1
|
Yamada C, Kato T, Shiono Y, Koseki T, Fushinobu S. Identification and structural characterization of a novel acetyl xylan esterase from Aspergillus oryzae. FEBS J 2025. [PMID: 39876052 DOI: 10.1111/febs.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/10/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 8.0 and 30 °C, respectively, and was stable up to 35 °C. The optimal substrate for hydrolysis by purified recombinant AoAxeB among a panel of α-naphthyl esters was α-naphthyl acetate. Recombinant AoAxeB catalyzed the release of acetic acid from wheat arabinoxylan. The release of acetic acid from wheat arabinoxylan increased synergistically with xylanase addition. No activity was detected for the methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. The crystal structures of AoAxeB in the apo and succinate complexes were determined at resolutions of 1.75 and 1.90 Å, respectively. Although AoAxeB has been classified in the Esterase_phb family in the ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (ESTHER) database, its structural features partly resemble those of ferulic acid esterase in the FaeC family. Phylogenetic analysis also indicated that AoAxeB is located between the clades of the two families. Docking analysis provided a plausible binding mode for xylotriose substrates acetylated at the 2- or 3-hydroxy position. This study expands the current knowledge of the structures of acetyl xylan esterases and ferulic acid esterases that are required for complete plant biomass degradation.
Collapse
Affiliation(s)
- Chihaya Yamada
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Tomoe Kato
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | | | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| |
Collapse
|
2
|
Kato T, Shiono Y, Koseki T. Identification and characterization of an acetyl xylan esterase from Aspergillus oryzae. J Biosci Bioeng 2021; 132:337-342. [PMID: 34376338 DOI: 10.1016/j.jbiosc.2021.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
In this study, we report the identification and characterization of an acetyl xylan esterase, designated as AoAXEC, which was previously annotated as a hypothetical protein encoded by AO090023000158 in the Aspergillus oryzae genomic database. Based on its amino acid sequence, a low sequence identity to known acetyl xylan esterases was observed in the sequence of characterized acetyl xylan esterase. The gene fused with α-factor signal sequence of Saccharomyces cerevisiae instead of the native signal sequence was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0 and 50 °C, respectively, and was stable up to 50 °C. The optimal substrate for hydrolysis by the purified recombinant AoAXEC, among a panel of α-naphthyl esters (C2-C16), was α-naphthyl propionate (C3), with an activity of 0.35 ± 0.006 units/mg protein. No significant difference of the Km value was observed between C3 (2.3 ± 0.7 mM) and C2 (1.9 ± 0.4 mM). In contrast, kcat value for C3 (18 ± 3.9 s-1) was higher compared to C2 (4.5 ± 0.7 s-1). The purified recombinant enzyme displayed a low activity toward acyl chain substrates containing eight or more carbon atoms. Recombinant AoAXEC catalyzed the release of acetic acid from wheat arabinoxylan. However, no activity was detected on methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. Additionally, the liberation of phenolic acids, such as ferulic acid, from wheat arabinoxylan was not exhibited by the recombinant protein.
Collapse
Affiliation(s)
- Tomoe Kato
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Yoshihito Shiono
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan.
| |
Collapse
|
3
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2021; 324:124623. [PMID: 33434871 DOI: 10.1016/j.biortech.2020.124623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
The term hemicellulose groups different polysaccharides with heterogeneous structures, mannans, xyloglucans, mixed-linkage β-glucans and xylans, which differ in their backbone and branches, and in the type and distribution of glycosidic linkages. The enzymatic degradation of these complex polymers requires the concerted action of multiple hemicellulases and auxiliary enzymes. Most commercial enzymes are produced by Trichoderma and Aspergillus species, but recent studies have disclosed Penicillium and Talaromyces as promising sources of hemicellulases. In this review, we summarize the current knowledge on the hemicellulolytic system of these genera, and the role of hemicellulases in the disruption and synthesis of glycosidic bonds. In both cases, the enzymes from Penicillium and Talaromyces represent an interesting alternative for valorization of lignocellulosic biomass in the current framework of circular economy.
Collapse
Affiliation(s)
- Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Sunkar B, Kannoju B, Bhukya B. Optimized Production of Xylanase by Penicillium purpurogenum and Ultrasound Impact on Enzyme Kinetics for the Production of Monomeric Sugars From Pretreated Corn Cobs. Front Microbiol 2020; 11:772. [PMID: 32390996 PMCID: PMC7193903 DOI: 10.3389/fmicb.2020.00772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Corn cob is an abundant organic source with significant potential in sustainable energy development. For the effective conversion of the feedstocks to valued commodities, effective biocatalysts are highly desired. The present study aims at optimizing the critical parameters required for xylanase production by Penicillium purpurogenum isolated from rotten wood sample using the Taguchi orthogonal array layout of L25 (5∧6). The optimized conditions like temperature 40°C, pH 3, size of inoculum 1.2 × 108 spores/ml, moisture 70%, peptone 0.8%, and 5 days of incubation resulted in 1,097 ± 6.76 U/gram dry substrate (gds) xylanase which was 65.72% more when compared to un-optimized production of xylanase. The xylanase thus produced, effectively carried out pretreated corn cob saccharification and the reaction was further improved with ultrasound assistance which has increased the saccharification yield to 12.02% along with significant reduction in reaction time. The saccharification efficiency of pretreated corn cob was found to be 80.29% more compared to the raw corn cob, reflecting its recalcitrance to digestion. Indeed, xylan being the second most abundant polymer in lignocellulosic biomass, considerable attention is being paid for its effective conversion to valued products.
Collapse
Affiliation(s)
- Bindu Sunkar
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Balakrishna Kannoju
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
5
|
Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis. Appl Environ Microbiol 2017; 83:AEM.01251-17. [PMID: 28802264 DOI: 10.1128/aem.01251-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022] Open
Abstract
Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis (AlAXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. AlAXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that AlAXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of AlAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan.IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of thermoplastic polymers.
Collapse
|
6
|
Manavalan T, Liu R, Zhou Z, Zou G. Optimization of acetyl xylan esterase gene expression in Trichoderma reesei and its application to improve the saccharification efficiency on different biomasses. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
8
|
Huy ND, Thiyagarajan S, Kim DH, Park SM. Cloning and characterization of a novel bifunctional acetyl xylan esterase with carbohydrate binding module from Phanerochaete chrysosporium. J Biosci Bioeng 2013; 115:507-13. [DOI: 10.1016/j.jbiosc.2012.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022]
|
9
|
Pouvreau L, Jonathan M, Kabel M, Hinz S, Gruppen H, Schols H. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme Microb Technol 2011; 49:312-20. [DOI: 10.1016/j.enzmictec.2011.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 11/24/2022]
|
10
|
Gonzalez-Vogel A, Eyzaguirre J, Oleas G, Callegari E, Navarrete M. Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Appl Microbiol Biotechnol 2010; 89:145-55. [PMID: 20972675 DOI: 10.1007/s00253-010-2953-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 01/23/2023]
Abstract
Proteins secreted by filamentous fungi play key roles in different aspects of their biology. The fungus Penicillium purpurogenum, used as a model organism, is able to degrade hemicelluloses and pectins by secreting a variety of enzymes to the culture medium. This work shows that these enzymes interact with each other to form high molecular weight, catalytically active complexes. By using a proteomics approach, we were able to identify several protein complexes in the secretome of this fungus. The expression and assembly of these complexes depend on the carbon source used and display molecular masses ranging from 300 to 700 kDa. These complexes are composed of a variety of enzymes, including arabinofuranosidases, acetyl xylan esterases, feruloyl esterases, β-glucosidases and xylanases. The protein-protein interactions in these multienzyme complexes were confirmed by coimmunoprecipitation assays. One of the complexes was purified from sugar beet pulp cultures and the subunits identified by tandem mass spectrometry. A better understanding of the biological significance of these kinds of interactions will help in the comprehension of the degradation mechanisms used by fungi and may be of special interest to the biotechnology industry.
Collapse
Affiliation(s)
- Alvaro Gonzalez-Vogel
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | |
Collapse
|
11
|
Ravanal MC, Callegari E, Eyzaguirre J. Novel bifunctional alpha-L-arabinofuranosidase/xylobiohydrolase (ABF3) from Penicillium purpurogenum. Appl Environ Microbiol 2010; 76:5247-53. [PMID: 20562284 PMCID: PMC2916492 DOI: 10.1128/aem.00214-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The soft rot fungus Penicillium purpurogenum grows on a variety of natural substrates and secretes various isoforms of xylanolytic enzymes, including three arabinofuranosidases. This work describes the biochemical properties as well as the nucleotide and amino acid sequences of arabinofuranosidase 3 (ABF3). This enzyme has been purified to homogeneity. It is a glycosylated monomer with a molecular weight of 50,700 and can bind cellulose. The enzyme is active with p-nitrophenyl alpha-L-arabinofuranoside and p-nitrophenyl beta-D-xylopyranoside with a K(m) of 0.65 mM and 12 mM, respectively. The enzyme is active on xylooligosaccharides, yielding products of shorter length, including xylose. However, it does not hydrolyze arabinooligosaccharides. When assayed with polymeric substrates, little arabinose is liberated from arabinan and debranched arabinan; however, it hydrolyzes arabinose and releases xylooligosaccharides from arabinoxylan. Sequencing both ABF3 cDNA and genomic DNA reveals that this gene does not contain introns and that the open reading frame is 1,380 nucleotides in length. The deduced mature protein is composed of 433 amino acids residues and has a calculated molecular weight of 47,305. The deduced amino acid sequence has been validated by mass spectrometry analysis of peptides from purified ABF3. A total of 482 bp of the promoter were sequenced; putative binding sites for transcription factors such as CreA (four), XlnR (one), and AreA (three) and two CCAAT boxes were found. The enzyme has two domains, one similar to proteins of glycosyl hydrolase family 43 at the amino-terminal end and a family 6 carbohydrate binding module at the carboxyl end. ABF3 is the first described modular family 43 enzyme from a fungal source, having both alpha-L-arabinofuranosidase and xylobiohydrolase functionalities.
Collapse
Affiliation(s)
- María Cristina Ravanal
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| | - Eduardo Callegari
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| | - Jaime Eyzaguirre
- Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
12
|
Fritz M, Ravanal MC, Braet C, eyzaguirre J. A family 51 α-l-arabinofuranosidase from Penicillium purpurogenum: purification, properties and amino acid sequence. ACTA ACUST UNITED AC 2008; 112:933-42. [DOI: 10.1016/j.mycres.2008.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 12/24/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
13
|
Colombres M, Garate JA, Lagos CF, Araya-Secchi R, Norambuena P, Quiroz S, Larrondo L, Pérez-Acle T, Eyzaguirre J. An eleven amino acid residue deletion expands the substrate specificity of acetyl xylan esterase II (AXE II) from Penicillium purpurogenum. J Comput Aided Mol Des 2007; 22:19-28. [PMID: 18060506 DOI: 10.1007/s10822-007-9149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 11/12/2007] [Indexed: 11/28/2022]
Abstract
The soft-rot fungus Penicillium purpurogenum secretes to the culture medium a variety of enzymes related to xylan biodegradation, among them three acetyl xylan esterases (AXE I, II and III). AXE II has 207 amino acids; it belongs to family 5 of the carbohydrate esterases and its structure has been determined by X-ray crystallography at 0.9 A resolution (PDB 1G66). The enzyme possesses the alpha/beta hydrolase fold and the catalytic triad typical of serine esterases (Ser90, His187 and Asp175). AXE II can hydrolyze esters of a large variety of alcohols, but it is restricted to short chain fatty acids. An analysis of its three-dimensional structure shows that a loop that covers the active site may be responsible for this strict specificity. Cutinase, an enzyme that hydrolyzes esters of long chain fatty acids and shows a structure similar to AXE II, lacks this loop. In order to generate an AXE II with this broader specificity, the preparation of a mutant lacking residues involving this loop (Gly104 to Ala114) was proposed. A set of molecular simulation experiments based on a comparative model of the mutant enzyme predicted a stable structure. Using site-directed mutagenesis, the loop's residues have been eliminated from the AXE II cDNA. The mutant protein has been expressed in Aspergillus nidulans A722 and Pichia pastoris, and it is active towards a range of fatty acid esters of up to at least 14 carbons. The availability of an esterase with broader specificity may have biotechnological applications for the synthesis of sugar esters.
Collapse
Affiliation(s)
- Marcela Colombres
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ding S, Cao J, Zhou R, Zheng F. Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroomVolvariella volvacea. FEMS Microbiol Lett 2007; 274:304-10. [PMID: 17623028 DOI: 10.1111/j.1574-6968.2007.00844.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.
Collapse
Affiliation(s)
- Shaojun Ding
- Department of Biological Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | | | | | | |
Collapse
|