Physiol 2023; 14:1161240. [PMID: 37234416 PMCID: PMC10206141 DOI: 10.3389/fphys.2023.1161240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Hyperthermia impairs various physiological functions and physical performance. We examined the effects of cutaneous administration with an over-the-counter (OTC) analgesic cream containing 20% methyl salicylate and 6% L-menthol during temperate-water immersion (TWI) for exercise-induced hyperthermia. Methods: In a randomized crossover design, twelve healthy males participated in both of two experiments. Firstly, participants underwent a 15-min TWI at 20°C with (CREAM) or without (CON) cutaneous application of an analgesic cream. Cutaneous vascular conductance (CVC) was measured using laser doppler flowmetry during TWI. In a subsequent experiment, same participants performed a 30-min strenuous interval exercise in a heated (35°C) environment to induce hyperthermia (~39°C), which was followed by 15 min of TWI. Results: Core body temperature, as measured by an ingestible telemetry sensor, and mean arterial pressure (MAP) were measured. CVC and %CVC (% baseline) were higher during TWI in CREAM than in CON (Condition effect: p = 0.0053 and p = 0.0010). An additional experiment revealed that core body heat loss during TWI was greater in CREAM than in CON (Cooling rate: CON 0.070 ± 0.020 vs. CREAM 0.084°C ± 0.026°C/min, p = 0.0039). A more attenuated MAP response was observed during TWI in CREAM than in CON (Condition effect: p = 0.0007). Conclusion: An OTC analgesic cream containing L-menthol and MS augmented cooling effects when cutaneously applied during TWI in exercise-induced hyperthermia. This was, at least in part, due to the counteractive vasodilatory effect of the analgesic cream. The cutaneous application of OTC analgesic cream may therefore provide a safe, accessible, and affordable means of enhancing the cooling effects of TWI.
Collapse
Affiliation(s)
- Gang Wang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Physical Education, Xinyang Normal University, Xingang, China
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Hoffman MSF, McKeage JW, Xu J, Ruddy BP, Nielsen PMF, Taberner AJ. Minimally invasive capillary blood sampling methods. Expert Rev Med Devices 2023; 20:5-16. [PMID: 36694960 DOI: 10.1080/17434440.2023.2170783] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Whole blood samples, including arterial, venous, and capillary blood, are regularly used for disease diagnosis and monitoring. The global Covid-19 pandemic has highlighted the need for a more resilient screening capacity. Minimally invasive sampling techniques, such as capillary blood sampling, are routinely used for point of care testing in the home healthcare setting and clinical settings such as the Intensive Care Unit with less pain and wounding than conventional venepuncture. AREAS COVERED In this manuscript, we aim to provide a overview of state-of-the-art of techniques for obtaining samples of capillary blood. We first review both established and novel methods for releasing blood from capillaries in the skin. Next, we provide a comparison of different capillary blood sampling methods based on their mechanism, testing site, puncture size, cost, wound geometry, healing, and perceptions of pain. Finally, we overview established and new methods for enhancing capillary blood collection. EXPERT OPINION We expect that microneedles will prove to be a preferred option for paediatric blood collection. The ability of microneedles to collect a capillary blood sample without pain will improve paediatric healthcare outcomes. Jet injection may prove to be a useful method for facilitating both blood collection and drug delivery.
Collapse
Affiliation(s)
| | - James W McKeage
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Jiali Xu
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, University of Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, University of Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, University of Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Wang G, Zhang T, Wang A, Hurr C. Topical Analgesic Containing Methyl Salicylate and L-Menthol Accelerates Heat Loss During Skin Cooling for Exercise-Induced Hyperthermia. Front Physiol 2022; 13:945969. [PMID: 35910580 PMCID: PMC9326359 DOI: 10.3389/fphys.2022.945969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Hyperthermia impairs physical performance and, when prolonged, results in heat stroke or other illnesses. While extensive research has investigated the effectiveness of various cooling strategies, including cold water immersion and ice-suit, there has been little work focused on overcoming the cutaneous vasoconstriction response to external cold stimulation, which can reduce the effectiveness of these treatments. Over-the-counter (OTC) topical analgesics have been utilized for the treatment of muscle pain for decades; however, to date no research has examined the possibility of taking advantage of their vasodilatory functions in the context of skin cooling. We tested whether an OTC analgesic cream containing 20% methyl salicylate and 6% L-menthol, known cutaneous vasodilators, applied to the skin during skin cooling accelerates heat loss in exercise-induced hyperthermia. Firstly, we found that cutaneous application of OTC topical analgesic cream can attenuate cold-induced vasoconstriction and enhance heat loss during local skin cooling. We also revealed that core body heat loss, as measured by an ingestible telemetry sensor, could be accelerated by cutaneous application of analgesic cream during ice-suit cooling in exercise-induced hyperthermia. A blunted blood pressure response was observed during cooling with the analgesic cream application. Given the safety profile and affordability of topical cutaneous analgesics containing vasodilatory agents, our results suggest that they can be an effective and practical tool for enhancing the cooling effects of skin cooling for hyperthermia.
Collapse
Affiliation(s)
- Gang Wang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
- Department of Physical Education, Xinyang Normal University, Xingang, China
| | - Tingran Zhang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
| | - Anjie Wang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Chansol Hurr,
| |
Collapse
|
13
|
Đukanović Đ, Gajic Bojic M, Marinkovic S, Trailovic SM, Stojiljković MP, Škrbić R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can J Physiol Pharmacol 2022; 100:755-762. [PMID: 35507953 DOI: 10.1139/cjpp-2021-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carvacrol is the main compound of essential oils extracted primarily from Thymus and Origanum species. Its various biological activities were confirmed: antioxidant, anti-inflammatory, antibacterial, antifungal, anti-tumour, antinematodal and vasorelaxant action. Although vasodilation mediated by carvacrol was previously described, the exact mechanism of its action has not yet been established. Hence, the aim of this study was to investigate carvacrol vasoactivity on human umbilical arteries (HUA) and different pathways involved in its mechanism of action using tissue bath methodology. Carvacrol caused a significant decrease in vascular tension of 5-HT-pre-contracted umbilical arteries, with EC50 of 442.13 ± 33.8 µM (mean ± standard error of the mean - SEM). At 300 µM, carvacrol shifted downward the 5-HT concentration-response curve with statistical significance of p < 0.001 obtained for the four highest concentrations. At concentration of 1 mM, carvacrol completely abolished BaCl2-induced contraction in Ca2+-free Krebs-Ringer bicarbonate solution (p < 0.001). Isopentenyl pyrophosphate, the antagonist of TRPV3 channel, was able to decrease the efficacy of carvacrol (p < 0.001). The vasorelaxant effect of carvacrol seems to involve the blocking of L-type of Ca2+ channels on smooth muscle cells. However, the role of TRPV3 channels in carvacrol-induced vasodilation of HUA cannot be excluded either.
Collapse
Affiliation(s)
- Đorđe Đukanović
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Milica Gajic Bojic
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Sonja Marinkovic
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Sasa M Trailovic
- University of Belgrade, 54801, Pharmacology and Toxicology, Bulevar oslobodjenja 18, Beograd, Serbia, 11000;
| | - Miloš P Stojiljković
- University of Banja Luka Faculty of Medicine, 469576, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Bosnia and Herzegovina, 78000;
| | - Ranko Škrbić
- University of Banja Luka Faculty of Medicine, 469576, Banja Luka, Bosnia and Herzegovina, 78000;
| |
Collapse
|
14
|
Dillon GA, Lichter ZS, Alexander LM. Menthol-induced activation of TRPM8 receptors increases cutaneous blood flow across the dermatome. Microvasc Res 2022; 139:104271. [PMID: 34717968 PMCID: PMC8791073 DOI: 10.1016/j.mvr.2021.104271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Topical menthol-based analgesics increase skin blood flow (SkBF) through transient receptor potential melastatin 8 (TRPM8) receptor-dependent activation of sensory nerves and endothelium-derived hyperpolarization factors. It is unclear if menthol-induced TRPM8 activation mediates a reflex change in SkBF across the dermatome in an area not directly treated with menthol. The purpose of this study was to determine the effects of localized topical menthol application on SkBF across a common dermatome. We hypothesized that SkBF would be increased with menthol at the site of application and across the dermatome (contralateral limb) through a spinal reflex mechanism. In a double blind, placebo controlled, cross-over design, 15 healthy participants (7 men; age = 22 ± 1 yrs) were treated with direct application (3 ml over 8 × 13 cm) of 5% menthol gel (Biofreeze™) or placebo gel on the L4 dermatome, separated by 48 h. Red blood cell flux was measured using laser Doppler flowmetry over the area of application, on the contralateral leg of the same dermatome, and in a separate dermatome (L5/S1) to serve as control. Cutaneous vascular conductance was calculated for each measurement site (CVC = flux/MAP). At baseline there were no differences in CVC between menthol and placebo gels, or among sites (all p > 0.05). After 30 ± 6 min, CVC increased at the treated site with menthol (0.12 ± 0.02 vs. 1.36 ± 0.19 flux/mm Hg, p < 0.01) but not the placebo (0.10 ± 0.01 vs. 0.18 ± 0.04 flux/mm Hg, p = 0.91). There was a modest increase in CVC at the contralateral L4 dermatome with menthol gel (0.16 ± 0.04 vs. 0.29 ± 0.06 flux/mm Hg, p < 0.01), but not placebo (0.11 ± 0.02 vs. 0.15 ± 0.03 flux/mm Hg, p = 0.41). There was no effect on SkBF from either treatments at the L5/S1 control dermatome (both, p > 0.05), suggesting the lack of a systemic response. In conclusion, menthol containing topical analgesic gels increased SkBF at the treated site, and modestly throughout the dermatome. These data suggest menthol-induced activation of the TRPM8 receptors induces an increase in SkBF across the area of common innervation through a localized spinal reflex mechanism.
Collapse
Affiliation(s)
- Gabrielle A Dillon
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA,Center for Healthy Aging, The Pennsylvania State University, University Park, PA, USA
| | - Zachary S Lichter
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA,Center for Healthy Aging, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
TRPA1 channel activation with cinnamaldehyde induces cutaneous vasodilation through NOS, but not COX and KCa channel, mechanisms in humans. J Cardiovasc Pharmacol 2021; 79:375-382. [PMID: 34983913 DOI: 10.1097/fjc.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Transient receptor potential ankyrin 1 (TRPA1) channel activation induces cutaneous vasodilation in humans in vivo. However, the mechanisms underlying this response remains equivocal. We hypothesized that nitric oxide (NO) synthase (NOS) and Ca2+ activated K+ (KCa) channels contribute to the TRPA1 channel-induced cutaneous vasodilation with no involvement of cyclooxygenase (COX). Cutaneous vascular conductance (CVC) in 9 healthy young adults was assessed at four dorsal forearm skin sites treated by intradermal microdialysis with either: 1) vehicle control (98% propylene glycol + 1.985% dimethyl sulfoxide + 0.015% lactated Ringer solution), 2) 10 mM L-NAME, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM tetraethylammonium, a non-selective KCa channel blocker. Cinnamaldehyde, a TRPA1 channel activator, was administered to each skin site in a dose-dependent manner (2.9, 8.8, 26 and 80 %, each lasting ≥30min). Administration of ≥8.8% cinnamaldehyde increased CVC from baseline at the vehicle control site by as much as 27.4% [95 % confidence interval of 5.3] (P<0.001). NOS inhibitor attenuated the cinnamaldehyde induced-increases in CVC at the 8.8, 26.0, and 80.0% concentrations relative to the vehicle control site (all P≤0.05). In contrast, both the COX inhibitor and KCa channel blockers did not attenuate the cinnamaldehyde induced-increases in CVC relative to the vehicle control site for all concentrations (all P≥0.130). We conclude that in human skin in vivo, NOS plays a role in modulating the regulation of cutaneous vasodilation in response to TRPA1 channel activation with no detectable contributions of COX and KCa channels.
Collapse
|
16
|
Thapa D, Valente JDS, Barrett B, Smith MJ, Argunhan F, Lee SY, Nikitochkina S, Kodji X, Brain SD. Dysfunctional TRPM8 signalling in the vascular response to environmental cold in ageing. eLife 2021; 10:70153. [PMID: 34726597 PMCID: PMC8592571 DOI: 10.7554/elife.70153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ageing is associated with increased vulnerability to environmental cold exposure. Previously, we identified the role of the cold-sensitive transient receptor potential (TRP) A1, M8 receptors as vascular cold sensors in mouse skin. We hypothesised that this dynamic cold-sensor system may become dysfunctional in ageing. We show that behavioural and vascular responses to skin local environmental cooling are impaired with even moderate ageing, with reduced TRPM8 gene/protein expression especially. Pharmacological blockade of the residual TRPA1/TRPM8 component substantially diminished the response in aged, compared with young mice. This implies the reliance of the already reduced cold-induced vascular response in ageing mice on remaining TRP receptor activity. Moreover, sympathetic-induced vasoconstriction was reduced with downregulation of the α2c adrenoceptor expression in ageing. The cold-induced vascular response is important for sensing cold and retaining body heat and health. These findings reveal that cold sensors, essential for this neurovascular pathway, decline as ageing onsets.
Collapse
Affiliation(s)
- Dibesh Thapa
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Joäo de Sousa Valente
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Brentton Barrett
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Matthew John Smith
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Fulye Argunhan
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Sheng Y Lee
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom.,Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sofya Nikitochkina
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Xenia Kodji
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom.,Skin Research Institute, Agency of Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Susan D Brain
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Gillis DJ, Moriarty J, Douglas N, Ely BR, Silva K, Gallo JA. The effect of body surface area exposure to menthol on temperature regulation and perception in men. J Therm Biol 2021; 99:102982. [PMID: 34420626 DOI: 10.1016/j.jtherbio.2021.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In warm conditions topical application of menthol increases cool sensations and influences deep body temperature. The purpose of this experiment was to explore whether different body surface areas (BSA) exposed to menthol influence these responses. It was hypothesized that the forcing function exerted by menthol will be proportionally related to BSA. METHOD Using a within-participant design, 13 participants underwent three BSA exposures (Small [S; finger]; Medium [M; arm]; Large [L; upper/lower body]) to 4.13% menthol, and one Placebo exposure. During each exposure participants rested supine in a tent (30 °C, 50%rh) for 30-min before their intervention and 30-min thereafter. Measures included thermal sensation, thermal comfort, irritation, skin blood flow (finger SkBF; laser Doppler flowmetry), rectal temperature (Tre), and skin temperature (chest, forearm, thigh, calf). The Area Under the Curve from minute 30 to 60 was calculated and analyzed using a one-way ANOVA or Friedman's test with post-hoc testing (0.05 alpha level). RESULTS There was no significant difference in any measure of thermometry (p > 0.05), while SKBF was significantly lowered in L, M, and S vs. P respectively (p < 0.05). Participants in L felt cooler vs. P and S (p < 0.05). Losses in thermal comfort were noted in L and M vs. P and S (p < 0.05), along with increased irritation in L vs. S (p < 0.05). CONCLUSIONS Despite similar skin temperatures, larger BSA's exposed to menthol caused cooler sensations, likely due to the activation of a larger pool of menthol-sensitive neurons. This occurred in the absence of thermal discomfort and without perceptions of irritation exceeding 'weak'. Larger BSA's also exhibited greater alterations in Tre, likely driven by a reduction in SkBF, but despite this mean body temperature was regulated suggesting the thermoregulatory system can cope with the range of BSA exposures studied herein.
Collapse
Affiliation(s)
- D Jason Gillis
- Human Performance Laboratory, Exercise Science, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 0197, USA.
| | - Jacob Moriarty
- Human Performance Laboratory, Exercise Science, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 0197, USA
| | - Nakiya Douglas
- Human Performance Laboratory, Exercise Science, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 0197, USA
| | - Brett R Ely
- Human Performance Laboratory, Exercise Science, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 0197, USA
| | - Kevin Silva
- Athletic Training Program, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 01970, USA
| | - Joseph A Gallo
- Athletic Training Program, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 01970, USA
| |
Collapse
|
18
|
Barwood MJ, Gibson OR, Gillis DJ, Jeffries O, Morris NB, Pearce J, Ross ML, Stevens C, Rinaldi K, Kounalakis SN, Riera F, Mündel T, Waldron M, Best R. Menthol as an Ergogenic Aid for the Tokyo 2021 Olympic Games: An Expert-Led Consensus Statement Using the Modified Delphi Method. Sports Med 2020; 50:1709-1727. [PMID: 32623642 PMCID: PMC7497433 DOI: 10.1007/s40279-020-01313-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Menthol topical application and mouth rinsing are ergogenic in hot environments, improving performance and perception, with differing effects on body temperature regulation. Consequently, athletes and federations are beginning to explore the possible benefits to elite sport performance for the Tokyo 2021 Olympics, which will take place in hot (~ 31 °C), humid (70% RH) conditions. There is no clear consensus on safe and effective menthol use for athletes, practitioners, or researchers. The present study addressed this shortfall by producing expert-led consensus recommendations. METHOD Fourteen contributors were recruited following ethical approval. A three-step modified Delphi method was used for voting on 96 statements generated following literature consultation; 192 statements total (96/96 topical application/mouth rinsing). Round 1 contributors voted to "agree" or "disagree" with statements; 80% agreement was required to accept statements. In round 2, contributors voted to "support" or "change" their round 1 unaccepted statements, with knowledge of the extant voting from round 1. Round 3 contributors met to discuss voting against key remaining statements. RESULTS Forty-seven statements reached consensus in round 1 (30/17 topical application/rinsing); 14 proved redundant. Six statements reached consensus in round 2 (2/4 topical application/rinsing); 116 statements proved redundant. Nine further statements were agreed in round 3 (6/3 topical application/rinsing) with caveats. DISCUSSION Consensus was reached on 62 statements in total (38/24 topical application/rinsing), enabling the development of guidance on safe menthol administration, with a view to enhancing performance and perception in the heat without impairing body temperature regulation.
Collapse
Affiliation(s)
- M J Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University, Brownberrie Lane, Horsforth, Leeds, LS18 5HD, UK.
| | - O R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Department Life Sciences, Division of Sport, Health and Exercise Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - D J Gillis
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, Salem, MA, 01970, USA
| | - O Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Catherine Cookson Building, Newcastle Upon Tyne, NE2 4HH, UK
| | - N B Morris
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100, Copenhagen, Denmark
| | - J Pearce
- Performance Nutrition Technical Lead, High Performance Sport New Zealand, Auckland, New Zealand
| | - M L Ross
- Australian Institute of Sport, Bruce, 2617, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, 3000, Australia
| | - C Stevens
- School of Health and Human Sciences, Southern Cross University, Hogbin Dr, Coffs Harbour, NSW, 2450, Australia
| | - K Rinaldi
- Laboratoire ACTES (EA3596), Université des Antilles et de la Guyane, BP 250, 97157, Pointe-à-Pitre, France
- Arkea Samsic Pro Cycling Team, 35170, Bruz, France
| | - S N Kounalakis
- Faculty of Physical and Cultural Education, Evelpidon Hellenic Army Academy, Vari, Greece
| | - F Riera
- UPRES EA 35-96, UFR-STAPS, Université des Antilles et de la Guyane, BP 250, 97157, Pointe à Pitre Cedex, France
- Laboratoire Performance Santé Altitude, Université de Perpignan Via Domitia, UFR Sciences et Techniques des Activités Physiques et Sportives, 7 avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - T Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston, New Zealand
| | - M Waldron
- College of Engineering, Applied Sports Science Technology and Medicine Research Centre (A-STEM), Swansea University Bay Campus, Swansea, Wales, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - R Best
- Centre for Sport Science and Human Performance, Waikato Institute of Technology, Hamilton, 3200, New Zealand
- School of Health and Social Care, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK
| |
Collapse
|
19
|
Gillis DJ, Capone S, Nestor K, Snell M. The influence of menthol dose on human temperature regulation and perception. J Therm Biol 2020; 92:102659. [PMID: 32888563 DOI: 10.1016/j.jtherbio.2020.102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This study assessed the influence of High (H, 4.13%), Medium (M, 2.0%) and Low (L, 0.1%) doses of menthol on temperature perception and regulation, compared to a Placebo Condition (P). METHOD Sixteen participants underwent the aforementioned conditions on four separate days. During each test participants rested supine (Environmental conditions: 30 °C, 50% rh) for 30-min before 40 mL of L, M, H or P gel was applied to the anterior upper body, then rested 30-min thereafter. Primary measures included thermal sensation (TS), thermal comfort (TC), irritation (IRR), rectal temperature (Tre), and skin temperature (chest, forearm, thigh, calf), and EMG (trapezius, pectoralis major, sternocleidomastoid). The area under the curve (AUC) from minute 30 to 60 was compared between conditions using relevant non/parametric tests (alpha level = 0.05). RESULTS A cooling trend in Tre was observed following Placebo gel application, but this significantly (p < 0.05) reversed into a heat storage response in M and H. Both TS and TC significantly differed by condition (p < 0.001) in a dose-dependent manner, with L, M, and H doses eliciting significantly cooler sensations and more discomfort than P (p < 0.05). Irritation significantly differed by condition (p < 0.01) in a dose-dependent manner, with L and M eliciting significantly greater irritation than P (p < 0.01). No other differences were observed. CONCLUSIONS Menthol exerts perceptual and thermoregulatory effects independent of skin temperature. A menthol dose-dependent perceptual cooling effect was evident with possible saturation at the moderate dose. A dose-dependent alteration in deep body temperature was also evident.
Collapse
Affiliation(s)
- D Jason Gillis
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 01970, USA.
| | - Selena Capone
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 01970, USA
| | - Kacey Nestor
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 01970, USA
| | - Mitchel Snell
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, 225 Canal Street, Salem, MA, 01970, USA
| |
Collapse
|
20
|
McGarr GW, Fujii N, Schmidt MD, Muia CM, Kenny GP. Heat shock protein 90 modulates cutaneous vasodilation during an exercise-heat stress, but not during passive whole-body heating in young women. Physiol Rep 2020; 8:e14552. [PMID: 32845578 PMCID: PMC7448794 DOI: 10.14814/phy2.14552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Heat shock protein 90 (HSP90) modulates exercise-induced cutaneous vasodilation in young men via nitric oxide synthase (NOS), but only when core temperature is elevated ~1.0°C. While less is known about modulation of this heat loss response in women during exercise, sex differences may exist. Further, the mechanisms regulating cutaneous vasodilation can differ between exercise- and passive-heat stress. Therefore, in 11 young women (23 ± 3 years), we evaluated whether HSP90 contributes to NOS-dependent cutaneous vasodilation during exercise (Protocol 1) and passive heating (Protocol 2) and directly compared responses between end-exercise and a matched core temperature elevation during passive heating. Cutaneous vascular conductance (CVC%max ) was measured at four forearm skin sites continuously treated with (a) lactated Ringers solution (control), (b) 178 μM Geldanamycin (HSP90 inhibitor), (c) 10 mM L-NAME (NOS inhibitor), or (d) combined 178 μM Geldanamycin and 10 mM L-NAME. Participants completed both protocols during the early follicular (low hormone) phase of the menstrual cycle (0-7 days). Protocol 1: participants rested in the heat (35°C) for 70 min and then performed 50 min of moderate-intensity cycling (~55% VO2peak ) followed by 30 min of recovery. Protocol 2: participants were passively heated to increase rectal temperature by 1.0°C, comparable to end-exercise. HSP90 inhibition attenuated CVC%max relative to control at end-exercise (p < .05), but not during passive heating. While NOS inhibition and combined HSP90 + NOS inhibition attenuated CVC%max relative to control for both protocols (all p < .05), they did not differ from each other. We show that HSP90 modulates cutaneous vasodilation NOS-dependently during exercise in young women, with no effect during passive heating, despite a similar NOS contribution.
Collapse
Affiliation(s)
- Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Naoto Fujii
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Madison D. Schmidt
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Caroline M. Muia
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| |
Collapse
|
21
|
|
22
|
Wong BJ, Turner CG, Miller JT, Walker DC, Sebeh Y, Hayat MJ, Otis JS, Quyyumi AA. Sensory nerve-mediated and nitric oxide-dependent cutaneous vasodilation in normotensive and prehypertensive non-Hispanic blacks and whites. Am J Physiol Heart Circ Physiol 2020; 319:H271-H281. [PMID: 32559139 DOI: 10.1152/ajpheart.00177.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to investigate the effect of race and subclinical elevations in blood pressure (i.e., prehypertension) on cutaneous sensory nerve-mediated and nitric oxide (NO)-dependent vasodilation. We recruited participants who self-identified as either non-Hispanic black (n = 16) or non-Hispanic white (n = 16). Within each group, participants were subdivided as either normotensive (n = 8 per group) or prehypertensive (n = 8 per group). Each participant was instrumented with four intradermal microdialysis fibers: 1) control (lactated Ringer's), 2) 5% lidocaine (sensory nerve inhibition), 3) 20 mM Nω-nitro-l-arginine methyl ester (l-NAME) (NO synthase inhibition), and 4) lidocaine + l-NAME. Skin blood flow was assessed via laser-Doppler flowmetry, and each site underwent local heating from 33°C to 39°C. At the plateau, 20 mM l-NAME were infused at control and lidocaine sites to quantify NO-dependent vasodilation. Maximal vasodilation was induced via 54 mM sodium nitroprusside and local heating to 43°C. Data are means ± SD. Sensory nerve-mediated cutaneous vasodilation was reduced in prehypertensive non-Hispanic white (34 ± 7%) and both non-Hispanic black groups (normotensive, 20 ± 9%, prehypertensive, 24 ± 15%) relative to normotensive non-Hispanic whites (54 ± 12%). NO-dependent vasodilation was also reduced in prehypertensive non-Hispanic white (41 ± 7%) and both non-Hispanic black groups (normotensive, 44 ± 7%, prehypertensive, 19 ± 7%) relative to normotensive non-Hispanic whites (60 ± 11%). The decrease in NO-dependent vasodilation in prehypertensive non-Hispanic blacks was further reduced relative to all other groups. These data suggest subclinical increases in blood pressure adversely affect sensory-mediated and NO-dependent vasodilation in both non-Hispanic blacks and whites.NEW & NOTEWORTHY Overt hypertension is known to reduce cutaneous sensory nerve-mediated and nitric oxide (NO)-dependent vasodilation, but the effect of subclinical increases in blood pressure (i.e., prehypertension) is unknown. The combined effect of race and prehypertension is also unknown. In this study, we found that prehypertension reduces cutaneous sensory nerve-mediated and NO-dependent vasodilation in both non-Hispanic white and black populations, with the greatest reductions observed in prehypertensive non-Hispanic blacks.
Collapse
Affiliation(s)
- Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - James T Miller
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Demetria C Walker
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Yesser Sebeh
- School of Public Health, Georgia State University, Atlanta, Georgia
| | - Matthew J Hayat
- School of Public Health, Georgia State University, Atlanta, Georgia
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
23
|
Silva H. Current Knowledge on the Vascular Effects of Menthol. Front Physiol 2020; 11:298. [PMID: 32317987 PMCID: PMC7154148 DOI: 10.3389/fphys.2020.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Menthol is a monoterpene alcohol, widely used in several food and healthcare products for its particular odor and flavor. For some decades, menthol has been known to act on the vasculature directly in the endothelium and vascular smooth muscle, with recent studies showing that it also evokes an indirect vascular response via sensory fibers. The mechanisms underlying menthol's vascular action are complex due to the diversity of cellular targets, to the interplay between signaling pathways and to the variability in terms of response. Menthol can evoke either a perfusion increase or decrease in vivo in different vascular territories, an observation that warrants a critical discussion. Menthol vascular actions in vivo seem to depend on whether the vascular territory under analysis has been directly provoked with menthol or is located deep/distant to the application site. Menthol increases perfusion of directly provoked skin regions due to a complex interplay of increased nitric oxide (NO), endothelium-derived hyperpolarization factors (EDHFs) and sensory nerve responses. In non-provoked vascular beds menthol decreases perfusion which might be attributed to heat-conservation sympathetically-mediated vasoconstriction, although an increase in tissue evaporative heat loss due the formulation ethanol may also play a role. There is increasing evidence that several of menthol's cellular targets are involved in cardiovascular diseases, such as hypertension. Thus menthol and pharmacologically-similar drugs can play important preventive and therapeutic roles, which merits further investigation.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS - Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Lisboa, Portugal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
24
|
Low DA, Jones H, Cable NT, Alexander LM, Kenney WL. Historical reviews of the assessment of human cardiovascular function: interrogation and understanding of the control of skin blood flow. Eur J Appl Physiol 2019; 120:1-16. [PMID: 31776694 PMCID: PMC6969866 DOI: 10.1007/s00421-019-04246-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Several techniques exist for the determination of skin blood flow that have historically been used in the investigation of thermoregulatory control of skin blood flow, and more recently, in clinical assessments or as an index of global vascular function. Skin blood flow measurement techniques differ in their methodology and their strengths and limitations. To examine the historical development of techniques for assessing skin blood flow by describing the origin, basic principles, and important aspects of each procedure and to provide recommendations for best practise. Venous occlusion plethysmography was one of the earliest techniques to intermittently index a limb’s skin blood flow under conditions in which local muscle blood flow does not change. The introduction of laser Doppler flowmetry provided a method that continuously records an index of skin blood flow (red cell flux) (albeit from a relatively small skin area) that requires normalisation due to high site-to-site variability. The subsequent development of laser Doppler and laser speckle imaging techniques allows the mapping of skin blood flow from larger surface areas and the visualisation of capillary filling from the dermal plexus in two dimensions. The use of iontophoresis or intradermal microdialysis in conjunction with laser Doppler methods allows for the local delivery of pharmacological agents to interrogate the local and neural control of skin blood flow. The recent development of optical coherence tomography promises further advances in assessment of the skin circulation via three-dimensional imaging of the skin microvasculature for quantification of vessel diameter and vessel recruitment.
Collapse
Affiliation(s)
- David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - N Tim Cable
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Liverpool, UK
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Effectiveness of Several Palate Cleansers on Carry-Over Effect of Minty Chewing Gums. CHEMOSENS PERCEPT 2019. [DOI: 10.1007/s12078-019-09271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Evidence for TRPV4 channel induced skin vasodilatation through NOS, COX, and KCa channel mechanisms with no effect on sweat rate in humans. Eur J Pharmacol 2019; 858:172462. [DOI: 10.1016/j.ejphar.2019.172462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
27
|
Fujii N, McGarr GW, Hatam K, Chandran N, Muia CM, Nishiyasu T, Boulay P, Ghassa R, Kenny GP. Heat shock protein 90 does not contribute to cutaneous vasodilatation in older adults during heat stress. Microcirculation 2019; 26:e12541. [DOI: 10.1111/micc.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Gregory W. McGarr
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Kion Hatam
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Nithila Chandran
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Caroline M. Muia
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Pierre Boulay
- Faculty of Physical Activity Sciences University of Sherbrooke Sherbrooke Quebec Canada
| | - Reem Ghassa
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
| |
Collapse
|
28
|
Hunter AM, Grigson C, Wade A. INFLUENCE OF TOPICALLY APPLIED MENTHOL COOLING GEL ON SOFT TISSUE THERMODYNAMICS AND ARTERIAL AND CUTANEOUS BLOOD FLOW AT REST. Int J Sports Phys Ther 2018; 13:483-492. [PMID: 30038834 PMCID: PMC6044592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Topical application of menthol is a popular form of cold therapy and chemically triggers cold receptors and increases cutaneous blood flow. However, although cutaneous blood flow increases, it remains unknown where this increase arises from. Intramuscular temperature assessment may indirectly indicate a change in muscular blood flow. PURPOSE To establish intramuscular temperature, blood flow responses and subjective temperature sensation following application of menthol-based cooling gel to the anterior thigh. STUDY DESIGN Controlled, randomized cross over interventional study. METHODS Twenty (age: 21.4 + 1.7) healthy males were treated on three separate days in random order with ice, a menthol-based gel or placebo gel (participant single blinded) on one anterior thigh. All measurements were taken at baseline and for 80 mins following treatment: 1) Skin, core, and intramuscular temperatures (1 & 3 cm deep); 2) femoral arterial blood flow (duplex ultrasound); 3) cutaneous blood flow (laser Doppler) and 4) subjective cold sensation. RESULTS Ice and both gels decreased (p<0.0001, CI (Ice): -5.2 to -6.2 and CI (gels) -1.4 to -2.5) intramuscular temperature by 5.7 and 1.9 °C respectively, but by 80 mins were similar to each other (1.5-2 °C less than pre-treatment). Skin temperature mirrored muscle temperature with 8.8 and 4.2 °C respective decline for ice and gels. Menthol gel increased (p<0.0001) cutaneous blood flow by 0.3 ml/min compared to unaltered flow associated with the placebo gel and a decline of 0.3 ml/min for the ice. Menthol gel cold sensation was subjectively reported to be cooler (p<0.0001) than the other two treatments. Core temperature and arterial flow were unaffected. CONCLUSION This is the first study to demonstrate the intramuscular cooling effect of menthol-based gel. However, the likely cause was from evaporative cooling despite menthol-derived increases in cutaneous blood flow and cooling sensation. LEVEL OF EVIDENCE Treatment, level 2.
Collapse
Affiliation(s)
- Angus M Hunter
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland
| | - Christopher Grigson
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland
| | - Adam Wade
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland
| |
Collapse
|
29
|
Pergolizzi JV, Taylor R, LeQuang JA, Raffa RB. The role and mechanism of action of menthol in topical analgesic products. J Clin Pharm Ther 2018. [PMID: 29524352 DOI: 10.1111/jcpt.12679] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Menthol has been used as a non-opioid pain reliever since ancient times. A modern understanding of its molecular mechanism of action could form the basis for generating targets for discovery of novel non-opioid analgesic drugs. METHODS The PubMed database was queried using search words related to menthol, pain and analgesia. The results were limited to relevant preclinical studies and clinical trials and reviews published in English during the past 5 years, which yielded 31 reports. The bibliographies of these articles were sources of additional supporting articles. RESULTS Menthol is a selective activator of transient receptor potential melastatin-8 (TRPM8) channels and is also a vasoactive compound. As a topical agent, it acts as a counter-irritant by imparting a cooling effect and by initially stimulating nociceptors and then desensitizing them. Topically applied menthol may also activate central analgesic pathways. At high concentrations, menthol may generate cold allodynia. WHAT IS NEW AND CONCLUSIONS Recent elucidation of TRPM8 channels has provided a molecular basis for understanding the molecular action of menthol and its ability to produce both a cooling sensation and reduction in pain associated with a wide variety of pain(ful) conditions. The more modern mechanistic understanding of menthol and its pharmacologic mechanism of action may lead to an expanded role for this substance in the search for replacements for opioid analgesics, particularly those that can be applied topically.
Collapse
Affiliation(s)
| | - R Taylor
- NEMA Research, Inc., Naples, FL, USA
| | | | - R B Raffa
- University of Arizona College of Pharmacy, Tucson, AZ, USA.,Temple University School of Pharmacy, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Craighead DH, Alexander LM. Menthol-Induced Cutaneous Vasodilation Is Preserved in Essential Hypertensive Men and Women. Am J Hypertens 2017; 30:1156-1162. [PMID: 28985244 PMCID: PMC5861574 DOI: 10.1093/ajh/hpx127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Menthol is a selective transient receptor potential melastatin 8 (TRPM8) channel agonist that induces cutaneous vasodilation in young, normotensive men and women through nitric oxide synthase (NOS)-, endothelium-derived hyperpolarizing factor (EDHF)-, and sensory nerve-mediated mechanisms. Microvascular dysfunction is present in essential hypertension and whether menthol induces vasodilation is men and women with essential hypertension is equivocal. METHODS Four intradermal microdialysis fibers were placed in the forearm of 9 essential hypertensive and 10 age-matched normotensive control subjects. Sites were pretreated with lactated Ringer's (control), l-NAME (NOS inhibited), TEA (EDHF inhibited), and lidocaine (sensory nerve inhibited). The microdialysis fibers were then perfused with 7 increasing doses of menthol (0.1-500 mM). Red cell flux in response to menthol was measured with laser Doppler flowmetry. Data were normalized to mean arterial pressure and presented as a percentage of site-specific maximum vasodilation (%CVCmax). RESULTS At the control site, menthol caused vasodilation in both the normotensive and hypertensive groups (menthol doses 100, 250, and 500 mM; all P < 0.05 compared to baseline). There were no differences between groups (P = 0.58, main effect). There was no effect of either NOS or sensory nerve inhibition on menthol-induced vasodilation in the normotensive group; however, menthol-induced vasodilation was attenuated with NOS and sensory nerve inhibition in the hypertensive group. EDHF inhibition attenuated menthol-induced vasodilation in both groups. CONCLUSIONS Menthol-induced vasodilation has NO, EDHF, and sensory nerve components. Menthol-induced cutaneous vasodilation is preserved in hypertensive subjects. However, the hypertensive subjects exhibited a loss of redundant vasodilator systems.
Collapse
Affiliation(s)
- Daniel H Craighead
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lacy M Alexander
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
31
|
Fujii N, Zhang SY, McNeely BD, Nishiyasu T, Kenny GP. Heat shock protein 90 contributes to cutaneous vasodilation through activating nitric oxide synthase in young male adults exercising in the heat. J Appl Physiol (1985) 2017; 123:844-850. [PMID: 28751373 PMCID: PMC5668448 DOI: 10.1152/japplphysiol.00446.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
While the mechanisms underlying the control of cutaneous vasodilation have been extensively studied, there remains a lack of understanding of the different factors that may modulate cutaneous perfusion during an exercise-induced heat stress. We evaluated the hypothesis that heat shock protein 90 (HSP90) contributes to the heat loss response of cutaneous vasodilation via the activation of nitric oxide synthase (NOS) during exercise in the heat. In 11 young males (25 ± 5 yr), cutaneous vascular conductance (CVC) was measured at four forearm skin sites that were continuously treated with 1) lactated Ringer solution (control), 2) NOS inhibition with 10 mM NG-nitro-l-arginine methyl ester (l-NAME), 3) HSP90 inhibition with 178 μM geldanamycin, or 4) a combination of 10 mM l-NAME and 178 μM geldanamycin. Participants rested in a moderate heat stress (35°C) condition for 70 min. Thereafter, they performed a 50-min bout of moderate-intensity cycling (~52% V̇o2peak) followed by a 30-min recovery period. We showed that NOS inhibition attenuated CVC (~40-50%) relative to the control site during pre- and postexercise rest in the heat (P ≤ 0.05); however, no effect of HSP90 inhibition was observed (P > 0.05). During exercise, we observed an attenuation of CVC with the separate inhibition of NOS (~40-50%) and HSP90 (~15-20%) compared with control (both P ≤ 0.05). However, the effect of HSP90 inhibition was absent in the presence of the coinhibition of NOS (P > 0.05). We show that HSP90 contributes to cutaneous vasodilation in young men exposed to the heat albeit during exercise only. We also show that the HSP90 contribution is due to NOS-dependent mechanisms.NEW & NOTEWORTHY We show that heat shock protein 90 functionally contributes to the heat loss response of cutaneous vasodilation during exercise in the heat, and this response is mediated through the activation of nitric oxide synthase. Therefore, interventions that may activate heat shock protein 90 may facilitate an increase in heat dissipation through an augmentation of cutaneous perfusion. In turn, this may attenuate or reduce the increase in core temperature and therefore the level of heat strain.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
32
|
Smith CJ, Craighead DH, Alexander LM. Effects of vehicle microdialysis solutions on cutaneous vascular responses to local heating. J Appl Physiol (1985) 2017; 123:1461-1467. [PMID: 28860170 DOI: 10.1152/japplphysiol.00498.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microdialysis is a minimally invasive technique often paired with laser Doppler flowmetry to examine cutaneous microvascular function, yet presents with several challenges, including incompatibility with perfusion of highly lipophilic compounds. The present study addresses this methodological concern, with an emphasis on the independent effects of commonly used vehicle dialysis solutions to improve solubility of pharmacological agents with otherwise low aqueous solubility. Four microdialysis fibers were placed in the ventral forearm of eight subjects (4 men, 4 women; 25 ± 1 yr) with sites randomized to serve as 1) control (lactated Ringer's), 2) Sodium carbonate-bicarbonate buffer administered at physiological pH [SCB-HCl; pH 7.4, achieved via addition of hydrochloric acid (HCl)], 3) 0.02% ethanol, and 4) 2% dimethyl sulfoxide (DMSO). After baseline (34°C), vehicle solutions were administered throughout a standardized local heating protocol to 42°C. Laser Doppler flowmetry provided an index of blood flow. Cutaneous vascular conductance was calculated and normalized to maximum (%CVCmax, sodium nitroprusside and 43°C local heat). The SCB-HCl solution increased baseline %CVCmax (control: 9.7 ± 0.8; SCB-HCl: 21.5 ± 3.5%CVCmax; P = 0.03), but no effects were observed during heating or maximal vasodilation. There were no differences with perfusion of ethanol or DMSO at any stage of the protocol ( P > 0.05). These data demonstrate the potential confounding effects of some vehicle dialysis solutions on cutaneous vascular function. Notably, this study provides evidence that 2% DMSO and 0.02% ethanol are acceptable vehicles with no confounding local vascular effects to a standardized local heating protocol at the concentrations presented. NEW & NOTEWORTHY This study examined the independent effects of common vehicle solutions on cutaneous vascular responses. A basic buffer (SCB-HCl) caused baseline vasodilation; 2% DMSO and 0.02% ethanol had no effects. This highlights the need for considering potential confounding effects of solubilizing solutions when combined with low aqueous soluble pharmacological agents. Importantly, DMSO and ethanol do not appear to influence cutaneous vascular function during baseline or local heating at the concentrations studied, allowing their use without confounding effects.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Daniel H Craighead
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
33
|
Direct peritoneal resuscitation improves mesenteric perfusion by nitric oxide dependent pathways. J Surg Res 2017; 213:274-280. [DOI: 10.1016/j.jss.2017.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/18/2017] [Accepted: 02/24/2017] [Indexed: 12/30/2022]
|