1
|
Li YL, Xie LN, Li SH, Zhang D, Ge ZM. Photosynthetic carbon allocation in native and invasive salt marshes undergoing hydrological change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173232. [PMID: 38761926 DOI: 10.1016/j.scitotenv.2024.173232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Biogeochemical processes mediated by plants and soil in coastal marshes are vulnerable to environmental changes and biological invasion. In particular, tidal inundation and salinity stress will intensify under future rising sea level scenarios. In this study, the interactive effects of flooding regimes (non-waterlogging vs. waterlogging) and salinity (0, 5, 15, and 30 parts per thousand (ppt)) on photosynthetic carbon allocation in plant, rhizodeposition, and microbial communities in native (Phragmites australis) and invasive (Spartina alterniflora) marshes were investigated using mesocosm experiments and 13CO2 pulse-labeling techniques. The results showed that waterlogging and elevated salinity treatments decreased specific root allocation (SRA) of 13C, rhizodeposition allocation (RA) 13C, soil 13C content, grouped microbial PLFAs, and the fungal 13C proportion relative to total PLFAs-13C. The lowest SRA, RA, and fungal 13C proportion occurred under the combined waterlogging and high (30 ppt) salinity treatments. Relative to S. alterniflora, P. australis displayed greater sensitivity to hydrological changes, with a greater reduction in rhizodeposition, soil 13C content, and fungal PLFAs. S. alterniflora showed an earlier peak SRA but a lower root/shoot 13C ratio than P. australis. This suggests that S. alterniflora may transfer more photosynthetic carbon to the shoot and rhizosphere to facilitate invasion under stress. Waterlogging and high salinity treatments shifted C allocation towards bacteria over fungi for both plant species, with a higher allocation shift in S. alterniflora soil, revealing the species-specific microbial response to hydrological stresses. Potential shifts towards less efficient bacterial pathways might result in accelerated carbon loss. Over the study period, salinity was the primary driver for both species, explaining 33.2-50.8 % of 13C allocation in the plant-soil-microbe system. We propose that future carbon dynamics in coastal salt marshes under sea-level rise conditions depend on species-specific adaptive strategies and carbon allocation patterns of native and invasive plant-soil systems.
Collapse
Affiliation(s)
- Ya-Lei Li
- College of Ecology, Lishui University, 323000 Lishui, China; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 200241 Shanghai, China
| | - Li-Na Xie
- College of Ecology, Lishui University, 323000 Lishui, China; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 200241 Shanghai, China
| | - Shi-Hua Li
- School of Advanced Manufacturing, Fuzhou University, 362251 Jinjiang, China
| | - Dan Zhang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 200241 Shanghai, China
| | - Zhen-Ming Ge
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
2
|
Zha L, Chen M, Guo Q, Tong Z, Li Z, Yu C, Yang H, Zhao Y. Comparative Proteomics Study on the Postharvest Senescence of Volvariella volvacea. J Fungi (Basel) 2022; 8:819. [PMID: 36012807 PMCID: PMC9410126 DOI: 10.3390/jof8080819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Volvariella volvacea is difficult to store after harvest, which restricts the production and circulation of V. volvacea fruiting bodies. Low-temperature storage is the traditional storage method used for most edible fungi. However, V. volvacea undergoes autolysis at low temperatures. When fruiting bodies are stored at 15 °C (suitable temperature), V. volvacea achieves the best fresh-keeping effect. However, the molecular mechanism underlying the postharvest senescence of V. volvacea remains unclear. Based on this information, we stored V. volvacea fruiting bodies at 15 °C after harvest and then analyzed the texture and phenotype combined with the results of previous physiological research. Four time points (0, 24, 60, and 96 h) were selected for the comparative proteomics study of V. volvacea during storage at 15 °C. A variety of proteins showed differential expressions in postharvest V. volvacea at 15 °C. Further comparison of the gene ontology (GO) enrichment analysis and KEGG pathways performed at different sampling points revealed proteins that were significantly enriched at several time points. At the same time, we also analyzed differentially expressed proteins (DEPs) related to the RNA transport, fatty acid biosynthesis and metabolism, and amino acid biosynthesis and metabolism pathways, and discussed the molecular functions of the PAB1, RPG1, ACC1, ADH3, ADH2, ALD5, and SDH2 proteins in postharvest V. volvacea senescence. Our results showed that many biological processes of the postharvest senescence of V. volvacea changed. Most importantly, we found that most RNA transport-related proteins were down-regulated, which may lead to a decrease in related gene regulation. Our results also showed that the expression of other important proteins, such as the fatty acid metabolism related proteins increased; and changes in fatty acid composition affected the cell membrane, which may accelerate the ripening and perception of V. volvacea fruiting bodies. Therefore, our research provides a reference for further studies on the aging mechanism of V. volvacea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
3
|
Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha−1 is salt-stressed, out of which 2.95 million ha−1 are saline soil (including coastal) and 3.78 million ha−1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.
Collapse
|
4
|
Abstract
Soil salinization has become a major problem for agriculture worldwide, especially because this phenomenon is continuously expanding in different regions of the world. Salinity is a complex mechanism, and in the soil ecosystem, it affects both microorganisms and plants, some of which have developed efficient strategies to alleviate salt stress conditions. Currently, various methods can be used to reduce the negative effects of this problem. However, the use of biological methods, such as plant-growth-promoting bacteria (PGPB), phytoremediation, and amendment, seems to be very advantageous and promising as a remedy for sustainable and ecological agriculture. Other approaches aim to combine different techniques, as well as the utilization of genetic engineering methods. These techniques alone or combined can effectively contribute to the development of sustainable and eco-friendly agriculture.
Collapse
|
5
|
Song T, Shen Y, Jin Q, Feng W, Fan L, Cai W. Comparative phosphoproteome analysis to identify candidate phosphoproteins involved in blue light-induced brown film formation in Lentinula edodes. PeerJ 2020; 8:e9859. [PMID: 33384895 PMCID: PMC7751435 DOI: 10.7717/peerj.9859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes' brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Zhang B, Li B, Men XH, Xu ZW, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Jin LQ, Liu ZQ, Zheng YG. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 2020; 21:886. [PMID: 33308160 PMCID: PMC7731760 DOI: 10.1186/s12864-020-07298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07298-z.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hui Men
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
7
|
Zha L, Chen M, Yu C, Guo Q, Zhao X, Li Z, Zhao Y, Li C, Yang H. Differential proteomics study of postharvest Volvariella volvacea during storage at 4 °C. Sci Rep 2020; 10:13134. [PMID: 32753745 PMCID: PMC7403728 DOI: 10.1038/s41598-020-69988-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
The postharvest storage of Volvariella volvacea is an important factor limiting the industry development. Low-temperature storage is the traditional storage method used for most edible fungi, but V. volvacea undergoes autolysis at low temperature. To understand the molecular mechanism underlying the low-temperature autolysis of V. volvacea after harvesting, fruiting bodies of V. volvacea strain V23 were stored at 4 °C. Based on our previous study, in which the changes of morphological and physiological indexes during storage for 0, 6, 12, 24, 30, 36, 48 and 60 h were measured; four time points, namely, 0, 12, 24 and 60 h, were selected for this differential proteomics study. The proteomic changes in the postharvest storage samples were studied by isobaric tags for relative and absolute quantification-coupled two-dimensional liquid chromatography-tandem mass spectrometry (2D LC–MS/MS). A total of 2,063 proteins were identified, and 192 differentially expressed proteins (DEPs), including 24 up-regulated proteins and 168 down-regulated proteins, were detected after 12 h of storage. After 24 h of storage, 234 DEPs, including 48 up-regulated and 186 down-regulated proteins, were observed, and after 60 h, 415 DEPs, including 65 up-regulated proteins and 350 down-regulated proteins, were observed. An in-depth data analysis showed that the DEPs participated in various cellular processes, particularly metabolic processes. In this study, we combined Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, and the results focused on oxidative phosphorylation and ubiquitin mediated proteolysis pathways. In addition, sdh2, uba1 and ubc1 was confirmed by quantitative real-time polymerase chain reaction, and the results showed that the expression of these genes were consistent with their protein level. Based on the literature and our results, it is speculated that the identified DEPs, such as ATP1, SDH2, COR1, UBA1, COX4, UBC1 and SKP1 play a key role in the low-temperature autolysis of V. volvacea.
Collapse
Affiliation(s)
- Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qian Guo
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xu Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Chuanhua Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
8
|
Zou Y, Zhang M, Qu J, Zhang J. iTRAQ-Based Quantitative Proteomic Analysis Reveals Proteomic Changes in Mycelium of Pleurotus ostreatus in Response to Heat Stress and Subsequent Recovery. Front Microbiol 2018; 9:2368. [PMID: 30356767 PMCID: PMC6189471 DOI: 10.3389/fmicb.2018.02368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
High temperature is a key limiting factor for mycelium growth and development in Pleurotus ostreatus. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of thermotolerance in P. ostreatus, we used morphological and physiological analysis combined with an iTRAQ-based proteomics analysis of P. ostreatus subjected to 40°C for 48 h followed by recovery at 25°C for 3 days. High temperature increased the concentrations of thiobarbituric acid reactive substances (TBARS) indicating that the mycelium of P. ostreatus were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. In comparison to unstressed controls, a total of 204 proteins were changed during heat stress and/or the recovery phase. Wherein, there were 47 proteins that responded to both stress and recovery conditions, whereas 84 and 73 proteins were responsive to only heat stress or recovery conditions, respectively. Furthermore, quantitative real-time PCR (qRT-PCR) confirmed differential expression of nine candidate genes revealed that some of the proteins, such as a mitogen-activated protein kinase (MAPK), phenylalanine ammonia-lyase (PAL), and heat shock protein (HSP), were also regulated by heat stress at the level of transcription. These differentially expressed proteins (DEPs) in mycelium of P. ostreatus under heat stress were from 13 biological processes. Moreover, protein-protein interaction analysis revealed that proteins involved in carbohydrate and energy metabolism, signal transduction, and proteins metabolism could be assigned to three heat stress response networks. On the basis of these findings, we proposed that effective regulatory protein expression related to MAPK-pathway, antioxidant enzymes, HSPs, and other stress response proteins, and glycolysis play important roles in enhancing P. ostreatus adaptation to and recovery from heat stress. Of note, this study provides useful information for understanding the thermotolerance mechanism for basidiomycetes.
Collapse
Affiliation(s)
- Yajie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijing Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K. Effects of Ag Nanoparticles on Growth and Fat Body Proteins in Silkworms (Bombyx mori). Biol Trace Elem Res 2017; 180:327-337. [PMID: 28361388 PMCID: PMC5662678 DOI: 10.1007/s12011-017-1001-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/17/2017] [Indexed: 01/04/2023]
Abstract
Ag nanoparticles (AgNPs), a widely used non-antibiotic, antibacterial material, have shown toxic and other potentially harmful effects in mammals. However, the deleterious effects of AgNPs on insects are still unknown. Here, we studied the effects of AgNPs on the model invertebrate organism Bombyx mori. After feeding silkworm larvae different concentrations of AgNPs, we evaluated the changes of B. mori body weights, survival rates, and proteomic differences. The results showed that low concentrations (<400 mg/L) of AgNPs promoted the growth and cocoon weights of B. mori. Although high concentrations (≥800 mg/L) of AgNPs also improved B. mori growth, they resulted in silkworm death. An analysis of fat body proteomic differences revealed 13 significant differences in fat body protein spots, nine of which exhibited significantly downregulated expression, while four showed significantly upregulated expression. Reverse transcription-polymerase chain reaction results showed that at an AgNP concentration of 1600 mg/L, the expression levels of seven proteins were similar to the transcription levels of their corresponding genes. Our results suggest that AgNPs lowered the resistance to oxidative stress, affected cell apoptosis, and induced cell necrosis by regulating related protein metabolism and metabolic pathways in B. mori.
Collapse
Affiliation(s)
- Xu Meng
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Nouara Abdlli
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Niannian Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhichao Nie
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xin Dong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuang Lu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
10
|
Feng F, Chen L, Lian C, Xia H, Zhou Y, Yao Q, Chen K. Comparative proteomic analysis reveals the suppressive effects of dietary high glucose on the midgut growth of silkworm. J Proteomics 2014; 108:124-32. [PMID: 24878427 DOI: 10.1016/j.jprot.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED The silkworm, Bombyx mori, is an important model of lepidoptera insect, and it has been used for several models of human diseases. In human being, long-term high-sugar diet can induce the occurrence of diabetes and other related diseases. Interestingly, our experiments revealed the high glucose diet also has a suppressive effect on the development of silkworms. To investigate the molecular mechanism by which high-glucose diet inhibited the midgut growth in silkworms, we employed comparative proteomic analysis to globally identify proteins differentially expressed in normal and high-glucose diet group silkworms. In all, 28 differently proteins were suppressed and 5 proteins induced in high-glucose diet group. Gene ontology analysis showed that most of these differently proteins are mainly involved in metabolic process, catalytic and cellular process. A development related protein, imaginal disk growth factor (IDGF), was further confirmed by western blot exclusively expressing in the normal diet group silkworms. Taken together, our data suggests that IDGF plays a critical role in impairing the development of silkworms by a high-glucose diet. BIOLOGICAL SIGNIFICANCE Glucose has been thought to play essential roles in growth and development of silkworm. In this paper, we certified firstly that high-glucose diet can suppress the growth of silkworm, and comparative proteomic was employed to reveal the inhibition mechanism. Moreover, an important regulation related protein (IDGF) was found to involve in this inhibition process. These results will help us get a deeper understanding of the relationship between diet and healthy. Furthermore, IDGF may be the critical protein for reducing the blood sugar in silkworm, and it may be used for screening human hypoglycemic drug. The work has not been submitted elsewhere for publication, in whole or in part, and all the authors have approved the manuscript.
Collapse
Affiliation(s)
- Fan Feng
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China; Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Chaoqun Lian
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China; Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu Province 212013, PR China.
| |
Collapse
|
11
|
Zhu K, Min C, Xia H, Yang Y, Wang B, Chen K. Characterisation of Indica Special Protein (ISP), a marker protein for the differentiation of Oryza sativa subspecies indica and japonica. Int J Mol Sci 2014; 15:7332-43. [PMID: 24786093 PMCID: PMC4057675 DOI: 10.3390/ijms15057332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023] Open
Abstract
Based on both morphological and physiological traits, Asian cultivated rice (Oryza sativa L.) can be classified into two distinct subspecies, indica and japonica. To better understand the differences between the two subspecies, a proteomic approach was used to profile proteins present in the yellow seedling stage of 10 indica and 10 japonica rice varieties. We report the discovery of a new protein, Indica Special Protein (ISP), which was only detected in yellow seedlings of indica varieties, and was absent from japonica varieties. Hence, ISP may represent a key gene for the differentiation of indica and japonica subspecies.
Collapse
Affiliation(s)
- Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Chao Min
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Bin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Qin L, Shi H, Xia H, Chen L, Yao Q, Chen K. Comparative proteomic analysis of midgut proteins from male and female Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu088. [PMID: 25502033 PMCID: PMC5633941 DOI: 10.1093/jisesa/ieu088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many biological phenotypes of male and female silkworms (Bombyx mori) are quite different, and one of the major differences is the growth rate at various larval stages. Nutrient utilization by midgut varies with sexes. However, the molecular basis of this variation is not clear. To understand the molecular mechanism, comparative proteomic approach was employed to investigate the variation of midgut proteomes between male and female silkworms. Totally, 32 proteins that were grouped into four categories were differentially expressed and subsequently identified by mass spectrometry. Gene ontology analysis revealed that these proteins were attributed with biological functions such as binding, catalytic, and transporter, and these proteins were involved in biological process such as cellular process, localization, and metabolic process. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that these proteins were involved in pathways such as glycolysis, gluconeogenesis, oxidative phosphorylation, and purine metabolism. At transcription level, the expressional variation was confirmed for six identified proteins including muscle glycogen phosphorylase, uridine 5'-monophosphate synthase, cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha, ATP synthase, thiol peroxiredoxin, and serpin-2. This study provides useful information for understanding the mechanisms of nutrient absorption and the protein-protein interaction in the silkworm.
Collapse
Affiliation(s)
- Lvgao Qin
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Chen L, Xia H, Wang Y, Chen K, Qin L, Wang B, Yao Q, Li J, He Y, Zhao E. Proteomic profiling of liver from Elaphe taeniura, a common snake in eastern and southeastern Asia. Genet Mol Biol 2013; 36:438-47. [PMID: 24130453 PMCID: PMC3795165 DOI: 10.1590/s1415-47572013000300020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/11/2013] [Indexed: 11/25/2022] Open
Abstract
Snake liver has been implicated in the adaptation of snakes to a variety of habitats. However, to date, there has been no systematic analysis of snake liver proteins. In this study, we undertook a proteomic analysis of liver from the colubrid snake Elaphe taeniura using a combination of two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flightmass spectrometry (MALDI-TOF MS). We also constructed a local protein sequence database based on transcriptome sequencing to facilitate protein identification. Of the 268 protein spots revealed by 2-DE 109 gave positive MS signals, 84 of which were identified by searching the NCBInr, Swiss-Prot and local databases. The other 25 protein spots could not be identified, possibly because their transcripts were not be stable enough to be detected by transcriptome sequencing. GO analysis showed that most proteins may be involved in binding, catalysis, cellular processes and metabolic processes. Forty-two of the liver proteins identified were found in other reptiles and in amphibians. The findings of this study provide a good reference map of snake liver proteins that will be useful in molecular investigations of snake physiology and adaptation.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qin L, Xia H, Shi H, Zhou Y, Chen L, Yao Q, Liu X, Feng F, Yuan Y, Chen K. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. J Proteomics 2012; 75:3630-8. [PMID: 22546490 DOI: 10.1016/j.jprot.2012.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022]
Abstract
The silkworm Bombyx mori is of great economic value. The B. mori nuclear polyhedrosis virus (BmNPV) is one of the most common and severe pathogens for silkworm. Although certain immune mechanisms exist in silkworms, most silkworms are still susceptible to BmNPV infection. Interestingly, BmNPV infection resistance in some silkworm strains is varied and naturally existing. We have previously established a silkworm strain NB by genetic cross, which is highly resistant to BmNPV invasion. To investigate the molecular mechanism of silkworm resistance to BmNPV infection, we employed proteomic approach and genetic cross to globally identify proteins differentially expressed in parental silkworms NB and 306, a BmNPV-susceptible strain, and their F(1) hybrids. In all, 53 different proteins were found in direct cross group (NB♀, 306♂, F(1) hybrid) and 21 in reciprocal cross group (306♀, NB♂, F(1) hybrid). Gene ontology and KEGG pathway analyses showed that most of these different proteins are located in cytoplasm and are involved in many important metabolisms. Caspase-1 and serine protease expressed only in BmNPV-resistant silkworms, but not in BmNPV-susceptible silkworms, which was further confirmed by Western blot. Taken together, our data suggests that both caspase-1 and serine protease play a critical role in silkworm resistance against BmNPV infection.
Collapse
Affiliation(s)
- Lvgao Qin
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Meinhardt KA, Gehring CA. Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:532-49. [PMID: 22611852 DOI: 10.1890/11-1247.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The disruption of mutualisms between plants and mycorrhizal fungi is a potentially powerful mechanism by which invasives can negatively impact native species, yet our understanding of this mechanism's role in exotic species invasion is still in its infancy. Here, we provide several lines of evidence indicating that invasive tamarisk (Tamarix sp.) negatively affects native cottonwoods (Populus fremontii) by disrupting their associations with arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. At a field site in the early stages of tamarisk invasion, cottonwoods with tamarisk neighbors had reduced EM colonization and altered EM fungal community composition relative to cottonwoods with native neighbors, leading to reductions in EM propagule abundance in the soil beneath tamarisk. Similarly, AM colonization of cottonwoods was reduced with a tamarisk neighbor, but there were no significant changes in AM fungal spore communities or propagule abundance. Root colonization by nonmycorrhizal fungi, including potential pathogens, was higher in cottonwoods with tamarisk neighbors. A greenhouse experiment in which AM and EM inoculation and plant neighbor were manipulated in a fully factorial design showed that cottonwoods benefited from mycorrhizas, especially EM, in terms of shoot biomass when grown with a conspecific, but shoot biomass was similar to that of nonmycorrhizal controls when cottonwoods were grown with a tamarisk neighbor. These results are partially explained by a reduction in EM but not AM colonization of cottonwoods by a tamarisk neighbor. Tamarisk neighbors negatively affected cottonwood specific leaf area, but not chlorophyll content, in the field. To pinpoint a mechanism for these changes, we measured soil chemistry in the field and the growth response of an EM fungus (Hebeloma crustuliniforme) to salt-amended media in the laboratory. Tamarisk increased both NO3- concentrations and electrical conductivity 2.5-fold beneath neighboring cottonwoods in the field. Salt-amended media did not affect the growth of H. crustuliniforme. Our findings demonstrate that a nonnative species, even in the early stages of invasion, can negatively affect a native species by disrupting its mycorrhizal symbioses. Some of these changes in mycorrhizal fungal communities may remain as legacy effects of invasives, even after their removal, and should be considered in management and restoration efforts.
Collapse
Affiliation(s)
- Kelley A Meinhardt
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | | |
Collapse
|
16
|
|
17
|
Mao L, Jiang S, Wang B, Chen L, Yao Q, Chen K. Protein profile of Bacillus subtilis spore. Curr Microbiol 2011; 63:198-205. [PMID: 21667307 DOI: 10.1007/s00284-011-9967-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
Natural wild-type strains of Bacillus subtilis spore is regarded as a non-pathogenic for both human and animal, and has been classified as a novel food which is currently being used as probiotics added in the consumption. To identify B. subtilis spore proteins, we have accomplished a preliminary proteomic analysis of B. subtilis spore, with a combination of two-dimensional electrophoretic separations and matrix-assisted laser desorption ionization tandem time of flight mass spectrometry (MALDI-TOF-MS). In this article, we presented a reference map of 158 B. subtilis spore proteins with an isoelectric point (pI) between 4 and 7. Followed by mass spectrometry (MS) analysis, we identified 71 B. subtilis spore proteins with high level of confidence. Database searches, combined with hydropathy analysis and GO analysis revealed that most of the B. subtilis spore proteins were hydrophilic proteins related to catalytic function. These results should accelerate efforts to understand the resistance of spore to harsh conditions.
Collapse
Affiliation(s)
- Langyong Mao
- Institute of Life Sciences, Jiangsu University, #301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Lebrun JD, Demont-Caulet N, Cheviron N, Laval K, Trinsoutrot-Gattin I, Mougin C. Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: a study of enzymatic system in Trametes versicolor. CHEMOSPHERE 2011; 82:340-345. [PMID: 20980042 DOI: 10.1016/j.chemosphere.2010.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/27/2010] [Accepted: 10/03/2010] [Indexed: 05/30/2023]
Abstract
The relationship between the expression of extracellular enzymatic system and a metal stress is scarce in fungi, hence limiting the possible use of secretion profiles as tools for metal ecotoxicity assessment. In the present study, we investigated the effect of Zn, Cu, Pb and Cd, tested alone or in equimolar cocktail, on the secretion profiles at enzymatic and protein levels in Trametesversicolor. For that purpose, extracellular hydrolases (acid phosphatase, β-glucosidase, β-galactosidase and N-acetyl-β-glucosaminidase) and ligninolytic oxidases (laccase, Mn-peroxidase) were monitored in liquid cultures. Fungal secretome was analyzed by electrophoresis and laccase secretion was characterized by western-blot and mass spectrometry analyses. Our results showed that all hydrolase activities were inhibited by the metals tested alone or in cocktail, whereas oxidase activities were specifically stimulated by Cu, Cd and metal cocktail. At protein level, metal exposure modified the electrophoretic profiles of fungal secretome and affected the diversity of secreted proteins. Two laccase isoenzymes, LacA and LacB, identified by mass spectrometry were differentially glycosylated according to the metal exposure. The amount of secreted LacA and LacB was strongly correlated with the stimulation of laccase activity by Cu, Cd and metal cocktail. These modifications of extracellular enzymatic system suggest that fungal oxidases could be used as biomarkers of metal exposure.
Collapse
Affiliation(s)
- Jérémie D Lebrun
- INRA, UPR 251 Physico-chimie et Ecotoxicologie des SolS d'Agrosystèmes Contaminés, Route de St Cyr, 78026 Versailles, France.
| | | | | | | | | | | |
Collapse
|
19
|
A 60-year journey of mycorrhizal research in China: Past, present and future directions. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1374-98. [DOI: 10.1007/s11427-010-4096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 03/17/2010] [Indexed: 10/18/2022]
|
20
|
Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010; 2010:932527. [PMID: 20589070 PMCID: PMC2878683 DOI: 10.1155/2010/932527] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/03/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022] Open
Abstract
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.
Collapse
|
21
|
Qin L, Liu X, Li J, Chen H, Yao Q, Yang Z, Wang L, Chen K. Protein profile of Nomuraea rileyi spore isolated from infected silkworm. Curr Microbiol 2009; 58:578-85. [PMID: 19288155 DOI: 10.1007/s00284-009-9374-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/05/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Nomuraea rileyi (N. rileyi) is the causative agent of the silkworm, Bombyx mori, green muscardine which can cause severe worldwide economical loss in sericulture. Little is known about N. rileyi at the protein level for this entomopathogenic parasite which belongs to the Ascomycota. Here, we employed proteomic-based approach to identify proteins of N. rileyi spores collected from the dead silkworm. In all, 252 proteins were separated by two-dimensional gel electrophoresis (2-DE), and were subjected to mass spectrometry (MS) analysis, 121 proteins have good MS signal, and 24 of them were identified due to unavailability of genomic information from N. rileyi. This data will be helpful in understanding the biochemistry of N. rileyi.
Collapse
Affiliation(s)
- Lvgao Qin
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
HANUŠ LUMÍRO, SHKROB ILIA, DEMBITSKY VALERYM. LIPIDS AND FATTY ACIDS OF WILD EDIBLE MUSHROOMS OF THE GENUSBOLETUS. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1745-4522.2008.00125.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Sakajiri T, Asano K, Hirooka S, Tashiro K, Misumi O, Fujiwara T, Kuroiwa T. Microarray Analysis Reveals S-Adenosylmethionine (SAM) Synthetase Involvement in Salt Tolerance of Cyanidioschyzon merolae. CYTOLOGIA 2008. [DOI: 10.1508/cytologia.73.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Keita Asano
- Research Information Center for Extremophiles, Rikkyo University
| | - Shunsuke Hirooka
- Research Information Center for Extremophiles, Rikkyo University
| | - Kosuke Tashiro
- Graduate School of Genetic Resource Technology, Kyushu University
| | - Osami Misumi
- Research Information Center for Extremophiles, Rikkyo University
| | | | | |
Collapse
|