1
|
Liu B, Cai Z, Wang Y, Liu X, Zhang B, Zheng Q, Li J, Li C, Cui Y, Lv P, Yang D. Transglutaminase 2 regulates endothelial cell calcification via IL-6-mediated autophagy. Front Pharmacol 2024; 15:1393534. [PMID: 39654623 PMCID: PMC11625581 DOI: 10.3389/fphar.2024.1393534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Endothelial cell (EC) calcification is an important marker of atherosclerotic calcification. ECs play a critical role not only in atherogenesis but also in intimal calcification, as they have been postulated to serve as a source of osteoprogenitor cells that initiate this process. While the role of transglutaminase 2 (TG2) in cellular differentiation, survival, apoptosis, autophagy, and cell adhesion is well established, the mechanism underlying the TG2-mediated regulation of EC calcification is yet to be fully elucidated. Methods The TG2 gene was overexpressed or silenced by using siRNA and recombinant adenovirus. RT-PCR and WB were used to analyze the relative expression of target genes and proteins. 5-BP method analyzed TG2 activity. mCherry-eGFP-LC3 adenovirus and transmission electron microscopy analyzed EC autophagy level. Calcium concentrations were measured by using a calcium colorimetric assay kit. Alizarin red S staining assay analyzed EC calcification level. Elisa analyzed IL-6 level. Establishing EC calcification model by using a calcification medium (CM). Results Our findings demonstrated that CM increased TG2 activity and expression, which activated the NF-κB signaling pathway, and induced IL-6 autocrine signaling in ECs. Furthermore, IL-6 activated the JAK2/STAT3 signaling pathway to suppress cell autophagy and promoted ECs calcification. Discussion ECs are not only critical for atherogenesis but also believed to be a source of osteoprogenitor cells that initiate intimal calcification. Previous research has shown that TG2 plays an important role in the development of VC, but the mechanism by which it exerts this effect is not yet fully understood. Our results demonstrated that TG2 forms complexes with NF-κB components inhibition of autophagy promoted endothelial cell calcification through EndMT. Therefore, our research investigated the molecular mechanism of EC calcification, which can provide new insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Cai
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wang
- The First Department of Ocular Fundus Diseases, Zhengzhou Second Hospital, Zhengzhou, Henan, China
| | - Xinye Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zheng
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingye Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Cien Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of clinical laboratory, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongwei Yang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Huang A, Rao J, Feng X, Li X, Xu T, Yao L. Breaking new ground: Unraveling the USP1/ID3/E12/P21 axis in vascular calcification. Transl Res 2024; 276:1-20. [PMID: 39326697 DOI: 10.1016/j.trsl.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Vascular calcification (VC) poses significant challenges in cardiovascular health. This study employs single-cell transcriptome sequencing to dissect cellular dynamics in this process. We identify distinct cell subgroups, notably in vascular smooth muscle cells (VSMCs), and observe differences between calcified atherosclerotic cores and adjacent regions. Further exploration reveals ID3 as a key gene regulating VSMC function. In vitro experiments demonstrate ID3's interaction with USP1 and E12, modulating cell proliferation and osteogenic differentiation. Animal models confirm the critical role of the USP1/ID3/E12/P21 axis in VC. This study sheds light on a novel regulatory mechanism, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China
| | - Jianyun Rao
- Outpatient Management Office, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, PR China
| | - Xin Feng
- Department of Nephrology, Liaoning electric power central hospital, Shenyang 110000, PR China
| | - Xingru Li
- Department of Nephrology, Liaoning electric power central hospital, Shenyang 110000, PR China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, PR China.
| |
Collapse
|
3
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
4
|
Gui Z, Shao C, Zhan Y, Wang Z, Li L. Vascular calcification: High incidence sites, distribution, and detection. Cardiovasc Pathol 2024; 72:107667. [PMID: 38866090 DOI: 10.1016/j.carpath.2024.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Vascular calcification is an important pathological change in a variety of disease states such as atherosclerosis (AS), diabetes, chronic kidney disease (CKD), hypertension, and is a strong predictor of cardiovascular events. The distribution and location of calcification in different vessels may have different clinical effects and prognosis. Therefore, the study of high-risk sites of vascular calcification will help us to better understand the prevention, diagnosis, and treatment of related diseases, as well as to evaluate the efficacy and prognosis. So far, although there are some studies on the sites with high incidence of vascular calcification, there is a lack of systematic sorting out the distribution and location of vascular calcification in humans. Based on this, relevant databases were searched, literatures were retrieved, analyzed, and summarized, and the locations of high incidence of vascular calcification and their distribution characteristics, the relationship between high incidence of vascular calcification and hemodynamics, and the common detection methods of high incidence of vascular calcification were systematically described, hoping to provide help for clinical and research.
Collapse
Affiliation(s)
- Zebin Gui
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuanzi Zhan
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
He Y, Zhang Q, Pan L, Yang H, Liu T, Bei J, Peter K, Hu H. Platelets in Vascular Calcification: A Comprehensive Review of Platelet-Derived Extracellular Vesicles, Protein Interactions, Platelet Function Indices, and their Impact on Cellular Crosstalk. Semin Thromb Hemost 2024. [PMID: 39191407 DOI: 10.1055/s-0044-1789023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Vascular calcification (VC) commonly accompanies the development of atherosclerosis, defined by the accumulation of calcium in the arterial wall, potentially leading to stroke and myocardial infarction. Severe and unevenly distributed calcification poses challenges for interventional procedures, elevating the risks of vascular dissection, acute vascular occlusion, restenosis, and other major adverse cardiovascular events. Platelets promote the development of atherosclerosis by secreting various inflammatory mediators, regulating cell migration, aggregation, adhesion, and initiating and expanding inflammatory responses. There is emerging evidence that platelets play a direct role in VC; however, this novel concept has not yet been critically assessed. This review describes the intricate mechanisms by which platelets promote VC, focusing on three key aspects and the potential opportunities for their therapeutic targeting: extracellular vesicles, platelet-regulatory proteins, and indices related to platelet function.
Collapse
Affiliation(s)
- Yi He
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiongyue Zhang
- Department of Nephrology, Daping Hospital, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lina Pan
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Liu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junjie Bei
- Department of Cardiology, Guangxi Zhuang Autonomous Region Corps Hospital of People's Armed Police, Nanning, China
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Houyuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
7
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
Liu C, Zhang H, Yang Y, Cao Y, Liang D. The association between vitamin C intake and the risk of abdominal aortic calcification: A population-based study. Clin Nutr ESPEN 2024; 60:254-260. [PMID: 38479919 DOI: 10.1016/j.clnesp.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/07/2024] [Accepted: 02/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The beneficial effects of dietary vitamin C intake on human health have received widespread attention from the population. However, the correlation between vitamin C intake and abdominal aortic calcification remains unclear. The authors aimed to investigate the relationship between dietary vitamin C intake and AAC in US adults. METHODS Our data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2013-2014, and participants had complete data on dietary vitamin C intake and AAC scores. We used weighted multivariate linear regression and multivariate logistic regression analyses to explore the independent relationship between vitamin C intake and AAC scores, along with subgroup analyses and restricted cubic splines. RESULTS A total of 2876 participants were enrolled in this study, with a mean AAC score of 1.47 ± 0.14 and a prevalence of severe AAC of 8.12%. We observed a 0.5 unit decrease in AAC scores in participants in the highest quartile compared to those in the lowest quartile of VitC intake. In contrast, there was no significant correlation between VitC intake and risk of severe AAC. Besides, subgroup analysis and interaction tests showed that there was no dependence of the association between VitC intake and AAC. CONCLUSION Dietary VitC intake was associated with reduced AAC scores, but there was no significant correlation between dietary VitC intake and risk of severe AAC.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhang
- The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Yuwei Yang
- The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Yan Cao
- The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Dan Liang
- Department of Endocrine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.
| |
Collapse
|
9
|
Zhou G, Zhang C, Peng H, Su X, Huang Q, Zhao Z, Zhao G. PRMT3 methylates HIF-1α to enhance the vascular calcification induced by chronic kidney disease. Mol Med 2024; 30:8. [PMID: 38200452 PMCID: PMC10782741 DOI: 10.1186/s10020-023-00759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Medial vascular calcification is commonly identified in chronic kidney disease (CKD) patients and seriously affects the health and life quality of patients. This study aimed to investigate the effects of protein arginine methyltransferase 3 (PRMT3) on vascular calcification induced by CKD. METHODS A mice model of CKD was established with a two-step diet containing high levels of calcium and phosphorus. Vascular smooth muscle cells (VSMCs) were subjected to β-glycerophosphate (β-GP) treatment to induce the osteogenic differentiation as an in vitro CKD model. RESULTS PRMT3 was upregulated in VSMCs of medial artery of CKD mice and β-GP-induced VSMCs. The inhibitor of PRMT3 (SGC707) alleviated the vascular calcification and inhibited the glycolysis of CKD mice. Knockdown of PRMT3 alleviated the β-GP-induced osteogenic transfomation of VSMCs by the repression of glycolysis. Next, PRMT3 interacted with hypoxia-induced factor 1α (HIF-1α), and the knockdown of PRMT3 downregulated the protein expression of HIF-1α by weakening its methylation. Gain of HIF-1α reversed the PRMT3 depletion-induced suppression of osteogenic differentiation and glycolysis of VSMCs. CONCLUSION The inhibitory role of PRMT3 depletion was at least mediated by the regulation of glycolysis upon repressing the methylation of HIF-1α.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Hui Peng
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, China
| | - Guangyi Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
10
|
Zhang K, Gu F, Han Y, Cai T, Gu Z, Chen J, Chen B, Gao M, Hou Z, Yu X, Zhao J, Gao Y, Xie J, Hu R, Liu T, Li B. Association between dietary calcium intake and severe abdominal aorta calcification among American adults: a cross-sectional analysis of the National Health and Nutrition Examination Survey. Ther Adv Cardiovasc Dis 2024; 18:17539447241232774. [PMID: 38415471 PMCID: PMC10903221 DOI: 10.1177/17539447241232774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Evidence regarding the relationship between dietary calcium intake and severe abdominal aortic calcification (AAC) is limited. Therefore, this study aimed to investigate the association between dietary calcium intake and severe AAC in American adults based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS The present cross-sectional study utilized data from the NHANES 2013-2014, a population-based dataset. Dietary calcium intake was assessed using two 24-h dietary recall interviews. Quantification of the AAC scores was accomplished utilizing the Kauppila score system, whereby severe AAC was defined as having an AAC score greater than 6. We used multivariable logistic regression models, a restricted cubic spline analysis, and a two-piecewise linear regression model to show the effect of calcium intake on severe AAC. RESULTS Out of the 2640 individuals examined, 10.9% had severe AAC. Following the adjustment for confounding variables, an independent association was discovered between an augmented intake of dietary calcium and the incidence of severe AAC. When comparing individuals in the second quartile (Q2) of dietary calcium intake with those in the lowest quartile (Q1), a decrease in the occurrence of severe AAC was observed (odds ratio: 0.66; 95% confidence interval: 0.44-0.99). Furthermore, the relationship between dietary calcium intake and severe AAC demonstrated an L-shaped pattern, with an inflection point observed at 907.259 mg/day. Subgroup analyses revealed no significant interaction effects. CONCLUSION The study revealed that the relationship between dietary calcium intake and severe AAC in American adults is L-shaped, with an inflection point of 907.259 mg/day. Further research is required to confirm this association.
Collapse
Affiliation(s)
- Kai Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fangming Gu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Han
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyi Cai
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaoxuan Gu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jianguo Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Bowen Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengyan Hou
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoqi Yu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - JiaYu Zhao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yafang Gao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinyu Xie
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Hu
- Bethune First College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Tianzhou Liu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, 130000, China
| |
Collapse
|
11
|
Zhou J. Curcumin-loaded porous scaffold: an anti-angiogenic approach to inhibit endochondral ossification. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2255-2273. [PMID: 37382577 DOI: 10.1080/09205063.2023.2231663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Bone marrow stem cells (BMSCs) are recognized for their robust proliferative capabilities and multidirectional differentiation potential. Ectopic endochondral ossification of BMSC-generated cartilage in subcutaneous environments is a concern associated with vascularization. Hence, devising a reliable strategy to inhibit vascularization is crucial. In this study, an anti-angiogenic drug, curcumin (Cur), was encapsulated into gelatin to create a porous Cur/Gelatin scaffold, with the aim of inhibiting vascular invasion and preventing endochondral ossification of BMSC-regenerated cartilage. In vitro wound healing tests demonstrated that a 30 μM Cur solution could inhibit the migration and growth of human umbilical vein endothelial cells without impeding BMSCs migration and growth. Compared to the gelatin scaffold, our findings verified that the Cur/Gelatin scaffold significantly inhibited vascular invasion after being subcutaneously implanted into rabbits for 12 weeks, as evidenced by gross observation and immunofluorescence CD31 staining. Moreover, both the porous gelatin and Cur/Gelatin scaffolds were populated with BMSCs and underwent in vitro chondrogenic cultivation to produce cartilage, followed by subcutaneous implantation in rabbits for 12 weeks. Histological examinations (including HE, Safranin-O/Fast Green, toluidine blue, and immunohistochemical COL II staining) revealed that the BMSC-generated cartilage in the gelatin group exhibited prominent endochondral ossification. In contrast, the BMSC-generated cartilage in the Cur/Gelatin group maintained cartilage features, such as cartilage matrix and lacunar structure. This study suggests that Cur-loaded scaffolds offer a reliable platform to inhibit endochondral ossification of BMSC-generated cartilage.
Collapse
Affiliation(s)
- Jianwei Zhou
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Liang D, Liu C, Yang M. Blood Cadmium and Abdominal Aortic Calcification in Population with Different Weight Statuses: a Population-Based Study. J Cardiovasc Transl Res 2023; 16:1425-1438. [PMID: 37468727 DOI: 10.1007/s12265-023-10414-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The aim of our study was to assess the effect of blood cadmium levels (B-Cd) on abdominal aortic calcification (AAC). We used the data from the 2013-2014 NHANES database. A total of 1530 participants were included in our study, with a mean AAC score of 1.40 ± 0.10, and a prevalence of severe AAC of 7.98%. Participants with higher B-Cd quartiles showed a higher prevalence of severe AAC. B-Cd was positively associated with higher AAC scores and increased risk of severe AAC. In the obese population, blood cadmium levels showed a positive association with the risk of severe AAC. There may be a positive correlation between B-Cd levels and AAC scores and risk of severe AAC, and this correlation is more pronounced in the obese population. Therefore, the cadmium load in AAC patients in the obese population should be considered in clinical work.
Collapse
Affiliation(s)
- Dan Liang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Mei Yang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.
| |
Collapse
|
13
|
Liu C, Xu X, He X, Ren J, Chi M, Deng G, Li G, Nasser MI. Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med 2023; 55:2284890. [PMID: 38039549 PMCID: PMC10836253 DOI: 10.1080/07853890.2023.2284890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Background: Cardiovascular disease (CVD) is widely observed in modern society. CVDs are responsible for the majority of fatalities, with heart attacks and strokes accounting for approximately 80% of these cases. Furthermore, a significant proportion of these deaths, precisely one-third, occurs in individuals under 70. Metabolic syndrome encompasses a range of diseases characterized by various physiological dysfunctions. These include increased inflammation in adipose tissue, enhanced cholesterol synthesis in the liver, impaired insulin secretion, insulin resistance, compromised vascular tone and integrity, endothelial dysfunction, and atheroma formation. These factors contribute to the development of metabolic disorders and significantly increase the likelihood of experiencing cardiovascular complications.Method: We selected studies that proposed hypotheses regarding metabolic disease syndrome and cardiovascular disease (CVD) and the role of Nrf2/HO-1 and factor regulation in CVD research investigations based on our searches of Medline and PubMed.Results: A total of 118 articles were included in the review, 16 of which exclusively addressed hypotheses about the role of Nrf2 on Glucose regulation, while 16 involved Cholesterol regulation. Likewise, 14 references were used to prove the importance of mitochondria on Nrf2. Multiple studies have provided evidence suggesting the involvement of Nrf2/HO-1 in various physiological processes, including metabolism and immune response. A total of 48 research articles and reviews have been used to highlight the role of metabolic syndrome and CVD.Conclusion: This review provides an overview of the literature on Nrf2/HO-1 and its role in metabolic disease syndrome and CVD.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Gang Deng
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Guisen Li
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Li S, Ruan J, Yang Z, Liu L, Jiang T. In silico analysis and verification of critical genes related to vascular calcification in multiple diseases. Cell Biochem Funct 2023; 41:1242-1251. [PMID: 37707349 DOI: 10.1002/cbf.3858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Identifying a functional molecular therapeutic target of vascular calcification (VC) that will not affect normal osteogenic differentiation is a challenge. To address this aim, we screened the differentially expressed genes (DEGs) in different VC conditions, including endothelial-osteogenic transition (EOT) (GSE167962), chronic kidney disease (CKD), and atherosclerosis (AS) (GSE159832). KEGG pathways, protein-protein interactions, and hub genes were also analyzed. The intersecting DEGs among the EOT, CKD, and AS groups were verified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry in a DOCA-salt hypertension mouse model. The phosphoinositide 3-kinase-protein kinase B signaling pathway, ECM-receptor interaction, chemokine signaling pathway, and focal adhesion were enriched in EOT and AS-induced VC. ECM-receptor interaction, PPAR signaling pathway, apelin signaling pathway, AMPK signaling pathway, adipocytokine signaling pathway, and cholesterol metabolism were enriched in CKD and AS-induced VC. C4b, Cebpa, Lyz2, and Spp1 were also upregulated in EOT, CKD, AS, and hypertension. This study identified promising molecular targets for VC therapy.
Collapse
Affiliation(s)
- Shicheng Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jiangwen Ruan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zicong Yang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
15
|
Sun X, Zheng Y, Xie L, Zhou Y, Liu R, Ma Y, Zhao M, Liu Y. Autophagy reduces aortic calcification in diabetic mice by reducing matrix vesicle body-mediated IL-1β release. Exp Cell Res 2023; 432:113803. [PMID: 37774764 DOI: 10.1016/j.yexcr.2023.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Vascular calcification (VC) is a common pathological process of cardiovascular disease that occurs in patients with type 2 diabetes mellitus (T2DM). However, the molecular basis of VC progression remains unknown. A GEO dataset (GSE146638) was analyzed to show that microbodies and IL-1β may play important roles in the pathophysiology of VC. The release of matrix vesicle bodies (MVBs) and IL-1β and the colocalization of IL-1β with MVBs or autophagosomes were studied by immunofluorescence in an in vivo diabetes mouse model with aortic calcification and an in vitro high glucose cell calcification model. MVB numbers, IL-1β levels and autophagy were increased in calcified mouse aortas and calcified vascular smooth muscle cells (VSMCs). IL-1β colocalized with MVBs and autophagosomes. The MVBs from calcified VSMCs induced the calcification of normal recipient VSMCs, and this effect was alleviated by silencing IL-1β. The autophagy inducer rapamycin reduced IL-1β expression and calcification in VSMCs, while these processes were induced by the autophagy inhibitor chloroquine. In conclusion, our results suggested that MVBs could carry IL-1β out of cells and induce VC in normal VSMCs, and these processes could be counteracted by autophagy. These results suggested that MVB-mediated IL-1β release may be an effective target for treating vascular calcification.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; Cardiovascular and Metabolic Diseases Key Laboratory of Sichuan, Luzhou, 646000, China.
| | - Yang Zheng
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Vascular and Interventional, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Linzhuo Xie
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanqun Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Runyu Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yarong Ma
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China.
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
16
|
Song JH, Liu MY, Ma YX, Wan QQ, Li J, Diao XO, Niu LN. Inflammation-associated ectopic mineralization. FUNDAMENTAL RESEARCH 2023; 3:1025-1038. [PMID: 38933004 PMCID: PMC11197766 DOI: 10.1016/j.fmre.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
Ectopic mineralization refers to the deposition of mineralized complexes in the extracellular matrix of soft tissues. Calcific aortic valve disease, vascular calcification, gallstones, kidney stones, and abnormal mineralization in arthritis are common examples of ectopic mineralization. They are debilitating diseases and exhibit excess mortality, disability, and morbidity, which impose on patients with limited social or financial resources. Recent recognition that inflammation plays an important role in ectopic mineralization has attracted the attention of scientists from different research fields. In the present review, we summarize the origin of inflammation in ectopic mineralization and different channels whereby inflammation drives the initiation and progression of ectopic mineralization. The current knowledge of inflammatory milieu in pathological mineralization is reviewed, including how immune cells, pro-inflammatory mediators, and osteogenic signaling pathways induce the osteogenic transition of connective tissue cells, providing nucleating sites and assembly of aberrant minerals. Advances in the understanding of the underlying mechanisms involved in inflammatory-mediated ectopic mineralization enable novel strategies to be developed that may lead to the resolution of these enervating conditions.
Collapse
Affiliation(s)
| | | | | | - Qian-Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Ou Diao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
17
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
18
|
Kaur R, Krishan P, Kumari P, Singh T, Singh V, Singh R, Ahmad SF. Clinical Significance of Adropin and Afamin in Evaluating Renal Function and Cardiovascular Health in the Presence of CKD-MBD Biomarkers in Chronic Kidney Disease. Diagnostics (Basel) 2023; 13:3158. [PMID: 37835901 PMCID: PMC10572291 DOI: 10.3390/diagnostics13193158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
AIM The study aims to test the hypothesis that concentrations of adropin and afamin differ between patients in various stages of chronic kidney disease when compared with healthy controls. The study also investigates the association of the biomarkers (adropin and afamin) with CKD-MBD and traditional cardiovascular risk parameters in CKD patients. METHODOLOGY The cross-sectional study includes the subjects divided into four groups comprising the control group (healthy volunteers = 50), CKD stages 1-2 patients (n = 50), CKD stages 3-4 patients (n = 50), CKD stage 5 patients (n = 50). Serum concentrations of adropin and afamin were determined using ELISA. Clinical variables (renal, lipid, and CKD-MBD parameters) were correlated to adropin and afamin concentrations. RESULTS Afamin concentration was found to be higher in group IV, followed by groups III and II when compared to the control group, i.e., (83.243 ± 1.46, 64.233 ± 0.99, and 28.948 ± 0.72 vs. 14.476 ± 0.5) mg/L (p < 0.001), and adropin concentration was found to be lower in group IV as compared to groups III, II, and I (200.342 ± 8.37 vs. 284.682 ± 9.89 vs. 413.208 ± 12.32 vs. 706.542 ± 11.32) pg/mL (p < 0.001), respectively. Pearson correlation analysis showed that afamin was positively correlated with traditional cardiovascular risk biomarkers, while adropin showed a negative correlation. CONCLUSIONS Adropin and afamin may potentially serve as futuristic predictors for the deterioration of renal function and may be involved in the pathological mechanisms of CKD and its associated complications such as CKD-MBD and high lipid levels.
Collapse
Affiliation(s)
- Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India;
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA;
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India;
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
19
|
Gozdalski J, Nowicki TK, Kwarciany M, Kowalczyk K, Narkiewicz K, Gasecki D. Aortic Stiffness Is Independently Associated with Intracranial Carotid Artery Calcification in Patients with Ischemic Stroke. Cerebrovasc Dis 2023; 53:216-223. [PMID: 37591226 DOI: 10.1159/000533510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Intracranial carotid artery calcification (ICAC), as a strong contributor to the occurrence of ischemic stroke, might be present in the medial or intimal arterial layer. Traditional cardiovascular risk factors (CVRFs) are associated with ICAC; however, its association with new markers of vascular function is less understood. The paper aimed to evaluate the relationship between carotid-femoral pulse wave velocity (CF-PWV) and ICAC subtypes. METHODS We enrolled 65 patients with ischemic stroke. CF-PWV, systolic, diastolic, mean blood pressure, and pulse pressure were measured within 6 ± 2 days after stroke onset, and CT was performed within 24 h. ICAC on the stroke site was classified by two methods: volume and score based. Tertiles of ICAC volume were determined, and low-grade ICAC (T1) was regarded as a reference. According to the score-based method, (dominant) medial and (dominant) intimal ICAC subtypes were determined. Data were analyzed with multivariate logistic regression. RESULTS Medial and intimal ICAC subtypes were found in 34 (52%) and 24 (37%) patients, respectively. In 11% of patients, no ICAC calcifications were found. CF-PWV was higher in patients with high-grade ICAC (OR = 1.56, 95% CI = 1.03-2.35, p = 0.035). CF-PWV was higher in patients with the medial ICAC subtype (OR = 1.60, 95% CI = 1.00-2.55, p = 0.049) after adjustment for traditional CVRFs. CONCLUSION Our study demonstrates that among patients with ischemic stroke, aortic stiffness is independently associated with ICAC and that medial ICAC, compared with intimal ICAC, is accompanied by more advanced aortic stiffness.
Collapse
Affiliation(s)
| | - Tomasz K Nowicki
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
- 2nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Kwarciany
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Kamil Kowalczyk
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Narkiewicz
- Division of Hypertension & Diabetology, Department of Hypertension and Diabetology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Gasecki
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Kennon AM, Stewart JA. Paracrine Signals in Calcified Conditioned Media Elicited Differential Responses in Primary Aortic Vascular Smooth Muscle Cells and in Adventitial Fibroblasts. Int J Mol Sci 2023; 24:ijms24043599. [PMID: 36835011 PMCID: PMC9961433 DOI: 10.3390/ijms24043599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Our goal was to determine if paracrine signals from different aortic layers can impact other cell types in the diabetic microenvironment, specifically medial vascular smooth muscle cells (VSMCs) and adventitial fibroblasts (AFBs). The diabetic hyperglycemic aorta undergoes mineral dysregulation, causing cells to be more responsive to chemical messengers eliciting vascular calcification. Advanced glycation end-products (AGEs)/AGE receptors (RAGEs) signaling has been implicated in diabetes-mediated vascular calcification. To elucidate responses shared between cell types, pre-conditioned calcified media from diabetic and non-diabetic VSMCs and AFBs were collected to treat cultured murine diabetic, non-diabetic, diabetic RAGE knockout (RKO), and non-diabetic RKO VSMCs and AFBs. Calcium assays, western blots, and semi-quantitative cytokine/chemokine profile kits were used to determine signaling responses. VSMCs responded to non-diabetic more than diabetic AFB calcified pre-conditioned media. AFB calcification was not significantly altered when VSMC pre-conditioned media was used. No significant changes in VSMCs signaling markers due to treatments were reported; however, genotypic differences existed. Losses in AFB α-smooth muscle actin were observed with diabetic pre-conditioned VSMC media treatment. Superoxide dismutase-2 (SOD-2) increased with non-diabetic calcified + AGE pre-conditioned VSMC media, while same treatment decreased diabetic AFBs levels. Overall, non-diabetic and diabetic pre-conditioned media elicited different responses from VSMCs and AFBs.
Collapse
Affiliation(s)
- Amber M. Kennon
- Department of Investigational Cancer, Division of Cancer Medicine, U.T.M.D Anderson Cancer Center, Houston, TX 77030, USA
| | - James A. Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-(662)-915-2309
| |
Collapse
|
21
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
22
|
Costa D, Andreucci M, Ielapi N, Serraino GF, Mastroroberto P, Bracale UM, Serra R. Molecular Determinants of Chronic Venous Disease: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24031928. [PMID: 36768250 PMCID: PMC9916309 DOI: 10.3390/ijms24031928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Chronic Venous Disease (CVD) refers to several pathological and hemodynamic alterations of the veins of lower limbs causing a wide range of symptoms and signs with a high prevalence in the general population and with disabling consequences in the most severe forms. The etiology and pathophysiology of CVD is complex and multifactorial, involving genetic, proteomic, and cellular mechanisms that result in changes to the venous structure and functions. Expressions of several genes associated with angiogenesis, vascular development, and the regulation of veins are responsible for the susceptibility to CVD. Current evidence shows that several extracellular matrix alterations (ECM) could be identified and in some cases pharmacologically targeted. This review shows the most up to date information on molecular determinants of CVD in order to provide a complete overview of the current knowledge on this topic. In particular, the article explores the genetic influence, the hormonal influence, ECM imbalance, and histopathology of CVD and the role of endothelial dysfunction in CVD.
Collapse
Affiliation(s)
- Davide Costa
- Department of Law, Economics and Sociology, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giuseppe Filiberto Serraino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | | | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
23
|
Zhu Y, Wang S, Chen X. Extracellular Vesicles and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:57-68. [PMID: 37603272 DOI: 10.1007/978-981-99-1443-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell-cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xuerui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
24
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
25
|
Gonçalves CA, Bobermin LD, Sesterheim P, Netto CA. SARS-CoV-2-Induced Amyloidgenesis: Not One, but Three Hypotheses for Cerebral COVID-19 Outcomes. Metabolites 2022; 12:1099. [PMID: 36422238 PMCID: PMC9692683 DOI: 10.3390/metabo12111099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2024] Open
Abstract
The main neuropathological feature of Alzheimer's disease (AD) is extracellular amyloid deposition in senile plaques, resulting from an imbalance between the production and clearance of amyloid beta peptides. Amyloid deposition is also found around cerebral blood vessels, termed cerebral amyloid angiopathy (CAA), in 90% of AD cases. Although the relationship between these two amyloid disorders is obvious, this does not make CAA a characteristic of AD, as 40% of the non-demented population presents this derangement. AD is predominantly sporadic; therefore, many factors contribute to its genesis. Herein, the starting point for discussion is the COVID-19 pandemic that we are experiencing and how SARS-CoV-2 may be able to, both directly and indirectly, contribute to CAA, with consequences for the outcome and extent of the disease. We highlight the role of astrocytes and endothelial cells in the process of amyloidgenesis, as well as the role of other amyloidgenic proteins, such as fibrinogen and serum amyloid A protein, in addition to the neuronal amyloid precursor protein. We discuss three independent hypotheses that complement each other to explain the cerebrovascular amyloidgenesis that may underlie long-term COVID-19 and new cases of dementia.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Patricia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Centro Estadual de Vigilância Sanitária do Rio Grande do Sul (CEVS-RS), Porto Alegre 90450-190, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
26
|
Kaur R, Singh R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications. Life Sci 2022; 311:121148. [DOI: 10.1016/j.lfs.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
27
|
Cong L, Bai Y, Guo Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:997469. [PMID: 36386383 PMCID: PMC9650365 DOI: 10.3389/fcvm.2022.997469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 08/02/2023] Open
Abstract
In recent years, the mechanism of cell death has become a hotspot in research on the pathogenesis and treatment of cardiovascular disease (CVD). Different cell death modes, including autophagy, apoptosis, and pyroptosis, are mosaic with each other and collaboratively regulate the process of CVD. This review summarizes the interaction and crosstalk of key pathways or proteins which play a critical role in the entire process of CVD and explores the specific mechanisms. Furthermore, this paper assesses the interrelationships among these three cell deaths and reviews how they regulate the pathogenesis of CVD. By understanding how these three cell death modes go together we can learn about the pathogenesis of CVD, which will enable us to identify new targets for preventing, controlling, and treating CVD. It will not only reduce mortality but also improve the quality of life.
Collapse
Affiliation(s)
- Lin Cong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| |
Collapse
|
28
|
Yang J, Wang M, Yang J, Chu Z, Chen X, Wu X, Peng X. Calcifying nanoparticles initiate the calcification process of mesenchymal stem cells in vitro through the activation of the TGF-β1/Smad signaling pathway and promote the decay of echinococcosis. Open Life Sci 2022. [DOI: 10.1515/biol-2022-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
The role of the calcifying nanoparticles (CNPs) in the calcification process of the outer cyst wall in hepatic cystic echinococcosis (HCE) remains unknown. CNPs were isolated from the tissues of the patients with HCE. Western blotting, alkaline phosphatase staining, and alizarin staining were performed to detect the cellular calcium ion deposition induced by the CNPs. CCK-8 and flow cytometry assays were conducted to determine the effect of CNPs on the apoptosis of mesenchymal stem cells (MSCs). Western blot experiments were performed to examine the expression levels of apoptosis-related factors and TGF-β1/Smad signaling pathway constituents. Treatment with CNPs induced the differentiation of MSCs. Calcium-related proteins, including OPN, BMP-2, and RUNX2, were upregulated after the CNP treatment. Similarly, CNP exposure increased the cellular calcium ion deposition in MSCs. In addition, the expression of Bax and Caspase-8 was elevated by the CNPs in MSCs. Treatment with CNPs promoted MSC apoptosis and inhibited the MSC growth. The TGF-β1/Smad signaling pathway was also activated after the CNP treatment. This study indicated that CNPs may play a critical role in initiating calcification of the outer cyst wall of HCE and promote the decay of echinococcosis, providing a new strategy for the treatment of hepatic echinococcosis.
Collapse
Affiliation(s)
- Jian Yang
- Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , 430030 , China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Medical College, Shihezi University , No. 107, North Second Road , Shihezi , 832008, Xinjiang , China
| | - Meiyan Wang
- Department of Nursing, Shihezi University School of Medicine , Shihezi , 832000, Xinjiang , China
| | - Jing Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Medical College, Shihezi University , No. 107, North Second Road , Shihezi , 832008, Xinjiang , China
| | - Zhiqiang Chu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Medical College, Shihezi University , No. 107, North Second Road , Shihezi , 832008, Xinjiang , China
| | - Xueling Chen
- Department of Immunology, Shihezi University School of Medicine , Shihezi , 832000, Xinjiang , China
| | - Xiangwei Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Medical College, Shihezi University , No. 107, North Second Road , Shihezi , 832008, Xinjiang , China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine , Shihezi , Xinjiang, 832000 , China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University , Shihezi , 832000, Xinjiang , China
| | - Xinyu Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Medical College, Shihezi University , No. 107, North Second Road , Shihezi , 832008, Xinjiang , China
| |
Collapse
|
29
|
The Mechanism of Volatile Oil of Rhodiola tangutica against Hypoxia-Induced Pulmonary Hypertension in Rats Based on RAS Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9650650. [PMID: 36110120 PMCID: PMC9470319 DOI: 10.1155/2022/9650650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
Materials and Methods Seventy-five male Sprague-Dawley (SD) rats were separated into control (Ctr), hypoxia (Hyp), and Hyp+VORA treatment (100 mg/kg/d, 80 mg/kg/d, and 40 mg/kg/d) groups in random. To achieve the chronic hypoxia condition, rats were kept inside the hypobaric chamber with automatically adjusted inner pressure as well as oxygen content equal to those of 4500 m in altitude for 4 continuous weeks. After 4 weeks, the rats' physiological parameters were determined (mean pulmonary artery pressure (mPAP); right ventricular hypertrophy index (RVHI)). Based on hematoxylin and eosin (HE) staining and transmission electron microscope (TEM), morphological features of their lung tissues were also analyzed. Proliferation of pulmonary arterial smooth muscle cells (PASMCs) was detected by MTS Cell Proliferation Colorimetric assay. The levels of glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) in PASMCs were detected through corresponding kits, respectively. The protein levels in PASMCs and HPH rats were evaluated by Western blot (WB). Chemical components of VORA were detected through gas chromatography-mass spectrometer (GC-MS). Results After induced by hypoxia for 4 weeks, the mPAP and RVHI levels were increased significantly in hypoxia group in contrast to the Ctr group, indicating the establishment of HPH rat model. The subsequent administration of VORA decreased the mPAP and RVHI level. The vascular wall thickness and lumen size were also decreased after treated by VORA compared with Hyp group. Meanwhile, VORA suppressed the proliferation and oxidant stress in PASMCs. Therefore, the effect of VORA on decreasing vascular wall thickening and lumen size could be related to its antiproliferation effect on PASMCs. In addition, compared to the Hyp group, VORA downregulated the ACE, AngII, and AT1R protein expressions but increased ACE2 and MAS protein expressions (P < 0.05). A total of 48 constituents in VORA were identified by GC-MS in comparison with reference standards as well as the reference pieces of literatures. Conclusions HPH rat model as established based on the significant increased mPAP and RVHI. VORA presented a significant antihypoxia function plus an inhibiting effect on PASMC proliferation induced by hypoxia. Moreover, VORA treatment inhibited oxidative stress among PASMCs. With regard to the mechanism, VORA reduced ACE, AngII, and AT1R protein expressions but increased ACE2 and MAS protein expressions. There were 48 constituents in VORA identified by GC-MS.
Collapse
|
30
|
Chen C, Li Y, Lu H, Liu K, Jiang W, Zhang Z, Qin X. Curcumin attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis. Exp Biol Med (Maywood) 2022; 247:1420-1432. [PMID: 35666058 PMCID: PMC9493763 DOI: 10.1177/15353702221095456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we do not have a good understanding of the molecular mechanisms and effective therapeutic approaches for VC. Curcumin (CUR) is a natural polyphenolic compound that has hypolipidemic, anti-inflammatory, and antioxidant effects on the cardiovascular system. Exosomes are known to have extensive miRNAs for intercellular regulation. This study investigated whether CUR attenuates VC by affecting the secretion of exosomal miRNAs. Calcification models were established in vivo and in vitro using vitamin D3 and β-glycerophosphate, respectively. Appropriate therapeutic concentrations of CUR were detected on vascular smooth muscle cells (VSMCs) using a cell counting kit 8. Exosomes were extracted by super speed centrifugation from the supernatant of cultured VSMCs and identified by transmission electron microscopy and particle size analysis. Functional and phenotypic experiments were performed in vitro to verify the effects of CUR and exosomes secreted by VSMCs treated with CUR on calcified VSMCs. Compared with the calcified control group, both CUR and exosomes secreted by VSMCs after CUR intervention attenuated calcification in VSMCs. Real-Time quantitative PCR (RT-qPCR) experiments showed that miR-92b-3p, which is important for alleviating VC, was expressed highly in both VSMCs and exosomes after CUR intervention. The mimic miR-92b-3p significantly decreased the expression of transcription factor KLF4 and osteogenic factor RUNX2 in VSMCs, while the inhibitor miR-92b-3p had the opposite effect. Based on bioinformatics databases and dual luciferase experiments, the prospective target of miR-92b-3p was determined to be KLF4. Both mRNA and protein of RUNX2 were decreased and increased in VSMCs by inhibiting and overexpressing of KLF4, respectively. In addition, in the rat calcification models, CUR attenuated vitamin D3-induced VC by increasing miR-92b-3p expression and decreasing KLF4 expression in the aorta. In conclusion, our study suggests that CUR attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis.
Collapse
Affiliation(s)
- Chuanzhen Chen
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yaodong Li
- Department of Vascular Surgery, Tianjin
Hospital, Tianjin 300211, P.R. China
| | - Hailin Lu
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Kai Liu
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenhong Jiang
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhanman Zhang
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao Qin
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,Xiao Qin.
| |
Collapse
|
31
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
32
|
Hu H, Wang S. Rheumatoid arthritis with coral reef aorta: a case report. Scand J Rheumatol 2022; 51:520-521. [PMID: 35833279 DOI: 10.1080/03009742.2022.2082150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- H Hu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - S Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| |
Collapse
|
33
|
Mas-Bargues C, Borrás C, Alique M. The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Front Cardiovasc Med 2022; 9:854726. [PMID: 35498012 PMCID: PMC9051028 DOI: 10.3389/fcvm.2022.854726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
- *Correspondence: Consuelo Borrás,
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Matilde Alique,
| |
Collapse
|
34
|
Van den Bergh G, Van den Branden A, Opdebeeck B, Fransen P, Neven E, De Meyer G, D’Haese PC, Verhulst A. Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats. FASEB J 2022; 36:e22315. [DOI: 10.1096/fj.202101919r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geoffrey Van den Bergh
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Astrid Van den Branden
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Britt Opdebeeck
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology Department of Pharmaceutical Sciences University of Antwerp Wilrijk Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Guido De Meyer
- Laboratory of Physiopharmacology Department of Pharmaceutical Sciences University of Antwerp Wilrijk Belgium
| | - Patrick C. D’Haese
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| |
Collapse
|
35
|
Niu Z, Su G, Li T, Yu H, Shen Y, Zhang D, Liu X. Vascular Calcification: New Insights Into BMP Type I Receptor A. Front Pharmacol 2022; 13:887253. [PMID: 35462911 PMCID: PMC9019578 DOI: 10.3389/fphar.2022.887253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a complex ectopic calcification process and an important indicator of increased risk for diabetes, atherosclerosis, chronic kidney disease, and other diseases. Therefore, clarifying the pathogenesis of VC is of great clinical significance. Numerous studies have shown that the onset and progression of VC are similar to bone formation. Members of the bone morphogenetic protein (BMP) family of proteins are considered key molecules in the progression of vascular calcification. BMP type I receptor A (BMPR1A) is a key receptor of BMP factors acting on the cell membrane, is widely expressed in various tissues and cells, and is an important “portal” for BMP to enter cells and exert their biological effect. In recent years, many discoveries have been made regarding the occurrence and treatment of ectopic ossification-related diseases involving BMP signaling targets. Studies have confirmed that BMPR1A is involved in osteogenic differentiation and that its high expression in vascular endothelial cells and smooth muscle cells can lead to vascular calcification. This article reviews the role of BMPR1A in vascular calcification and the possible underlying molecular mechanisms to provide clues for the clinical treatment of such diseases.
Collapse
Affiliation(s)
- Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyue Su
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tiantian Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
36
|
Vadana M, Cecoltan S, Ciortan L, Macarie RD, Mihaila AC, Tucureanu MM, Gan AM, Simionescu M, Manduteanu I, Droc I, Butoi E. Parathyroid Hormone Induces Human Valvular Endothelial Cells Dysfunction That Impacts the Osteogenic Phenotype of Valvular Interstitial Cells. Int J Mol Sci 2022; 23:ijms23073776. [PMID: 35409134 PMCID: PMC8998852 DOI: 10.3390/ijms23073776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Parathyroid hormone (PTH) is a key regulator of calcium, phosphate and vitamin D metabolism. Although it has been reported that aortic valve calcification was positively associated with PTH, the pathophysiological mechanisms and the direct effects of PTH on human valvular cells remain unclear. Here we investigated if PTH induces human valvular endothelial cells (VEC) dysfunction that in turn could impact the switch of valvular interstitial cells (VIC) to an osteoblastic phenotype. Human VEC exposed to PTH were analyzed by qPCR, western blot, Seahorse, ELISA and immunofluorescence. Our results showed that exposure of VEC to PTH affects VEC metabolism and functions, modifications that were accompanied by the activation of p38MAPK and ERK1/2 signaling pathways and by an increased expression of osteogenic molecules (BMP-2, BSP, osteocalcin and Runx2). The impact of dysfunctional VEC on VIC was investigated by exposure of VIC to VEC secretome, and the results showed that VIC upregulate molecules associated with osteogenesis (BMP-2/4, osteocalcin and TGF-β1) and downregulate collagen I and III. In summary, our data show that PTH induces VEC dysfunction, which further stimulates VIC to differentiate into a pro-osteogenic pathological phenotype related to the calcification process. These findings shed light on the mechanisms by which PTH participates in valve calcification pathology and suggests that PTH and the treatment of hyperparathyroidism represent a therapeutic strategy to reduce valvular calcification.
Collapse
Affiliation(s)
- Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Razvan D. Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Andreea C. Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Monica M. Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Maya Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania;
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (M.V.); (S.C.); (L.C.); (R.D.M.); (A.C.M.); (M.M.T.); (A.-M.G.); (M.S.); (I.M.)
- Correspondence:
| |
Collapse
|
37
|
Coppola A, Vigorito C, Lombari P, Martínez YG, Borriello M, Trepiccione F, Ingrosso D, Perna AF. Uremic Toxin Lanthionine Induces Endothelial Cell Mineralization In Vitro. Biomedicines 2022; 10:biomedicines10020444. [PMID: 35203651 PMCID: PMC8962276 DOI: 10.3390/biomedicines10020444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Vascular calcification (VC) is a pathological event caused by the unusual deposition of minerals in the vascular system, representing the leading cause of cardiovascular mortality in chronic kidney disease (CKD). In CKD, the deregulation of calcium and phosphate metabolism, along with the effect of several uremic toxins, act as key processes conveying altered mineralization. In this work, we tested the ability of lanthionine, a novel uremic toxin, to promote calcification in human endothelial cell cultures (Ea.hy926). We evaluated the effects of lanthionine, at a concentration similar to that actually detected in CKD patients, alone and under pro-calcifying culture conditions using calcium and phosphate. In pro-calcific culture conditions, lanthionine increased both the intracellular and extracellular calcium content and induced the expression of Bone Morphogenetic Protein 2 (BMP2) and RUNX Family Transcription Factor 2 (RUNX2). Lanthionine treatment, in pro-calcifying conditions, raised levels of tissue-nonspecific alkaline phosphatase (ALPL), whose expression also overlapped with Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) gene expression, suggesting a possible role of the latter gene in the activation of ALPL. In addition, treatment with lanthionine alone or in combination with calcium and phosphate reduced Inorganic Pyrophosphate Transport Regulator (ANKH) gene expression, a protective factor toward the mineralizing process. Moreover, lanthionine in a pro-calcifying condition induced the activation of ERK1/2, which is not associated with an increase in DKK1 protein levels. Our data underscored a link between mineral disease and the alterations of sulfur amino acid metabolisms at a cell and molecular level. These results set the basis for the understanding of the link between uremic toxins and mineral-bone disorder during CKD progression.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
| | - Carmela Vigorito
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Yuselys García Martínez
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
| | - Francesco Trepiccione
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (P.L.); (M.B.)
- Correspondence: (D.I.); (A.F.P.)
| | - Alessandra F. Perna
- Department of Translational Medical Science University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy; (C.V.); (Y.G.M.); (F.T.)
- Correspondence: (D.I.); (A.F.P.)
| |
Collapse
|
38
|
Zhao L, Yang N, Song Y, Si H, Qin Q, Guo Z. Effect of iron overload on endothelial cell calcification and its mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1658. [PMID: 34988167 PMCID: PMC8667128 DOI: 10.21037/atm-21-5666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
Background Vascular calcification is related to many diseases. Iron has a certain relationship with endothelial cells and vascular calcification. The purpose of this study was to assess the effect of iron overload on endothelial cell calcification and related mechanisms through cell experiments. Methods Human umbilical vein endothelial cells were treated with different concentrations of FeSO4 (50, 100, 150, and 200 µM), and deferoxamine (DFO) and ferrostatin. Alkaline phosphatase activity, malondialdehyde (MDA) level, reactive oxygen species (ROS) level, and lipid superoxidation after FeSO4 treatment were assessed. Alizarin red staining was used to observe calcium deposition. Quantitative polymerase chain reaction (qPCR) and western blot were adopted to examine the expression of calcification markers, iron metabolism-related factors, apoptosis pathway-related factors and ferroptosis markers. The TUNEL method was employed to detect cell apoptosis. Results FeSO4 of 100 µM significantly promoted the occurrence of cell ferroptosis, increased the levels of MDA and ROS, and decreased the ratio of glutathione (GSH) or glutathione disulfide (GSSG) and the expression level of glutathione peroxidase (GPX4). The addition of DFO and ferrostatin significantly modified the effects of FeSO4. Calcium deposition was most obvious in the cells treated with 100 µM FeSO4. FeSO4 significantly upregulated Runt-related transcription factor 2 (RUNX2) and Bone morphogenetic protein 2 (BMP2), ferritin heavy chain (FTH) and ferritin light chain (FTL), and downregulated Matrix Gla Protein (MGP) and divalent metal transporter 1 (DMT1). The results also showed that FeSO4 induced cell apoptosis by TUNEL method. The elevated Bcl2-associated death protein (Bad) and Bcl2-associated X protein (Bax) and the reduction in Bcl-2, p-Bad, p-AKT, and t-AKT were found. DFO and ferrostatin significantly reduced the iron-induced calcification and apoptosis of endothelial cells. DFO significantly increased the expression level of Bcl-2, and reduced the expression level of Bad. Conclusions Iron overload contributes to the process of endothelial cell calcification by inducing apoptosis and ferroptosis. Iron chelators and ferroptosis inhibitors alleviate endothelial cell apoptosis, ferroptosis, and calcification induced by iron overload.
Collapse
Affiliation(s)
- Lili Zhao
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Ning Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Hailong Si
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
39
|
De Vilder EYG, Martin L, Lefthériotis G, Coucke P, Van Nieuwerburgh F, Vanakker OM. Rare Modifier Variants Alter the Severity of Cardiovascular Disease in Pseudoxanthoma Elasticum: Identification of Novel Candidate Modifier Genes and Disease Pathways Through Mixture of Effects Analysis. Front Cell Dev Biol 2021; 9:612581. [PMID: 34169069 PMCID: PMC8218811 DOI: 10.3389/fcell.2021.612581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Pseudoxanthoma elasticum (PXE), an ectopic mineralization disorder caused by pathogenic ABCC6 variants, is characterized by skin, ocular and cardiovascular (CV) symptoms. Due to striking phenotypic variability without genotype-phenotype correlations, modifier genes are thought to play a role in disease variability. In this study, we evaluated the collective modifying effect of rare variants on the cardiovascular phenotype of PXE. Materials and Methods: Mixed effects of rare variants were assessed by Whole Exome Sequencing in 11 PXE patients with an extreme CV phenotype (mild/severe). Statistical analysis (SKAT-O and C-alpha testing) was performed to identify new modifier genes for the CV PXE phenotype and enrichment analysis for genes significantly associated with the severe cohort was used to evaluate pathway and gene ontology features. Results Respectively 16 (SKAT-O) and 74 (C-alpha) genes were significantly associated to the severe cohort. Top significant genes could be stratified in 3 groups–calcium homeostasis, association with vascular disease and induction of apoptosis. Comparative analysis of both analyses led to prioritization of four genes (NLRP1, SELE, TRPV1, and CSF1R), all signaling through IL-1B. Conclusion This study explored for the first time the cumulative effect of rare variants on the severity of cardiovascular disease in PXE, leading to a panel of novel candidate modifier genes and disease pathways. Though further validation is essential, this panel may aid in risk stratification and genetic counseling of PXE patients and will help to gain new insights in the PXE pathophysiology.
Collapse
Affiliation(s)
- Eva Y G De Vilder
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,The Research Foundation - Flanders, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Ludovic Martin
- Department of Dermatology, Angers University Hospital, Angers, France
| | - Georges Lefthériotis
- Department of Vascular Physiology and Sports Medicine, Angers University, Angers, France
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|