1
|
Brito-Zapata D, Chávez-Reyes JD, Pallo-Robles MD, Carrión-Olmedo JC, Cisneros-Heredia DF, Reyes-Puig C. A new species of frog of the genus Noblella Barbour, 1930 (Amphibia: Strabomantidae) from the Cordillera del Cóndor, Ecuador. PeerJ 2024; 12:e17939. [PMID: 39372721 PMCID: PMC11453160 DOI: 10.7717/peerj.17939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 10/08/2024] Open
Abstract
We describe a new species of leaflitter frog of the genus Noblella from southern Ecuador, province of Zamora Chinchipe. The new species is diagnosed from all its congeners by having one or two tubercles on the upper eyelids; distal phalanges strongly T-shaped; phalangeal formula on hands 2-2-3-3; phalangeal formula on feet 2-2-3-4-3; heel with a small subconical tubercle; disc on all toes with papillae; dorsum brown or brown with gray, with V-shaped inverted or scattered irregular darker marks. We include a detailed description of its osteology and a study of its phylogenetic relationships. Finally, we evaluate its conservation status and discuss the threats that are currently impacting at the type locality.
Collapse
Affiliation(s)
- David Brito-Zapata
- Museo de Zoología, Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Juan D. Chávez-Reyes
- Museo de Zoología, Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Matheo David Pallo-Robles
- Museo de Zoología, Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | | | - Diego F. Cisneros-Heredia
- Museo de Zoología, Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
- Unidad de Investigación, Instituto Nacional de Biodiversidad, Quito, Pichincha, Ecuador
| | - Carolina Reyes-Puig
- Museo de Zoología, Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
- Unidad de Investigación, Instituto Nacional de Biodiversidad, Quito, Pichincha, Ecuador
| |
Collapse
|
2
|
Vandegrift R, Newman DS, Dentinger BTM, Batallas-Molina R, Dueñas N, Flores J, Goyes P, Jenkinson TS, McAlpine J, Navas D, Policha T, Thomas DC, Roy BA. Richer than Gold: the fungal biodiversity of Reserva Los Cedros, a threatened Andean cloud forest. BOTANICAL STUDIES 2023; 64:17. [PMID: 37410314 DOI: 10.1186/s40529-023-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Globally, many undescribed fungal taxa reside in the hyperdiverse, yet undersampled, tropics. These species are under increasing threat from habitat destruction by expanding extractive industry, in addition to global climate change and other threats. Reserva Los Cedros is a primary cloud forest reserve of ~ 5256 ha, and is among the last unlogged watersheds on the western slope of the Ecuadorian Andes. No major fungal survey has been done there, presenting an opportunity to document fungi in primary forest in an underrepresented habitat and location. Above-ground surveys from 2008 to 2019 resulted in 1760 vouchered collections, cataloged and deposited at QCNE in Ecuador, mostly Agaricales sensu lato and Xylariales. We document diversity using a combination of ITS barcode sequencing and digital photography, and share the information via public repositories (GenBank & iNaturalist). RESULTS Preliminary identifications indicate the presence of at least 727 unique fungal species within the Reserve, representing 4 phyla, 17 classes, 40 orders, 101 families, and 229 genera. Two taxa at Los Cedros have recently been recommended to the IUCN Fungal Red List Initiative (Thamnomyces chocöensis Læssøe and "Lactocollybia" aurantiaca Singer), and we add occurrence data for two others already under consideration (Hygrocybe aphylla Læssøe & Boertm. and Lamelloporus americanus Ryvarden). CONCLUSIONS Plants and animals are known to exhibit exceptionally high diversity and endemism in the Chocó bioregion, as the fungi do as well. Our collections contribute to understanding this important driver of biodiversity in the Neotropics, as well as illustrating the importance and utility of such data to conservation efforts. RESUMEN Antecedentes: A nivel mundial muchos taxones fúngicos no descritos residen en los trópicos hiper diversos aunque continúan submuestreados. Estas especies están cada vez más amenazadas por la destrucción del hábitat debido a la expansión de la industria extractivista además del cambio climático global y otras amenazas. Los Cedros es una reserva de bosque nublado primario de ~ 5256 ha y se encuentra entre las últimas cuencas hidrográficas no explotadas en la vertiente occidental de los Andes ecuatorianos. Nunca antes se ha realizado un estudio de diversidad micológica en el sitio, lo que significa una oportunidad para documentar hongos en el bosque primario, en hábitat y ubicación subrepresentatadas. El presente estudio recopila información entre el 2008 y 2019 muestreando material sobre todos los sustratos, reportando 1760 colecciones catalogadas y depositadas en el Fungario del QCNE de Ecuador, en su mayoría Agaricales sensu lato y Xylariales; además se documenta la diversidad mediante secuenciación de códigos de barras ITS y fotografía digital, la información está disponible en repositorios públicos digitales (GenBank e iNaturalist). RESULTADOS La identificación preliminar indica la presencia de al menos 727 especies únicas de hongos dentro de la Reserva, que representan 4 filos, 17 clases, 40 órdenes, 101 familias y 229 géneros. Recientemente dos taxones en Los Cedros se recomendaron a la Iniciativa de Lista Roja de Hongos de la UICN (Thamnomyces chocöensis Læssøe y "Lactocollybia" aurantiaca Singer) y agregamos datos de presencia de otros dos que ya estaban bajo consideración (Hygrocybe aphylla Læssøe & Boertm. y Lamelloporus americanus Ryvarden). CONCLUSIONES Se sabe que plantas y animales exhiben una diversidad y endemismo excepcionalmente altos en la bioregión del Chocó y los hongos no son la excepción. Nuestras colecciones contribuyen a comprender este importante promotor de la biodiversidad en el Neotrópico además de ilustrar la importancia y utilidad de dichos datos para los esfuerzos de conservación.
Collapse
Affiliation(s)
- R Vandegrift
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA.
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador.
| | - D S Newman
- , Glorieta, NM, USA
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - B T M Dentinger
- Biology Department and Natural History Museum, University of Utah, Salt Lake City, Utah, USA
| | - R Batallas-Molina
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - N Dueñas
- Departamento de Investigación de Mycomaker, Quito, Ecuador
| | - J Flores
- Departamento de Investigación de Reino Fungi, Quito, Ecuador
| | - P Goyes
- Microbiology Institute-Universidad San Francisco de Quito, Quito, Ecuador
| | - T S Jenkinson
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | - J McAlpine
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D Navas
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - T Policha
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D C Thomas
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
- Bayreuth Center of Ecology and Research, University of Bayreuth, Bayreuth, Bayern, DE, Germany
| | - B A Roy
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| |
Collapse
|
3
|
Symbiotic Seed Germination and Seedling Development of Epidendrum geminiflorum Knuth from Ecuador. DIVERSITY 2023. [DOI: 10.3390/d15020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A greater understanding of the relationship between native orchids and their mycorrhizal symbionts is needed to ensure more effective orchid conservation strategies. A protocol for symbiotic seed germination and seedling development was developed for E. geminiflorum. Mature seeds were collected from a naturally occurring orchid population in Ecuador. Putative mycorrhizal fungi isolated from other native orchid species were used to screen their ability to facilitate germination and seedling development in vitro in either a 0/24 h or 12/12 h light/dark photoperiod at 20 °C. The mycorrhizal fungus Tulasnella calospora (UAMH 9824) isolated from Spiranthes brevilabris in Florida, USA, was also included in this study. Sterilization treatments using 0.3%, 0.5% sodium hypochlorite/ethanol or 2% calcium hypochlorite were tested for their effectiveness as sterilant and their subsequent effects on seed germination percentage. Effective surface seed sterilization was achieved with either 0.5% NaClO/ethanol or 2% calcium hypochlorite. However, significantly higher percentages of germinated embryos developed into protocorms when NaOCl solutions were used compared to the other treatments. Seed germination occurred in both photoperiods tested; however, delayed germination was observed under complete darkness. Seeds of E. geminiflorum germinated without fungal inoculation; however, co-culture with Tulasnella strains improved germination significantly. Seedling development was only observed when seeds were cultured in asymbiotic medium or co-cultured with T. caloscopa (UAMH 9824). Significantly longer seedlings were obtained when T. calospora was present in the culture compared with seedlings cultured in asymbiotic medium. The establishment of mycorrhizal associations was confirmed by the presence of pelotons in the roots of E. geminiflorum seedlings.
Collapse
|
4
|
Perez-Lamarque B, Petrolli R, Strullu-Derrien C, Strasberg D, Morlon H, Selosse MA, Martos F. Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. ENVIRONMENTAL MICROBIOME 2022; 17:38. [PMID: 35859141 PMCID: PMC9297633 DOI: 10.1186/s40793-022-00434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The root mycobiome plays a fundamental role in plant nutrition and protection against biotic and abiotic stresses. In temperate forests or meadows dominated by angiosperms, the numerous fungi involved in root symbioses are often shared between neighboring plants, thus forming complex plant-fungus interaction networks of weak specialization. Whether this weak specialization also holds in rich tropical communities with more phylogenetically diverse sets of plant lineages remains unknown. We collected roots of 30 plant species in semi-natural tropical communities including angiosperms, ferns, and lycophytes, in three different habitat types on La Réunion island: a recent lava flow, a wet thicket, and an ericoid shrubland. We identified root-inhabiting fungi by sequencing both the 18S rRNA and the ITS2 variable regions. We assessed the diversity of mycorrhizal fungal taxa according to plant species and lineages, as well as the structure and specialization of the resulting plant-fungus networks. RESULTS The 18S and ITS2 datasets are highly complementary at revealing the root mycobiota. According to 18S, Glomeromycotina colonize all plant groups in all habitats forming the least specialized interactions, resulting in nested network structures, while Mucoromycotina (Endogonales) are more abundant in the wetland and show higher specialization and modularity compared to the former. According to ITS2, mycorrhizal fungi of Ericaceae and Orchidaceae, namely Helotiales, Sebacinales, and Cantharellales, also colonize the roots of most plant lineages, confirming that they are frequent endophytes. While Helotiales and Sebacinales present intermediate levels of specialization, Cantharellales are more specialized and more sporadic in their interactions with plants, resulting in highly modular networks. CONCLUSIONS This study of the root mycobiome in tropical environments reinforces the idea that mycorrhizal fungal taxa are locally shared between co-occurring plants, including phylogenetically distant plants (e.g. lycophytes and angiosperms), where they may form functional mycorrhizae or establish endophytic colonization. Yet, we demonstrate that, irrespectively of the environmental variations, the level of specialization significantly varies according to the fungal lineages, probably reflecting the different evolutionary origins of these plant-fungus symbioses. Frequent fungal sharing between plants questions the roles of the different fungi in community functioning and highlights the importance of considering networks of interactions rather than isolated hosts.
Collapse
Affiliation(s)
- Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France.
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| | - Christine Strullu-Derrien
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Science Group, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Dominique Strasberg
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical, UMR PVBMT, Université de La Réunion, 97 400, Saint-Denis, La Réunion, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Institut Universitaire de France (IUF), Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| |
Collapse
|
5
|
Liu N, Jacquemyn H, Liu Q, Shao SC, Ding G, Xing X. Effects of a Dark Septate Fungal Endophyte on the Growth and Physiological Response of Seedlings to Drought in an Epiphytic Orchid. Front Microbiol 2022; 13:961172. [PMID: 35875551 PMCID: PMC9304953 DOI: 10.3389/fmicb.2022.961172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
Dark septate endophytes (DSE) are a group of facultative biotrophic root-colonizing fungi that live within a plant for a part of their life cycle without causing any apparent, overt negative effects. These fungi have been found in >600 different plant species, including orchids. Although the precise ecological functions of dark septate fungal endophytes are not yet well understood, there is increasing evidence that they enhance host growth and nutrient acquisition, and improve the plant’s ability to tolerate biotic and abiotic stresses. In this research, we tested the effects of a DSE isolated from the roots of the epiphytic orchid Coelogyne viscosa on the growth and drought tolerance of orchid seedlings. Our results showed that addition of DSE inoculum significantly enhanced biomass of seedlings and increased the activities of drought resistance related enzymes and the accumulation of osmoregulatory substances. These results suggest that DSE can fulfill important ecological functions in stressful environments and potentially play an important role in the life cycle of epiphytic orchids.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Qiang Liu
- Department of Ecological and Environmental Engineering, Yunnan Forestry Technological College, Kunming, China
| | - Shi-Cheng Shao
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaoke Xing,
| |
Collapse
|
6
|
Alomía YA, Otero JT, Jersáková J, Stevenson PR. Cultivable fungal community associated with the tropical orchid Dichaea andina. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Grabka R, d’Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S. Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030384. [PMID: 35161365 PMCID: PMC8840373 DOI: 10.3390/plants11030384] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 05/06/2023]
Abstract
Virtually all examined plant species harbour fungal endophytes which asymptomatically infect or colonize living plant tissues, including leaves, branches, stems and roots. Endophyte-host interactions are complex and span the mutualist-pathogen continuum. Notably, mutualist endophytes can confer increased fitness to their host plants compared with uncolonized plants, which has attracted interest in their potential application in integrated plant health management strategies. In this review, we report on the many benefits that fungal endophytes provide to agricultural plants against common non-insect pests such as fungi, bacteria, nematodes, viruses, and mites. We report endophytic modes of action against the aforementioned pests and describe why this broad group of fungi is vitally important to current and future agricultural practices. We also list an extensive number of plant-friendly endophytes and detail where they are most commonly found or applied in different studies. This review acts as a general resource for understanding endophytes as they relate to potential large-scale agricultural applications.
Collapse
Affiliation(s)
- Rachel Grabka
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada; (R.G.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Tyler W. d’Entremont
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Sarah J. Adams
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Allison K. Walker
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (T.W.d.); (S.J.A.); (A.K.W.)
| | - Joey B. Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada;
| | - Pervaiz A. Abbasi
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada; (R.G.); (P.A.A.)
| | - Shawkat Ali
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada; (R.G.); (P.A.A.)
- Correspondence:
| |
Collapse
|
8
|
Soil Fungal Diversity of the Aguarongo Andean Forest (Ecuador). BIOLOGY 2021; 10:biology10121289. [PMID: 34943204 PMCID: PMC8698837 DOI: 10.3390/biology10121289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The Kingdom Fungi is one of the richest in species, most of which are still unknown. Many fungal species are hidden in the tropics, the area richest in biodiversity on earth. In this paper, a mycological analysis is presented on a vast number of soil samples collected in the Aguarongo forest, an important Andean Natural Reserve of Ecuador. The study was carried out by analyzing the total DNA extracted from the soil and unveiled a total of more than 400 species of fungi. The most abundant species belong to Ascomycota and Mortierellomycota; some are important beneficial fungi for the environments such as antagonistics of fungal pathogens or nematode predators, while others are well-known producers of nutraceutical and pharmaceutical compounds. Based on the results of this study, a picture of the mycodiversity of Aguarongo forest soil was obtained. This area hides a huge number of unknown fungal species that could be discovered; thus, the protection of the Aguarongo forest is mandatory. Abstract Fungi represent an essential component of ecosystems, functioning as decomposers and biotrophs, and they are one of the most diverse groups of Eukarya. In the tropics, many species are unknown. In this work, high-throughput DNA sequencing was used to discover the biodiversity of soil fungi in the Aguarongo forest reserve, one of the richest biodiversity hotspots in Ecuador. The rDNA metabarcoding analysis revealed the presence of seven phyla: Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Glomeromycota, Chytridiomycota, and Monoblepharomycota. A total of 440 identified species were recorded. They mainly belonged to Ascomycota (263) and Basidiomycota (127). In Mortierellomycota, 12 species were recorded, among which Podila verticillata is extremely frequent and represents the dominant species in the entire mycobiota of Aguarongo. The present research provides the first account of the entire soil mycobiota in the Aguarongo forest, where many fungal species exist that have strong application potential in agriculture, bioremediation, chemical, and the food industry. The Aguarongo forest hides a huge number of unknown fungal species that could be assessed, and its protection is of the utmost importance.
Collapse
|
9
|
Petrolli R, Augusto Vieira C, Jakalski M, Bocayuva MF, Vallé C, Cruz EDS, Selosse MA, Martos F, Kasuya MCM. A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. THE NEW PHYTOLOGIST 2021; 231:2002-2014. [PMID: 33983644 DOI: 10.1111/nph.17459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Approximately 10% of vascular plants are epiphytes and, even though this has long been ignored in past research, are able to interact with a variety of fungi, including mycorrhizal taxa. However, the structure of fungal communities on bark, as well as their relationship with epiphytic plants, is largely unknown. To fill this gap, we conducted environmental metabarcoding of the ITS-2 region to understand the spatial structure of fungal communities of the bark of tropical trees, with a focus on epiphytic orchid mycorrhizal fungi, and tested the influence of root proximity. For all guilds, including orchid mycorrhizal fungi, fungal communities were more similar when spatially close on bark (i.e. they displayed positive spatial autocorrelation). They also showed distance decay of similarity with respect to epiphytic roots, meaning that their composition on bark increasingly differed, compared to roots, with distance from roots. We first showed that all of the investigated fungal guilds exhibited spatial structure at very small scales. This spatial structure was influenced by the roots of epiphytic plants, suggesting the existence of an epiphytic rhizosphere. Finally, we showed that orchid mycorrhizal fungi were aggregated around them, possibly as a result of reciprocal influence between the mycorrhizal partners.
Collapse
Affiliation(s)
- Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Conrado Augusto Vieira
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marcin Jakalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Clément Vallé
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Everaldo Da Silva Cruz
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Maria Catarina M Kasuya
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Leroy C, Maes AQ, Louisanna E, Schimann H, Séjalon-Delmas N. Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes. THE NEW PHYTOLOGIST 2021; 231:1195-1209. [PMID: 33605460 DOI: 10.1111/nph.17288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown. We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds. We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes. Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Céline Leroy
- AMAP, CIRAD, CNRS, INRAE, IRD, Univ Montpellier, Montpellier, 34000, France
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | | - Eliane Louisanna
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Heidy Schimann
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | |
Collapse
|
11
|
Favre-Godal Q, Schwob P, Lecoultre N, Hofstetter V, Gourguillon L, Riffault-Valois L, Lordel-Madeleine S, Gindro K, Choisy P. Plant-microbe features of Dendrobium fimbriatum (Orchidaceae) fungal community. Symbiosis 2021. [DOI: 10.1007/s13199-021-00786-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Li T, Wu S, Yang W, Selosse MA, Gao J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:647114. [PMID: 34025695 PMCID: PMC8138319 DOI: 10.3389/fpls.2021.647114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
13
|
Li T, Yang W, Wu S, Selosse MA, Gao J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:646325. [PMID: 34025694 PMCID: PMC8138444 DOI: 10.3389/fpls.2021.646325] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
Orchids form mycorrhizal symbioses with fungi in natural habitats that affect their seed germination, protocorm growth, and adult nutrition. An increasing number of studies indicates how orchids gain mineral nutrients and sometime even organic compounds from interactions with orchid mycorrhizal fungi (OMF). Thus, OMF exhibit a high diversity and play a key role in the life cycle of orchids. In recent years, the high-throughput molecular identification of fungi has broadly extended our understanding of OMF diversity, revealing it to be a dynamic outcome co-regulated by environmental filtering, dispersal restrictions, spatiotemporal scales, biogeographic history, as well as the distribution, selection, and phylogenetic spectrum width of host orchids. Most of the results show congruent emerging patterns. Although it is still difficult to extend them to all orchid species or geographical areas, to a certain extent they follow the "everything is everywhere, but the environment selects" rule. This review provides an extensive understanding of the diversity and ecological dynamics of orchid-fungal association. Moreover, it promotes the conservation of resources and the regeneration of rare or endangered orchids. We provide a comprehensive overview, systematically describing six fields of research on orchid-fungal diversity: the research methods of orchid-fungal interactions, the primer selection in high-throughput sequencing, the fungal diversity and specificity in orchids, the difference and adaptability of OMF in different habitats, the comparison of OMF in orchid roots and soil, and the spatiotemporal variation patterns of OMF. Further, we highlight certain shortcomings of current research methodologies and propose perspectives for future studies. This review emphasizes the need for more information on the four main ecological processes: dispersal, selection, ecological drift, and diversification, as well as their interactions, in the study of orchid-fungal interactions and OMF community structure.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
14
|
The Diversity of Root-Associated Endophytic Fungi from Four Epiphytic Orchids in China. DIVERSITY 2021. [DOI: 10.3390/d13050197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Root-associated endophytic fungi (RAF) are found asymptomatically in almost all plant groups. However, little is known about the compositions and potential functions of RAF communities associated with most Orchidaceae species. In this study, the diversity of RAF was examined in four wild epiphytic orchids, Acampe rigida, Doritis pulcherrima, Renanthera coccinea, and Robiquetia succisa, that occur in southern China. A culture-independent method involving Illumina amplicon sequencing, and an in vitro culture method, were used to identify culturable fungi. The RAF community diversity differed among the orchid roots, and some fungal taxa were clearly concentrated in a certain orchid species, with more OTUs being detected. By investigating mycorrhizal associations, the results showed that 28 (about 0.8%) of the 3527 operational taxonomic units (OTUs) could be assigned as OMF, while the OTUs of non-mycorrhizal fungal were about 99.2%. Among the OMFs, Ceratobasidiaceae OTUs were the most abundant with different richness, followed by Thelephoraceae. In addition, five Ceratobasidium sp. strains were isolated from D. pulcherrima, R. succisa, and R. coccinea roots with high separation rates. These culturable Ceratobasidium strains will provide materials for host orchid conservation and for studying the mechanisms underlying mycorrhizal symbiosis.
Collapse
|
15
|
The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality. DIVERSITY 2021. [DOI: 10.3390/d13020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inselbergs of the Central Highlands of Madagascar are one of many ‘micro-hotspots’ of biodiversity on the island, particularly for Orchidaceae. In this region are several genera that have a large number of endemic species that are in serious decline or edging towards extinction. Studies relating to diversity of orchids and their fungal partners (both mycorrhizal and non-mycorrhizal root associates) deserve more attention, as climate change and human induced decline in resilience of species in the wild is at an all-time high. Identification of mycorrhizal fungi (MF) via conventional seed baited-protocorms has limitations for large scale studies and its application for time-bound conservation projects. The paper describes the value of understanding fungal diversity in the roots of orchids at different stages of maturity. The first part of the study was a preliminary investigation mainly to identify culturable Rhizoctonia endophytes, and the second part looked at all life forms of available taxa together with associated soil characteristics. We isolated and identified 19 putative MF from 18 of the 50 taxa spread over an area of 250 sq. km, covering three life forms, growth phases of the orchid taxa, and habitat types. In the rest of the taxa, we were unable to detect any putative MF, but had varying numbers of non-mycorrhizal endophytes. We also found that diversity of putative MF was higher in plants from soils with the lowest P levels recorded. Putative mycorrhizal OTUs were predominantly from the Tulasnella lineage, followed by Ceratobasidium and Serendipita. Within a small subset of samples, a difference in colonised endophytes depending on the collection season was observed. In vitro germination studies using 10 OTUs of mycorrhizal fungi in 14 orchid species showed mostly generalist associations. When orchid seed and fungal sources were studied irrespective of habitat, life form, and distance from each other (orchid seed and fungal source), compatibility for symbiotic seed germination was observed in most cases. Issues with the identification of compatible MF and symbiotic system of seed germination are discussed.
Collapse
|
16
|
Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endophytic bacteria are relevant symbionts that contribute to plant growth and development. However, the diversity of bacteria associated with the roots of terrestrial orchids colonizing Andean ecosystems is limited. This study identifies and examines the capabilities of endophytic bacteria associated with peloton-containing roots of six terrestrial orchid species from southern Chile. To achieve our goals, we placed superficially disinfected root fragments harboring pelotons on oatmeal agar (OMA) with no antibiotic addition and cultured them until the bacteria appeared. Subsequently, they were purified and identified using molecular tools and examined for plant growth metabolites production and antifungal activity. In total, 168 bacterial strains were isolated and assigned to 8 OTUs. The orders Pseudomonadales, Burkholderiales, and Xanthomonadales of phylum Proteobacteria were the most frequent. The orders Bacillales and Flavobacteriales of the phylla Firmicutes and Bacteroidetes were also obtained. Phosphate solubilization was detected in majority of isolates; however, it was significantly higher in Collimonas pratensis and Chryseobacterium sp. (PSI = 1.505 ± 0.09 and 1.405 ± 0.24, respectively). Siderophore production was recorded only for C. pratensis (0.657 ± 0.14 mm day−1), Dyella marensis (0.131 ± 0.02 mm day−1), and Luteibacter rhizovicinus (0.343 ± 0.12 mm day−1). Indole acetic acid production was highly influenced by the isolate identity; however, the significantly higher activity was recorded for Pseudomonas spp. (ranging from 5.507 ± 1.57 µg mL−1 to 7.437 ± 0.99 µg mL−1). Additionally, six bacterial isolates were able to inhibit the growth of some potential plant pathogenic fungi. Our findings demonstrate the potential for plant growth promoting capabilities and some antifungal activities of endophytic bacteria inhabiting the mycorrhizal tissue of terrestrial orchids, which may contribute especially at early developmental stages of orchid seedlings.
Collapse
|
17
|
Molecular Identification of Endophytic Fungi and Their Pathogenicity Evaluation Against Dendrobium nobile and Dendrobium officinale. Int J Mol Sci 2020; 21:ijms21010316. [PMID: 31906579 PMCID: PMC6982089 DOI: 10.3390/ijms21010316] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 11/17/2022] Open
Abstract
Dendrobium are tropical orchid plants that host diverse endophytic fungi. The role of these fungi is not currently well understood in Dendrobium plants. We morphologically and molecularly identified these fungal endophytes, and created an efficient system for evaluating the pathogenicity and symptoms of endophytic fungi on Dendrobium nobile and Dendrobium officinale though in vitro co-culturing. ReThe colony morphological traits of Dendrobium myco-endophytes (DMEs) were recorded for their identification. Molecular identification revealed the presence of Colletotrichum tropicicola, Fusarium keratoplasticum, Fusarium oxysporum, Fusarium solani, and Trichoderma longibrachiatum. The pathogenicity results revealed that T. longibrachiatum produced the least pathogenic effects against D. nobile protocorms. In seedlings, T. longibrachiatum showed the least pathogenic effects against D. officinale seedlings after seven days. C. tropicicola produced highly pathogenic effects against both Dendrobium seedlings. The results of histological examination of infected tissues revealed that F. keratoplasticum and T. longibrachiatum fulfill Koch’s postulates for the existence of endophytes inside the living tissues. The DMEs are cross-transmitted inside the host plant cells, playing an important role in plant host development, resistance, and alkaloids stimulation.
Collapse
|
18
|
Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. MYCORRHIZA 2020; 30:5-22. [PMID: 31982950 DOI: 10.1007/s00572-020-00934-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/17/2020] [Indexed: 05/03/2023]
Abstract
Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.
Collapse
Affiliation(s)
- Quentin Favre-Godal
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France.
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Lorène Gourguillon
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| | - Sonia Lordel-Madeleine
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France
| | - Katia Gindro
- Agroscope, Swiss Federal Research Station, Plant Protection, 60 Route de Duiller, PO Box, 1260, Nyon, Switzerland
| | - Patrick Choisy
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| |
Collapse
|
19
|
Sarsaiya S, Shi J, Chen J. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered 2019; 10:316-334. [PMID: 31347943 PMCID: PMC6682353 DOI: 10.1080/21655979.2019.1644854] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In the development of medicinally important Orchidaceae, the extent of fungal endophytes specificity is not presently very clear. Limited study has been available on natural products formed and its role on plant growth, defence mechanism by endophytes, and to characterize the chief treasure of bioactive molecules. Therefore, this review article presents an evaluation of the endophytes associated with Orchidaceae for physiology, metabolism, and genomics which have prominently contributed to the resurgence of novel metabolite research increasing our considerate of multifaceted mechanisms regulatory appearance of biosynthetic gene groups encoding diverse metabolites. Additionally, we presented the comprehensive recent development of bio-strategies for the cultivation of endophytes from Orchidaceae and integration of bioengineered ‘Genomics with metabolism’ approaches with emphases collective omics as powerful approach to discover novel metabolite compounds. The Orchidaceae-fungal endophytes' biodynamics for sustainable development of bioproducts and its applications are supported in large-scale biosynthesis of industrially and pharmaceutical important biomolecules.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- a Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi , China.,b Bioresource Institute for Healthy Utilization, Zunyi Medical University , Zunyi , China
| | - Jingshan Shi
- a Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi , China
| | - Jishuang Chen
- b Bioresource Institute for Healthy Utilization, Zunyi Medical University , Zunyi , China.,c College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing , China
| |
Collapse
|
20
|
Leroy C, Maes AQ, Louisanna E, Séjalon-Delmas N. How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Cevallos S, Herrera P, Sánchez-Rodríguez A, Declerck S, Suárez JP. Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|