1
|
Moustafa MA, El-Refaie WM, Elnaggar YSR, El-Mezayen NS, Awaad AK, Abdallah OY. Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer. Int J Biol Macromol 2023; 241:124528. [PMID: 37086764 DOI: 10.1016/j.ijbiomac.2023.124528] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Fisetin (FS) is an anticancer drug having potential role in oral tumors management. However, its clinical application is limited due to its hydrophobicity and instability. Bioactive polymers-based nanosystems have a great potential in cancer therapy. Herein, different biopolymers were selected for their anticancer activity and targeting ability for nanoparticles preparation namely; fucoidan (FU), zein (Zn) and hyaluronic acid (HA). The selected FS-loaded cross-linked Zn nanoparticles (ZFH) which contains HA& FU for Zn nanoparticles stabilization showed the most suitable particle size (196 ± 6.53 nm), mean surface net charge (-38.8 ± 1.47 mV) and entrapment efficiency (98 ± 1.2 %). This is the first study to utilize both HA &FU not only for stabilization but also for dual targeting effect due to their targeting ability to multiple tumor targets. In-vitro anticancer activity of ZHF revealed remarkable uptake by SCC-4 cells with significant cytotoxic action. Further, ZHF was appraised using 4-nitroquinoline 1-oxide (4-NQO)-induced oral cancer in-vivo; ZHF significantly reduced OSCC-specific serum biomarkers levels, histologic tumor grade and increased caspase-3 level. Moreover, potential of destroying two key tumor regulatory cells; TECs and CSCs, was evaluated using their specific markers. The elaborated ZFH nanoparticles could be considered as promising targeted nanotherapy for oral cancer treatment with enhanced efficacy and survival rate.
Collapse
Affiliation(s)
- Mona A Moustafa
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | | | - Ashraf K Awaad
- Center for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
2
|
Liu K, McCue WM, Yang CW, Finzel BC, Huang X. Combinatorial synthesis of a hyaluronan based polysaccharide library for enhanced CD44 binding. Carbohydr Polym 2023; 300:120255. [PMID: 36372512 PMCID: PMC10322327 DOI: 10.1016/j.carbpol.2022.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Hyaluronan (HA) plays important roles in a wide range of biological events. The principal receptor of HA in the human body is the Cluster of Differentiation 44 (CD44). To enhance the binding between HA and CD44, a new approach was designed to take advantage of the four-component Ugi reaction. By modifying the carboxyl group on HA with various amine, aldehyde, and isocyanide moieties through the Ugi reaction, 36 HA like polysaccharides were generated. Two lead compounds were identified with enhanced CD44 binding compared to unmodified HA, which was confirmed by surface plasmon resonance (SPR), cellular studies and an in vivo mouse tumor model. Ski-learn as a machine learning tool was applied to analyze library data and yield predictions with an accuracy over 80 %. In conclusion, modification of HA via the Ugi reaction can be a promising strategy to develop novel binders toward HA receptors such as CD44.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - William M McCue
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chia-Wei Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Barry C Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact Mater 2022; 12:214-245. [PMID: 35310380 PMCID: PMC8897217 DOI: 10.1016/j.bioactmat.2021.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 02/09/2023] Open
Abstract
Iron oxide nanoparticle (IONP) with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging (MRI) contrast agent (CA) for long time. However, a review which comprehensively summarizes the recent development of IONP as traditional T2 CA and its new application for different modality of MRI, such as T1 imaging, simultaneous T2/T1 or MRI/other imaging modality, and as environment responsive CA is rare. This review starts with an investigation of direction on the development of high-performance MRI CA in both T2 and T1 modal based on quantum mechanical outer sphere and Solomon–Bloembergen–Morgan (SBM) theory. Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters, including magnetization, size, effective radius, inhomogeneity of surrounding generated magnetic field, crystal phase, coordination number of water, electronic relaxation time, and surface modification are summarized. Besides the strategies to improve r2 or r1 values, strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects, those are introducing second imaging modality to increase the imaging accuracy, endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue, and optimizing the interface structure to improve the accumulation amount of IONP in lesion. This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs. It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis. T2 contrast capacity of iron oxide nanoparticles (IONPs) could be improved based on quantum mechanical outer sphere theory. IONPs could be expand to be used as effective T1 CAs by improving q value, extending τs, and optimizing interface structure. Environment responsive MRI CAs have been developed to improve the diagnosis accuracy. Introducing other imaging contrast moiety into IONPs could increase the contrast efficiency. Optimizing in vivo behavior of IONPs have been proved to enlarge the signal difference between normal tissue and lesion.
Collapse
|
5
|
Pourmadadi M, Ahmadi MJ, Dinani HS, Ajalli N, Dorkoosh F. Theranostic applications of stimulus-responsive systems based on Fe2O3. Pharm Nanotechnol 2022; 10:90-112. [PMID: 35142274 DOI: 10.2174/2211738510666220210105113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magnetic-responsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Javad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Farid Dorkoosh
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBR), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Chaudhry GES, Akim A, Naveed Zafar M, Safdar N, Sung YY, Muhammad TST. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv Pharm Bull 2021; 11:426-438. [PMID: 34513617 PMCID: PMC8421618 DOI: 10.34172/apb.2021.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex mechanism involving a series of cellular events. The glycoproteins such as hyaluronan (HA) are a significant element of extracellular matrix (ECM), involve in the onset of cancer developmental process. The pivotal roles of HA in cancer progression depend on dysregulated expression in various cancer. HA, also gain attention due to consideration as a primary ligand of CD44 receptor. The CD44, complex transmembrane receptor protein, due to alternative splicing in the transcription process, various CD44 isoforms predominantly exist. The overexpression of distinct CD44 isoforms (CD44v) standard (CD44s) depends on the tumour type and stage. The receptor proteins, CD44 engage in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. HA-CD44 interaction trigger survival pathways that result in cell proliferation, invasion ultimately complex metastasis. The interaction and binding of ligand-receptor HA-CD44 regulate the downstream cytoskeleton pathways involve in cell survival or cell death. Thus, targeting HA, CD44 (variant and standard) isoform, and HA-CD44 binding consider as an attractive and useful approach towards cancer therapeutics. The use of various inhibitors of HA, hyaluronidases (HYALs), and utilizing targeted Nano-delivery of anticancer agents and antibodies against CD44, peptides gives promising results in vitro and in vivo. However, they are in clinical trials with favourable and unfavourable outcomes, which reflects the need for various modifications in targeting agents and a better understanding of potential targets in tumour progression pathways.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Naila Safdar
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
8
|
Chitosan and Curcumin Nanoformulations against Potential Cardiac Risks Associated with Hydroxyapatite Nanoparticles in Wistar Male Rats. Int J Biomater 2021; 2021:3394348. [PMID: 34373695 PMCID: PMC8349268 DOI: 10.1155/2021/3394348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Nanoparticle-induced cardiovascular diseases have attracted much attention. Upon entering the blood circulation system, these particles have the potency to induce cardiomyocytes, leading to cardiac failure or myocardial ischemia, and the molecular mechanism remains to be completely clarified. In this study, the cardiac toxicity of rats orally exposed to hydroxyapatite nanoparticles (HAPNPs) has been observed through an increase in myocardial infarction serum markers including CK-MB and alterations in routine blood factors, expression of apoptosis-related protein P53, and increased levels of serum inflammatory markers represented by the tumor necrosis factor alpha and Interleukin-6, as well as a decline in heart antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed, as well as notable histological and histochemical alterations in the heart of these animals. mRNA and protein expressions of vascular endothelial growth factor (VEGF-A), cyclooxygenase-2 (COX-2), and atrial natriuretic factor (ANF) were elevated in the myocardium. However, the coadministration of chitosan nanoparticles (CsNPs) and/or curcumin nanoparticles (CurNPs) successfully modulated these alterations and induced activation in antioxidant parameters. The present data suggest that HAPNPs-induced apoptosis via the mitochondrial pathway may play a crucial role in cardiac tissue damage and the early treatment with CsNPs and CurNPs may protect the heart from infarction induced by HAPNPs toxic effect.
Collapse
|
9
|
Khalid A, Asim-Ur-Rehman, Ahmed N, Chaudhery I, Al-Jafary MA, Al-Suhaimi EA, Tarhini M, Lebaz N, Elaissari A. Polysaccharide Chemistry in Drug Delivery, Endocrinology, and Vaccines. Chemistry 2021; 27:8437-8451. [PMID: 33856737 DOI: 10.1002/chem.202100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/26/2022]
Abstract
Polysaccharides, due to their outstanding properties, have attracted the attention of researchers, working in the biomedical field and especially of those working in drug delivery. Modified/functionalized polysaccharides further increase the importance for various applications. Delivery of therapeutics for diverse ailments in different endocrine glands and hormones safely, is a focal point of researchers working in the field. Among the routes followed, the transdermal route is preferred due to non-exposure of active moieties to the harsh gastric environment and first-pass metabolism. This review starts with the overview of polysaccharides used for the delivery of various therapeutic agents. Advantages of polysaccharides used in the transdermal route are addressed in detail. Types of polysaccharides will be elaborated through examples, and in this context, special emphasis will be on the polysaccharides being used for synthesis of the membranes/films. Techniques employed for their modification to design novel carriers for therapeutics delivery will also be discussed. The review will end with a brief discussion on recent developments and future perspectives for delivery of therapeutic agents, and vaccine development.
Collapse
Affiliation(s)
- Aimen Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Asim-Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Iqra Chaudhery
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Meneerah A Al-Jafary
- Biology Department, College of Science, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622, Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007, 69100, Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622, Villeurbanne, France
| |
Collapse
|
10
|
Xiong F, Qin Z, Chen H, Lan Q, Wang Z, Lan N, Yang Y, Zheng L, Zhao J, Kai D. pH-responsive and hyaluronic acid-functionalized metal-organic frameworks for therapy of osteoarthritis. J Nanobiotechnology 2020; 18:139. [PMID: 32993662 PMCID: PMC7523381 DOI: 10.1186/s12951-020-00694-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Drug therapy of osteoarthritis (OA) is limited by the short retention and lacking of stimulus-responsiveness after intra-articular (IA) injection. The weak acid microenvironment in joint provides a potential trigger for controlled drug release systems in the treatment of OA. Herein, we developed an pH-responsive metal − organic frameworks (MOFs) system modified by hyaluronic acid (HA) and loaded with an anti-inflammatory protocatechuic acid (PCA), designated as MOF@HA@PCA, for the therapy of OA. Results demonstrated that MOF@HA@PCA could smartly respond to acidic conditions in OA microenvironment and gradually release PCA, which could remarkably reduce synovial inflammation in both IL-1β induced chondrocytes and the OA joints. MOF@HA@PCA also down-regulated the expression of inflammatory markers of OA and promoted the expression of cartilage-specific makers. This work may provide a new insight for the design of efficient nanoprobes for precision theranostics of OA .
Collapse
Affiliation(s)
- Feng Xiong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Orthopaedics, Langdong Hospital of Guangxi Medical University, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Haimin Chen
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Zetao Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Orthopaedics, Langdong Hospital of Guangxi Medical University, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| |
Collapse
|
11
|
Canivet L, Denayer FO, Dubot P, Garçon G, Lo Guidice JM. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J Appl Toxicol 2020; 41:203-215. [PMID: 32767597 DOI: 10.1002/jat.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential. Hence, the goal of this study was to determine better whether the exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might alter some critical toxicological endpoints in a relevant primary culture model of human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of those frequently found in the industrial smokes of metallurgical industries. After having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA repair, and apoptotic endpoints were investigated within HBECs, mainly through transcriptional screening. Taken together, these results revealed that, despite it only produced relatively low levels of reactive oxygen species without any significant oxidative damage, low-dose Fe-NPs quickly significantly deregulated the transcription of some target genes closely involved in the proinflammatory response. Although this inflammatory process seemed to stay under control over time in case of this acute scenario of exposure, the future study of its evolution after a scenario of repeated exposure could be very interesting to evaluate the toxicity of Fe-NPs better.
Collapse
Affiliation(s)
- Ludivine Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Franck-Olivier Denayer
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Pierre Dubot
- CNRS UMR 7182, Métaux et céramiques à microstructure contrôlée, Institut de Chimie et des Matériaux, Paris Est, Thiais, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| |
Collapse
|
12
|
Abdel-Mottaleb MM, Abd-Allah H, El-Gogary RI, Nasr M. Versatile hyaluronic acid nanoparticles for improved drug delivery. DRUG DELIVERY ASPECTS 2020:1-18. [DOI: 10.1016/b978-0-12-821222-6.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Malliappan SP, Kandasamy P, Chidambaram S, Venkatasubbu D, Perumal SK, Sugumaran A. Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches. Anticancer Agents Med Chem 2019; 20:1300-1310. [PMID: 31642415 DOI: 10.2174/1871520619666191022175003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second most common cancer that causes death among women worldwide. Incidence of breast cancer is increasing worldwide, and the age at which breast cancer develops has shifted from 50- 70 years to 30-40 years. Chemotherapy is the most commonly used effective treatment strategy to combat breast cancer. However, one of the major drawbacks is low selective site-specificity and the consequent toxic insult to normal healthy cells. The nanocarrier system is consistently utilised to minimise the various limitations involved in the conventional treatment of breast cancer. The nanocarrier based targeted drug delivery system provides better bioavailability, prolonged circulation with an effective accumulation of drugs at the tumour site either by active or passive drug targeting. Active targeting has been achieved by receptor/protein anchoring and externally guided magnetic nanocarriers, whereas passive targeting accomplished by employing the access to the tunnel via leaky tumour vasculature, utilising the tumour microenvironment, because the nanocarrier systems can reduce the toxicity to normal cells. As of now a few nanocarrier systems have been approved by FDA, and various nanoformulations are in the pipeline at the preclinical and clinical development for targeting breast cancer; among them, polymeric micelles, microemulsions, magnetic microemulsions, liposomes, dendrimers, carbon nanotubes, and magnetic Nanoparticles (NPs) are the most common. The current review highlights the active and passive targeting potential of nanocarriers in breast cancer and discusses their role in targeting breast cancer without affecting normal healthy cells.
Collapse
Affiliation(s)
- Sivakumar P Malliappan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, CH-3012 Bern, Switzerland
| | - Siva Chidambaram
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur-603203, India
| | - Devanand Venkatasubbu
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur-603203, India
| | - Sathish K Perumal
- Department of Plant Science, Bharathidasan University, Tiruchirappalli, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603203, India
| |
Collapse
|
14
|
Duan M, Shapter JG, Qi W, Yang S, Gao G. Recent progress in magnetic nanoparticles: synthesis, properties, and applications. NANOTECHNOLOGY 2018; 29:452001. [PMID: 30142088 DOI: 10.1088/1361-6528/aadcec] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid development of advanced nanotechnology has continuously changed many aspects of society. One important nanostructured material, magnetic nanoparticles (NPs), has applications in many areas including clean energy, biology and engineering because of their special magnetic properties. The synthesis of magnetic nanomaterials with desired sizes and morphology has attracted great attention. Nanomaterials with different properties can be combined to construct multifunctional nanoplatforms through systematic surface engineering. The surface modification of magnetic NPs presents the opportunity for them to be used in many practical applications. Functionalized magnetic NPs have been successfully applied in catalysis, as thermoelectric materials, for drug delivery, as imaging agents in nuclear magnetic resonance and in biosensors. In this review, synthetic methods for magnetic NPs and some of their important properties are described. Then the latest progress of the application of magnetic NPs in energy and biology has been summarized and discussed. Finally, we discuss some issues that still need to be solved and the prospects for magnetic NPs.
Collapse
Affiliation(s)
- Meng Duan
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Sargazi A, Shiri F, Keikha S, Majd MH. Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells. Colloids Surf B Biointerfaces 2018; 171:150-158. [DOI: 10.1016/j.colsurfb.2018.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022]
|
16
|
Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, Lin G, Li W, Liu G, Chen X. Engineering Phototheranostic Nanoscale Metal-Organic Frameworks for Multimodal Imaging-Guided Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2040-2051. [PMID: 28032505 DOI: 10.1021/acsami.6b11579] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many photoresponsive dyes have been utilized as imaging and photodynamic/photothermal therapy agents. Indocyanine green (ICG) is the only near-infrared region (NIR) organic dye for clinical applications approved by the United States Food and Drug Administration; however, the clinical application of ICG is limited by its poor aqueous solubility, low cancer specificity, and low sensitivity in cancer theranostics. To overcome these issues, a multifunctional nanoplatform based on hyaluronic acid (HA) and ICG-engineered metal-organic framework MIL-100(Fe) nanoparticles (MOF@HA@ICG NPs) was successfully developed for imaging-guided, anticancer photothermal therapy (PTT). The synthesized NPs showed a high loading content of ICG (40%), strong NIR absorbance, and photostability. The in vitro and in vivo imaging showed that the MOF@HA@ICG NPs exhibited greater cellular uptake in CD44-positive MCF-7 cells and enhanced tumor accumulation in xenograft tumors due to their targeting capability, compared to MOF@ICG NPs (non-HA-targeted) and free ICG. The in vitro photothermal toxicity and in vivo PTT treatments demonstrated that MOF@HA@ICG NPs could effectively inhibit the growth of MCF-7 cells/xenograft tumors. These results suggest that MOF@HA@ICG NPs could be served as a new promising theranostic nanoplatform for improved anticancer PTT through cancer-specific and image-guided drug delivery.
Collapse
Affiliation(s)
- Wen Cai
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi 710061, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Wengang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Zucchetti E, Zangoli M, Bargigia I, Bossio C, Di Maria F, Barbarella G, D'Andrea C, Lanzani G, Antognazza MR. Poly(3-hexylthiophene) nanoparticles for biophotonics: study of the mutual interaction with living cells. J Mater Chem B 2017; 5:565-574. [DOI: 10.1039/c6tb02047j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(3-hexylthiophene) nanoparticles interfacing with living cells: a new tool for biophotonics applications.
Collapse
Affiliation(s)
- Elena Zucchetti
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
- Politecnico di Milano
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity
- CNR-ISOF
- 40129 Bologna
- Italy
| | - Ilaria Bargigia
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
| | - Caterina Bossio
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity
- CNR-ISOF
- 40129 Bologna
- Italy
| | - Giovanna Barbarella
- Institute for Organic Synthesis and Photoreactivity
- CNR-ISOF
- 40129 Bologna
- Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
- Politecnico di Milano
| | - Guglielmo Lanzani
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
- Politecnico di Milano
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
| |
Collapse
|
18
|
The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int 2016; 2016:2087204. [PMID: 27200096 PMCID: PMC4856920 DOI: 10.1155/2016/2087204] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/27/2016] [Indexed: 02/07/2023] Open
Abstract
CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells.
Collapse
|
19
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
20
|
Aminabhavi TM, Deshmukh AS. Polysaccharide-Based Hydrogels as Biomaterials. POLYMERIC HYDROGELS AS SMART BIOMATERIALS 2016. [DOI: 10.1007/978-3-319-25322-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Assessment of Immunotoxicity of Dextran Coated Ferrite Nanoparticles in Albino Mice. Mol Biol Int 2015; 2015:518527. [PMID: 26576301 PMCID: PMC4630405 DOI: 10.1155/2015/518527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, dextran coated ferrite nanoparticles (DFNPs) of size <25 nm were synthesized, characterized, and evaluated for cytotoxicity, immunotoxicity, and oxidative stress by in vitro and in vivo methods. Cytotoxicity was performed in vitro using splenocytes with different concentrations of DFNPs. Gene expression of selected cytokines (IL-1, IL-10, and TNF β) secretion by splenocytes was evaluated. Also, 100 mg of DFNPs was injected intraperitoneally to 18 albino mice for immunological stimulations. Six animals each were sacrificed at the end of 7, 14, and 21 days. Spleen was subjected to immunotoxic response and liver was analyzed for antioxidant parameters (lipid peroxidation, reduced glutathione, glutathione peroxidase, superoxide dismutase, and glutathione reductase). The results indicated that DFNPs failed to induce any immunological reactions and no significant alternation in antioxidant defense mechanism. Also, mRNA expression of the cytokines revealed an increase in IL-10 expression and subsequent decreased expression of IL-1 and TNF β. Eventually, DNA sequencing of liver actin gene revealed base alteration in nonconserved regions (10-20 bases) of all the treated groups when compared to control samples. Hence, it can be concluded that the DFNPs were nontoxic at the cellular level and nonimmunotoxic when exposed intraperitoneally to mice.
Collapse
|
22
|
Figueroa CM, Morales-Cruz M, Suárez BN, Fernández JC, Molina AM, Quiñones CM, Griebenow K. Induction of Cancer Cell Death by Hyaluronic Acid-Mediated Uptake of Cytochrome C. ACTA ACUST UNITED AC 2015; 6. [PMID: 27182458 PMCID: PMC4864004 DOI: 10.4172/2157-7439.1000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective cancer treatment needs both, passive and active targeting approaches, to achieve highly specific drug delivery to the target cells while avoiding cytotoxicity to normal cells. Protein drugs are useful in this context because they can display excellent specificity and potency. However, their use in therapeutic formulations is limited due to their physical and chemical instability during storage and administration. Polysaccharides have been used to stabilize proteins during formulation and delivery. To accomplish both, stabilization and targeting simultaneously, the apoptosis-inducing protein cytochrome c (Cyt c) was modified with the polysaccharide hyaluronic acid (HA) because its corresponding receptor CD44 is overexpressed in many cancers. Cyt c-HA bioconjugates were formed using low and high molecular weight HA (8 kDa and 1 MDa) with a resultant Cyt c loading percentage of 4%. Circular dichroism and a cell-free caspase assay showed minor structural changes and high bioactivity (more than 80% caspase activation) of Cyt c, respectively, after bioconjugate formation. Two CD44-positive cancer cells lines, HeLa and A549 cells, and two CD44-negative normal cell lines, Huvec and NIH-3T3 cells, were incubated with the samples to assess selectivity and cytotoxicity. After 24 h of incubation with the samples, cancer cell viability was reduced at least 3-fold while CD44-negative control cell lines remained minimally affected. Fluorescence imaging confirmed selective internalization of the Cyt c-HA construct by CD44-positive cancer cell lines. These results demonstrate the development of a drug delivery system that incorporates passive and active targeting which is essential for cancer treatment.
Collapse
Affiliation(s)
- Cindy M Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Moraima Morales-Cruz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Bethzaida N Suárez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Jean C Fernández
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Carmen M Quiñones
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| |
Collapse
|
23
|
Banudevi S, Swaminathan S, Maheswari KU. Pleiotropic Role of Dietary Phytochemicals in Cancer: Emerging Perspectives for Combinational Therapy. Nutr Cancer 2015; 67:1021-48. [PMID: 26359767 DOI: 10.1080/01635581.2015.1073762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is considered a complicated health issue worldwide. The mean cancer survival through standard therapeutic strategies has not been significantly improved over the past few decades. Hence, alternate remedies are needed to treat or prevent this dreadful disease being explored. Currently, it has been recognized that repeated treatment with chemotherapeutic agents has been largely ineffective due to multidrug resistance and further conventional treatment possesses limited drug accessibility to cancerous tissues, which in turn necessitates a higher dose resulting in increased cytotoxicity. Drug combinations have been practiced to address the problems associated with conventional single drug treatment. Recently, natural dietary agents have attracted much attention in cancer therapy because of their synergistic effects with anticancer drugs against different types of cancer. Natural phytochemicals may execute their anticancer activity through targeting diverse cancer cell signaling pathways, promoting cell cycle arrest and apoptosis, regulating antioxidant status and detoxification. This review focuses mainly on the anticancer efficacy of dietary phytochemicals in combination with standard therapeutic drugs reported from various in vitro and in vivo experimental studies apart from clinical trials. This review adds knowledge to the field of intervention studies using combinational modalities that opens a new window for cancer treatment/chemoprevention.
Collapse
Affiliation(s)
- Sivanantham Banudevi
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| | - Sethuraman Swaminathan
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| | - Krishnan Uma Maheswari
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| |
Collapse
|
24
|
Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery. Int J Cell Biol 2015; 2015:537560. [PMID: 26448753 PMCID: PMC4581573 DOI: 10.1155/2015/537560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer.
Collapse
|
25
|
Bano F, Carril M, Di Gianvincenzo P, Richter RP. Interaction of Hyaluronan with Cationic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8411-8420. [PMID: 26146006 DOI: 10.1021/acs.langmuir.5b01505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The polysaccharide hyaluronan (HA) is a main component of peri- and extracellular matrix, and an attractive molecule for materials design in tissue engineering and nanomedicine. Here, we study the morphology of complexes that form upon interaction of nanometer-sized amine-coated gold particles with this anionic, linear, and regular biopolymer in solution and grafted to a surface. We find that cationic nanoparticles (NPs) have profound effects on HA morphology on the molecular and supramolecular scale. Quartz crystal microbalance (QCM-D) shows that depending on their relative abundance, cationic NPs promote either strong compaction or swelling of films of surface-grafted HA polymers (HA brushes). Transmission electron and atomic force microscopy reveal that the NPs do also give rise to complexes of distinct morphologies-compact nanoscopic spheres and extended microscopic fibers-upon interaction with HA polymers in solution. In particular, stable and hydrated spherical complexes of single HA polymers with NPs can be prepared when balancing the ionizable groups on HA and NPs. The observed self-assembly phenomena could be useful for the design of drug delivery vehicles and a better understanding of the reorganization of HA-rich synthetic or biological matrices.
Collapse
Affiliation(s)
- Fouzia Bano
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
| | - Mónica Carril
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
- §Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Paolo Di Gianvincenzo
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
- ‡CIBER-BNN, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
| | - Ralf P Richter
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
- ∥Université Grenoble Alpes, Grenoble 38041 Cedex 9, France
- ⊥CNRS, DCM, BP 53, Grenoble 38041 Cedex 9, France
- #Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 530] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
27
|
Determination of oxidative stress related toxicity on repeated dermal exposure of hydroxyapatite nanoparticles in rats. Int J Biomater 2014; 2014:476942. [PMID: 25587279 PMCID: PMC4283387 DOI: 10.1155/2014/476942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/03/2014] [Indexed: 01/14/2023] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have numerous applications, such as substitute for bone grafting, bone fillers, bioceramic coating, and dental fillings. The toxicity of these nanomaterials is of growing concern despite their significant scientific interest and promising potential in many applications. In this study, an in-house synthesized, characterized HANP of size <50 nm was investigated for the dermal toxicity. A paste of HANPs was prepared in water and applied on the dorsal side of the rats for 28 days. At the end of 28 days, blood was subjected to haematological and biochemical analysis. Gross necropsy was conducted and major organs were collected for histopathological observations. Liver from the animals was evaluated for lipid peroxidation, reduced glutathione, and antioxidant enzymes activity. It was observed that none of the animals showed any abnormality during the experimental period. Gross examination of carcasses did not reveal any abnormality in the organs examined. The results also demonstrated that there was no significant fluctuation in the level of antioxidant defense mechanisms, lipid peroxidation, and haematological and biochemical parameters. There was no histopathological lesion observed in any of the organs. Hence, it can be concluded that the synthesized HANPs were nontoxic at cellular level, when exposed dermally to rats.
Collapse
|
28
|
Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 2014; 193:162-73. [DOI: 10.1016/j.jconrel.2014.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023]
|
29
|
Hyaluronan-Based Nanocarriers with CD44-Overexpressed Cancer Cell Targeting. Pharm Res 2014; 31:2988-3005. [DOI: 10.1007/s11095-014-1393-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/15/2014] [Indexed: 01/15/2023]
|
30
|
Zheng W, Li Y, Du J, Yin Z. Fabrication of Biocompatible and Tumor-Targeting Hyaluronan Nanospheres by a Modified Desolvation Method. J Pharm Sci 2014; 103:1529-37. [DOI: 10.1002/jps.23924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/23/2014] [Accepted: 02/18/2014] [Indexed: 11/08/2022]
|
31
|
Mohanan P, Geetha C, Syama S, Varma H. Interfacing of dextran coated ferrite nanomaterials with cellular system and delayed hypersensitivity on Guinea pigs. Colloids Surf B Biointerfaces 2014; 116:633-42. [DOI: 10.1016/j.colsurfb.2013.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
|
32
|
Shokrollahi H. Contrast agents for MRI. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4485-97. [DOI: 10.1016/j.msec.2013.07.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 07/10/2013] [Indexed: 12/26/2022]
|
33
|
El-Dakdouki MH, Puré E, Huang X. Development of drug loaded nanoparticles for tumor targeting. Part 1: Synthesis, characterization, and biological evaluation in 2D cell cultures. NANOSCALE 2013; 5:3895-903. [PMID: 23529646 PMCID: PMC3638024 DOI: 10.1039/c3nr33777d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.
Collapse
Affiliation(s)
- Mohammad H El-Dakdouki
- Department of Chemistry, Chemistry Building, Michigan State University, Room 426, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
34
|
Dalla Pozza E, Lerda C, Costanzo C, Donadelli M, Dando I, Zoratti E, Scupoli MT, Beghelli S, Scarpa A, Fattal E, Arpicco S, Palmieri M. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1396-404. [PMID: 23384419 DOI: 10.1016/j.bbamem.2013.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gowda R, Jones NR, Banerjee S, Robertson GP. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy. ACTA ACUST UNITED AC 2013; 4. [PMID: 25013742 PMCID: PMC4085796 DOI: 10.4172/2157-7439.1000184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutic agents that inhibit a single target often cannot combat a multifactorial disease such as cancer. Thus, multi-target inhibitors (MTIs) are needed to circumvent complications such as the development of resistance. There are two predominant types of MTIs, (a) single drug inhibitor (SDIs) that affect multiple pathways simultaneously, and (b) combinatorial agents or multi-drug inhibitors (MDIs) that inhibit multiple pathways. Single agent multi-target kinase inhibitors are amongst the most prominent class of compounds belonging to the former, whereas the latter includes many different classes of combinatorial agents that have been used to achieve synergistic efficacy against cancer. Safe delivery and accumulation at the tumor site is of paramount importance for MTIs because inhibition of multiple key signaling pathways has the potential to lead to systemic toxicity. For this reason, the development of drug delivery mechanisms using nanotechnology is preferable in order to ensure that the MDIs accumulate in the tumor vasculature, thereby increasing efficacy and minimizing off-target and systemic side effects. This review will discuss how nanotechnology can be used for the development of MTIs for cancer therapy and also it concludes with a discussion of the future of nanoparticle-based MTIs as well as the continuing obstacles being faced during the development of these unique agents.’
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan R Jones
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shubhadeep Banerjee
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Yang HW, Hua MY, Liu HL, Huang CY, Wei KC. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl 2012; 5:73-86. [PMID: 24198498 DOI: 10.2147/nsa.s35506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Molecular Medicine Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan ; Department of Neurosurgery, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Ghosh SC, Neslihan Alpay S, Klostergaard J. CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 2012; 16:635-50. [PMID: 22621669 DOI: 10.1517/14728222.2012.687374] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Advances in cancer therapeutics, namely more effective and less toxic treatments, will occur with targeting strategies that enhance the tumor biodistribution and thwart normal tissue exposure of the drug. This review focuses on cancer drug targeting approaches that exploit the expression of the cell-surface proteoglycan family, CD44, on the tumor cell surface followed by some form of ligand binding and induced CD44 internalization and intracellular drug release: in effect using this as a 'Trojan Horse' to more selectively access tumor cells. AREAS COVERED This review defines the origins of evidence for a linkage between CD44 expression and malignancy, and invokes contemporary views of the importance of putative CD44(+) cancer stem cells in disease resistance. Although the primary emphasis is on the most advanced and developed paths, those that have either made it to the clinic or are well-poised to get there, a wide scope of additional approaches at various preclinical stages is also briefly reviewed. EXPERT OPINION The future should see development of drug targeting approaches that exploit CD44 expression on CSCs/TICs, including applications to cytotoxic agents currently in the clinic.
Collapse
Affiliation(s)
- Sukhen C Ghosh
- The University of Texas, Institute of Molecular Medicine, Health Science Center, Center for Molecular Imaging, 1825 Pressler Street, SRB 330C, Houston, TX 77030, USA
| | | | | |
Collapse
|
38
|
Marusza W, Mlynarczyk G, Olszanski R, Netsvyetayeva I, Obrowski M, Iannitti T, Palmieri B. Probable biofilm formation in the cheek as a complication of soft tissue filler resulting from improper endodontic treatment of tooth 16. Int J Nanomedicine 2012; 7:1441-7. [PMID: 22619504 PMCID: PMC3356214 DOI: 10.2147/ijn.s27994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Injectable filling agents offer the promise of a better appearance without surgery and, among them, hyaluronic acid is the most commonly used. Although complications are rare, it is necessary to know the possible side effects and complications in order to be prepared for their management. That is why many researchers have been focusing on the interactions between hyaluronic acid and pathogens, inflammatory mediators, the immune system, and markers of oxidative stress to achieve efficient drug delivery, given that hyaluronic acid has widening applications in the field of nanomedicine. Here we report the case of a 37-year-old female patient who returned to our clinic with an abscess in her left cheek 3 months after a deep injection of 1 mL of stabilized hyaluronic acid in both cheeks. Steroid and antibiotic therapy was initiated without success, and abscess drainage was performed. Extraction of tooth 16 was performed 11 days after insertion of drains into the abscess. Laboratory blood tests showed acute inflammation of presumed bacterial etiology. Microbiological examination of pus was negative. Bacterial cultures were found in the extracted tooth. After antibiotic therapy, a complete reversal of the pathological process was observed. The present report highlights the need to assess periodontal problems prior to any aesthetic facial treatment. Analyses of further case reports and clinical studies are necessary to understand the potential role of hyaluronic acid in the formation of biofilm, and how to avoid this complication, thereby increasing the safety of hyaluronic acid-based procedures.
Collapse
Affiliation(s)
- Wojciech Marusza
- Academy of Face Sculpturing, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
39
|
Bhattacharya K, Hoffmann E, Schins RFP, Boertz J, Prantl EM, Alink GM, Byrne HJ, Kuhlbusch TAJ, Rahman Q, Wiggers H, Schulz C, Dopp E. Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro. Toxicol Sci 2012; 126:173-82. [DOI: 10.1093/toxsci/kfs014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
El-Dakdouki MH, El-Boubbou K, Zhu DC, Huang X. A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging. RSC Adv 2011; 1:1449-1452. [PMID: 22662307 PMCID: PMC3363997 DOI: 10.1039/c1ra00737h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly stable colloidal hyaluronic acid coated magnetic nano-particles were prepared via a ligand exchange method. These particles exhibited excellent cell labeling efficiencies and superior potential as MRI contrast agents, which are useful to target tumor cells expressing hyaluronic acid receptors such as CD44.
Collapse
Affiliation(s)
| | | | - David C. Zhu
- Departments of Radiology and Psychology, Michigan State University, East Lansing, Michigan, 48824, USA
- Biomedical Imaging Research Centre, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, USA
- Biomedical Imaging Research Centre, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
41
|
Kaur G, Narang RK, Rath G, Goyal AK. Advances in Pulmonary Delivery of Nanoparticles. ACTA ACUST UNITED AC 2011; 40:75-96. [DOI: 10.3109/10731199.2011.592494] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:147-66. [PMID: 21703993 DOI: 10.1016/j.nano.2011.05.016] [Citation(s) in RCA: 804] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/12/2011] [Accepted: 05/29/2011] [Indexed: 11/29/2022]
Abstract
UNLABELLED Drug delivery is an interdisciplinary and independent field of research and is gaining the attention of pharmaceutical researchers, medical doctors and industry. A safe and targeted drug delivery could improve the performance of some classic medicines already on the market, and moreover, will have implications for the development and success of new therapeutic strategies such as anticancer drug delivery, peptide and protein delivery and gene therapy. In the last decade, several drug-delivery technologies have emerged and a fascinating part of this field is the development of nanoscale drug delivery devices. Nanoparticles (NPs) have been developed as an important strategy to deliver conventional drugs, recombinant proteins, vaccines and more recently, nucleotides. NPs and other colloidal drug-delivery systems modify the kinetics, body distribution and drug release of an associated drug. This review article focuses on the potential of nanotechnology in medicine and discusses different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging. FROM THE CLINICAL EDITOR This comprehensive review focuses on different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging.
Collapse
Affiliation(s)
- Suphiya Parveen
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | | | | |
Collapse
|
43
|
Jin SE, Bae JW, Hong S. Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microsc Res Tech 2010; 73:813-23. [PMID: 20232368 DOI: 10.1002/jemt.20847] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multiscale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nanoscale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices, and IVIS. Additionally, recently developed combined techniques such as AFM-CLSM, correlative light and electron microscopy (CLEM), and SEM spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians.
Collapse
Affiliation(s)
- Su-Eon Jin
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
44
|
Colloidal drug carries from (sub)micron hyaluronic acid hydrogel particles with tunable properties for biomedical applications. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv 2010; 7:681-703. [PMID: 20367530 DOI: 10.1517/17425241003730399] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Active targeting of bioactive molecules by physicochemical association with hyaluronic acid (HA) is an attractive approach in current nanomedicine because HA is biocompatible, non-toxic and non-inflammatory. AREAS COVERED IN THIS REVIEW This review focuses on synthesis, physicochemical characterization and biological properties of different nanoparticulate delivery systems that include HA in their structures. Chemically based approaches to the delivery of small molecule drugs, proteins and nucleic acids in which they become chemically or physically bound to hyaluronic acid are reviewed, including the use of molecular HA conjugates and nanocarriers. The systems are considered in terms of intracellular delivery to different cultured cells that express HA-specific receptors (hyaladherines) differently. The in vivo biodistribution and therapeutic effect of these systems are discussed. WHAT THE READER WILL GAIN Different synthetic methodologies for preparations of HA-based nanoparticles are presented extensively. HA nanoparticulate systems of various structures can be compared with respect to their in vitro assays and in vivo biodistribution. TAKE HOME MESSAGE To make HA useful as an intravenous targeting carrier, strategies have to be devised to: reduce HA clearance from the blood; suppress the HA uptake by liver and spleen; and provide tumor-triggered mechanisms of release of an active drug from the HA carrier.
Collapse
Affiliation(s)
- Dmitri A Ossipov
- Uppsala University, Polymer Chemistry, Material Chemistry Department, S-75121 Uppsala, Sweden.
| |
Collapse
|
46
|
Jin YJ, Ubonvan T, Kim DD. Hyaluronic Acid in Drug Delivery Systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.s.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Papaphilippou P, Loizou L, Popa NC, Han A, Vekas L, Odysseos A, Krasia-Christoforou T. Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing beta-ketoester functionalities. Biomacromolecules 2009; 10:2662-71. [PMID: 19627141 DOI: 10.1021/bm9005936] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The quality of surface coating of magnetic nanoparticles destined as nanoprobes in clinical applications is of utmost significance for their colloidal stability and biocompatibility. A novel approach for the fabrication of such a coating involves the synthesis of well-defined diblock copolymers based on 2-(acetoacetoxy)ethyl methacrylate (chelating) and poly(ethylene glycol)methyl ether methacrylate (water-soluble, thermoresponsive), prepared by reversible addition-fragmentation chain transfer polymerization. Fabrication of magneto-responsive micelles was accomplished via chemical coprecipitation of Fe(III)/Fe(II) in the presence of diblock copolymers. Further to the characterization of micellar morphologies, optical and thermal properties, assessment of magnetic characteristics disclosed superparamagnetic behavior. The hybrid micelles did not compromise cell viability in cultures, while in vitro uptake by macrophage cells was significantly lower in comparison to that of the clinically applicable contrast agent Resovist, suggesting that these systems can evade rapid uptake by the reticuloendothelial system and be useful agents for in vivo applications.
Collapse
Affiliation(s)
- Petri Papaphilippou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
48
|
Gaffney J, Matou-Nasri S, Grau-Olivares M, Slevin M. Therapeutic applications of hyaluronan. MOLECULAR BIOSYSTEMS 2009; 6:437-43. [PMID: 20174672 DOI: 10.1039/b910552m] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyaluronan (HA), a multifunctional, high molecular weight glycosaminoglycan, is a component of the majority of extracellular matrices. HA is synthesised in a unique manner by a family of hyaluronan synthases, degraded by hyaluronidases and exerts a biological effect by binding to families of cellular receptors, the hyaladhedrins. Receptor binding activates signal pathways in endothelial cells leading to proliferation, migration and differentiation collectively termed angiogenesis. HA and associated enzymes are implicated in the aetiology of cardiovascular disease and cancer and manipulation of HA expression offers a therapeutic target. HA microspheres have been developed as drug delivery agents to deliver HA to sites of disease and also in diagnosis. In this review we discuss some of the recent therapeutic applications of hyaluronan in tissue repair, as a drug delivery system and the synthesis, application and delivery of hyaluronan nanoparticles to target drugs to sites of disease.
Collapse
Affiliation(s)
- John Gaffney
- School of Biology, Chemistry and Health Sciences, Manchester Metropolitan University, Chester St., Manchester, UK M1 5GD.
| | | | | | | |
Collapse
|
49
|
Koppolu B, Rahimi M, Nattama S, Wadajkar A, Nguyen KT. Development of multiple-layer polymeric particles for targeted and controlled drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 6:355-61. [PMID: 19699325 DOI: 10.1016/j.nano.2009.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/15/2009] [Accepted: 07/13/2009] [Indexed: 12/19/2022]
Abstract
UNLABELLED The purpose of this work was to develop multilayered particles consisting of a magnetic core and two encompassing shells made up of poly(N-isopropylacrylamide) (PNIPAAm) and poly(D,L-lactide-co-glycolide) (PLGA) for targeted and controlled drug delivery. Transmission electron microscopy confirmed that multilayered particles were obtained with PNIPAAm magnetic nanoparticles embedded within the PLGA shell. Factorial analysis studies also showed that the particle size was inversely proportional to the surfactant concentration and sonication power and directly proportional to the PLGA concentration. Drug-release results demonstrated that these multilayer particles produced an initial burst release and a subsequent sustained release of both bovine serum albumin (BSA) and curcumin loaded into the core and shell of the particle, respectively. BSA release was also affected by changes in temperature. In conclusion, our results indicate that the multilayered magnetic particles could be synthesized and used for targeted and controlled delivery of multiple drugs with different release mechanisms. FROM THE CLINICAL EDITOR Authors demonstrate the synthesis of multilayered particles consisting of a magnetic core and two encompassing shells made up of poly (N-isopropylacrylamide) (PNIPAAm) and poly(D, L-lactide-co-glycolide) (PLGA) for targeted and controlled drug delivery. The presented results indicate successful synthesis and application for targeted and controlled delivery of multiple drugs with different release mechanisms.
Collapse
Affiliation(s)
- Bhanuprasanth Koppolu
- Biomedical Engineering Program, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
50
|
Namdeo M, Bajpai S. Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|