1
|
Omidian H, Gill EJ, Cubeddu LX. Lipid Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:644. [PMID: 38794306 PMCID: PMC11124812 DOI: 10.3390/pharmaceutics16050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This manuscript explores the use of lipid nanoparticles (LNPs) in addressing the pivotal challenges of lung cancer treatment, including drug delivery inefficacy and multi-drug resistance. LNPs have significantly advanced targeted therapy by improving the precision and reducing the systemic toxicity of chemotherapeutics such as doxorubicin and paclitaxel. This manuscript details the design and benefits of various LNP systems, including solid lipid-polymer hybrids, which offer controlled release and enhanced drug encapsulation. Despite achievements in reducing tumor size and enhancing survival, challenges such as manufacturing complexity, biocompatibility, and variable clinical outcomes persist. Future directions are aimed at refining targeting capabilities, expanding combinatorial therapies, and integrating advanced manufacturing techniques to tailor treatments to individual patient profiles, thus promising to transform lung cancer therapy through interdisciplinary collaboration and regulatory innovation.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
2
|
Gazaille C, Bozzato E, Madadian-Bozorg N, Mellinger A, Sicot M, Farooq U, Saulnier P, Eyer J, Préat V, Bertrand N, Bastiat G. Glioblastoma-targeted, local and sustained drug delivery system based on an unconventional lipid nanocapsule hydrogel. BIOMATERIALS ADVANCES 2023; 153:213549. [PMID: 37453243 DOI: 10.1016/j.bioadv.2023.213549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.
Collapse
Affiliation(s)
- Claire Gazaille
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Adélie Mellinger
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Umer Farooq
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | - Nicolas Bertrand
- Univ Laval, Faculty of Pharmacy, CHU Quebec Research Center, Québec, QC, Canada
| | | |
Collapse
|
3
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Davenne T, Percier P, Larbanoix L, Moser M, Leo O, Meylan E, Goriely S, Gérard P, Wauthoz N, Laurent S, Amighi K, Rosière R. Inhaled dry powder cisplatin increases antitumour response to anti-PD1 in a murine lung cancer model. J Control Release 2023; 353:317-326. [PMID: 36470334 DOI: 10.1016/j.jconrel.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Despite advances in targeted therapies and immunotherapy in lung cancer, chemotherapy remains the backbone of treatment in most patients at different stages of the disease. Inhaled chemotherapy is a promising strategy to target lung tumours and to limit the induced severe systemic toxicities. Cisplatin dry powder for inhalation (CIS-DPI) was tested as an innovative way to deliver cisplatin locally via the pulmonary route with minimal systemic toxicities. In vivo, CIS-DPI demonstrated a dose-dependent antiproliferative activity in the M109 orthotopic murine lung tumour model and upregulated the immune checkpoint PD-L1 on lung tumour cells. Combination of CIS-DPI with the immune checkpoint inhibitor anti-PD1 showed significantly reduced tumour size, increased the number of responders and prolonged median survival over time in comparison to the anti-PD1 monotherapy. Furthermore, the CIS-DPI and anti-PD1 combination induced an intra-tumour recruitment of conventional dendritic cells and tumour infiltrating lymphocytes, highlighting an anti-tumour immune response. This study demonstrates that combining CIS-DPI with anti-PD1 is a promising strategy to improve lung cancer therapy.
Collapse
Affiliation(s)
- Tamara Davenne
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium; Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium; Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| | - Pauline Percier
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium.
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium.
| | - Muriel Moser
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium.
| | - Oberdan Leo
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium.
| | - Etienne Meylan
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium; Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, ULB, Anderlecht, Belgium.
| | - Stanislas Goriely
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium.
| | - Pierre Gérard
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium.
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| | - Rémi Rosière
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium; Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| |
Collapse
|
5
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
6
|
Pitorre M, Gazaille C, Pham LTT, Frankova K, Béjaud J, Lautram N, Riou J, Perrot R, Geneviève F, Moal V, Benoit JP, Bastiat G. Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112188. [PMID: 34082987 DOI: 10.1016/j.msec.2021.112188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022]
Abstract
Nanoparticle-loaded hydrogels are attractive pharmaceutical drug delivery systems that combine the advantages of both hydrogel (local administration and/or sustained drug release) and nanoparticle (stealthiness, targeting and decreased toxicity). The design of nanoparticle-loaded hydrogels is largely conventional, consisting of the dispersion of nanoparticles in a natural or synthetic polymer matrix to form a gel network. Novel nanoparticle-loaded hydrogels architecture could provide advantages in terms of innovation and application. We focused on the development of lipid nanocapsule (LNC)-based hydrogels without the use of a polymer matrix as a platform for drug delivery. Cytidine was modified by grafting palmitoyl chains (CytC16) and the new entity was added during the LNC phase-inversion formulation process allowing spontaneous gelation. Positioned at the oil/water interface, CytC16 acts as a crosslinking agent between LNCs. Association of the LNCs in a three-dimensional network led to the formation of polymer-free hydrogels. The viscoelastic properties of the LNC-based hydrogels depended on the LNC concentration and CytC16 loading but were not affected by the LNC size distribution. The LNC and drug-release profiles were controlled by the mechanical properties of the LNC-based hydrogels (slower release profiles correlated with higher viscoelasticity). Finally, the subcutaneous administration of LNC-based hydrogels led to classic inflammatory reactions of the foreign body-reaction type due to the endogenous character of CytC16, shown by cellular viability assays. New-generation nanoparticle-loaded hydrogels (LNC-based polymer-free hydrogels) show promise as implants for pharmaceutical applications. Once LNC release is completed, no gel matrix remains at the injection site, minimizing the additional toxicity due to the persistence of polymeric implants. Sustained drug-release profiles can be controlled by the mechanical properties of the hydrogels and could be tailor-made, depending on the therapeutic strategy chosen.
Collapse
Affiliation(s)
- Marion Pitorre
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Claire Gazaille
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Jérôme Béjaud
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Jérémie Riou
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Rodolphe Perrot
- Univ Angers, Service Commun d'Imageries et d'Analyses Microscopiques (SCIAM), SFR ICAT, F-49000 Angers, France
| | | | - Valérie Moal
- Biochemistry and Molecular Biology Department, University Hospital, Angers, France
| | | | | |
Collapse
|
7
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
8
|
Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Doxorubicin Loaded Poloxamer Thermosensitive Hydrogels: Chemical, Pharmacological and Biological Evaluation. Molecules 2020; 25:molecules25092219. [PMID: 32397328 PMCID: PMC7248767 DOI: 10.3390/molecules25092219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: doxorubicin is a potent chemotherapeutic agent, but it has limitations regarding its side effects and therapy resistance. Hydrogels potentially deal with these problems, but several characterizations need to be optimized to better understand how hydrogel assisted chemotherapy works. Poloxamer 407 (P407) hydrogels were mixed with doxorubicin and physico-chemical, biological, and pharmacological characterizations were considered. (2) Methods: hydrogels were prepared by mixing P407 in PBS at 4 °C. Doxorubicin was added upon solutions became clear. Time-to-gelation, hydrogel morphology, and micelles were studied first. The effects of P407-doxorubicin were evaluated on MC-38 colon cancer cells. Furthermore, doxorubicin release was assessed and contrasted with non-invasive in vivo whole body fluorescence imaging. (3) Results: 25% P407 had favorable gelation properties with pore sizes of 30–180 µm. P407 micelles were approximately 5 nm in size. Doxorubicin was fully released in vitro from 25% P407 hydrogel within 120 h. Furthermore, P407 micelles strongly enhanced the anti-neoplastic effects of doxorubicin on MC-38 cells. In vivo fluorescence imaging revealed that hydrogels retained fluorescence signals at the injection site for 168 h. (4) Conclusions: non-invasive imaging showed how P407 gels retained drug at the injection site. Doxorubicin P407 micelles strongly enhanced the anti-tumor effects.
Collapse
|
10
|
Szwed M, Torgersen ML, Kumari RV, Yadava SK, Pust S, Iversen TG, Skotland T, Giri J, Sandvig K. Biological response and cytotoxicity induced by lipid nanocapsules. J Nanobiotechnology 2020; 18:5. [PMID: 31907052 PMCID: PMC6943936 DOI: 10.1186/s12951-019-0567-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lipid nanocapsules (LNCs) are promising vehicles for drug delivery. However, since not much was known about cellular toxicity of these nanoparticles in themselves, we have here investigated the mechanisms involved in LNC-induced intoxication of the three breast cancer cell lines MCF-7, MDA-MD-231 and MDA-MB-468. The LNCs used were made of Labrafac™ Lipophile WL1349, Lipoid® S75 and Solutol® HS15. Results High resolution SIM microscopy showed that the DiD-labeled LNCs ended up in lysosomes close to the membrane. Empty LNCs, i.e. without encapsulated drug, induced not only increased lysosomal pH, but also acidification of the cytosol and a rapid inhibition of protein synthesis. The cytotoxicity of the LNCs were measured for up to 72 h of incubation using the MTT assay and ATP measurements in all three cell lines, and revealed that MDA-MB-468 was the most sensitive cell line and MCF-7 the least sensitive cell line to these LNCs. The LNCs induced generation of reactive free oxygen species and lipid peroxidation. Experiments with knock-down of kinases in the near-haploid cell line HAP1 indicated that the kinase HRI is essential for the observed phosphorylation of eIF2α. Nrf2 and ATF4 seem to play a protective role against the LNCs in MDA-MB-231 cells, as knock-down of these factors sensitizes the cells to the LNCs. This is in contrast to MCF-7 cells where the knock-down of these factors had a minor effect on the toxicity of the LNCs. Inhibitors of ferroptosis provided a large protection against LNC toxicity in MDA-MB-231 cells, but not in MCF-7 cells. Conclusions High doses of LNCs showed a different degree of toxicity on the three cell lines studied, i.e. MCF-7, MDA-MD-231 and MDA-MB-468 and affected signaling factors and the cell fate differently in these cell lines.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Remya Valsala Kumari
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway. .,Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Zhang K, Zhou L, Chen F, Chen Y, Luo X. Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. J Control Release 2019; 315:197-205. [PMID: 31669210 DOI: 10.1016/j.jconrel.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
|
12
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
13
|
Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-Based Nanocarriers for Lymphatic Transportation. AAPS PharmSciTech 2019; 20:83. [PMID: 30673895 DOI: 10.1208/s12249-019-1293-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of any drug is dependent on to various factors like drug solubility, bioavailability, selection of appropriate delivery system, and proper route of administration. The oral route for the delivery of drugs is undoubtedly the most convenient, safest and has been widely used from past few decades for the effective delivery of drugs. However, despite of the numerous advantages that oral route offers, it often suffers certain limitations like low bioavailability due to poor water solubility as well as poor permeability of drugs, degradation of the drug in the physiological pH of the stomach, hepatic first-pass metabolism, etc. The researchers have been continuously working extensively to surmount and address appropriately the inherent drawbacks of the oral drug delivery. The constant and continuous efforts have led to the development of lipid-based nano drug delivery system to overcome the aforesaid associated challenges of the oral delivery through lymphatic transportation. The use of lymphatic route has demonstrated its critical and crucial role in overcoming the problem associated and related to low bioavailability of poorly water-soluble and poorly permeable drugs by bypassing intestinal absorption and possible first-pass metabolism. The current review summarizes the bonafide perks of using the lipid-based nanocarriers for the delivery of drugs using the lymphatic route. The lipid-based nanocarriers seem to be a promising delivery system which can be optimized and further explored as an alternative to the conventional dosage forms for the enhancement of oral bioavailability of drugs, with better patient compliance, minimum side effect, and improved the overall quality of life.
Collapse
|
14
|
Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Nanoparticles in detection and treatment of lymph node metastases: an update from the point of view of administration routes. Expert Opin Drug Deliv 2018; 15:1117-1126. [DOI: 10.1080/17425247.2018.1537260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Antonella Obinu
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Marcello Maestri
- IRCCS Policlinico San Matteo Foundation and Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
15
|
Yi Q, Ma J, Kang K, Gu Z. Bioreducible nanocapsules for folic acid-assisted targeting and effective tumor-specific chemotherapy. Int J Nanomedicine 2018; 13:653-667. [PMID: 29440892 PMCID: PMC5798557 DOI: 10.2147/ijn.s149458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Increasing demands in precise control over delivery and functionalization of therapeutic agents for tumor-specific chemotherapy have led to a rapid development in nanocarriers. Herein, we report a nanocapsule (NC) system for tumor-oriented drug delivery and effective tumor therapy. MATERIALS AND METHODS Functionalized hyaluronan is utilized to build up the NC shells, in which bioreduction cleavable sites, targeting ligand folic acid (FA), and zwitterionic tentacles are integrated. RESULTS The hollow NCs obtained (~50 nm in diameter) showed well-defined spherical shell structures with a shell thickness of ~8 nm. These specially designed NCs (doxorubicin [DOX]/FA-Z-NCs) with high drug encapsulation content exhibited good biocompatibility in vitro and fast intracellular drug release behavior mediated by intracellular glutathione. CONCLUSION Cellular uptake tests demonstrated rapid uptake of these functionalized NCs and effective escape from endosomes. Antitumor efficacy of the DOX/FA-Z-NCs was confirmed by the significant tumor growth inhibition effect as well as greatly reduced side effects, in contrast with those of the free drug DOX hydrochloride.
Collapse
Affiliation(s)
- Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
| | - Jin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
16
|
Bastiancich C, Bianco J, Vanvarenberg K, Ucakar B, Joudiou N, Gallez B, Bastiat G, Lagarce F, Préat V, Danhier F. Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J Control Release 2017; 264:45-54. [DOI: 10.1016/j.jconrel.2017.08.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022]
|
17
|
Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Rossemond Ndombina GA, Benoit JP, Bastiat G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J Control Release 2017; 266:140-155. [PMID: 28951319 DOI: 10.1016/j.jconrel.2017.09.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/02/2023]
Abstract
The combination of pharmaceutical technologies can be a wise choice for developing innovative therapeutic strategies. The association of nanocarriers and gels provides new therapeutic possibilities due to the combined properties of the two technologies. Gels support the nanocarriers, localize their administration to the target tissue, and sustain their release. In addition to the properties afforded by the gel, nanocarriers can provide additional drug sustained release or different pharmacokinetic and biodistribution profiles than those from nanocarriers administered by the conventional route to improve the drug therapeutic index. This review focuses on recent (over the last ten years) in vivo data showing the advances and advantages of using nanocarrier-loaded gels. Liposomes, micelles, liquid and solid lipid nanocapsules, polymeric nanoparticles, dendrimers, and fullerenes are all nanotechnologies which have been recently assessed for medical applications, such as cancer therapy, the treatment of cutaneous and infectious diseases, anesthesia, the administration of antidepressants, and the treatment of unexpected diseases, such as alopecia.
Collapse
Affiliation(s)
- Marion Pitorre
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Henri Gondé
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Clotilde Haury
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Marwa Messous
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Jérémie Poilane
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - David Boudaud
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Erdem Kanber
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | | | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Guillaume Bastiat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France.
| |
Collapse
|
18
|
Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L, Valpione S, Bastiat G, Mandruzzato S, Bronte V, Marigo I, Benoit JP. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 2016; 96:47-62. [PMID: 27135716 DOI: 10.1016/j.biomaterials.2016.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.
Collapse
Affiliation(s)
- Maria Stella Sasso
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Giovanna Lollo
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - Marion Pitorre
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - Samantha Solito
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Laura Pinton
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Sara Valpione
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Guillaume Bastiat
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - Susanna Mandruzzato
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University of Verona, 37135 Verona, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy.
| | - Jean-Pierre Benoit
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France.
| |
Collapse
|
19
|
Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release 2016; 225:283-93. [DOI: 10.1016/j.jconrel.2016.01.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022]
|
20
|
Rosière R, Van Woensel M, Mathieu V, Langer I, Mathivet T, Vermeersch M, Amighi K, Wauthoz N. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm 2016; 501:148-59. [PMID: 26850313 DOI: 10.1016/j.ijpharm.2016.01.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
Despite the direct access to the lung offered by the inhalation route, drug penetration into lung tumors could remain an important issue. In this study, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD) micelles were developed as an effective pulmonary drug delivery system to reach and penetrate lung tumors and cancer cells. The F-PEG-HMD micelles were able to enter HeLa and M109-HiFR, two folate receptor-expressing cancer cell lines, in vitro, and in vivo after administration by inhalation to orthotopic M109-HiFR lung tumor grafted mice. Paclitaxel-loaded F-PEG-HMD micelles characterized in PBS by a Z-average diameter of ∼50 nm and a zeta potential of ∼-4 mV were prepared with an encapsulation efficiency of ∼100%. The loaded micelles reduced HeLa and M109-HiFR cell growth, with half maximal inhibitory concentrations of 37 and 150 nM, respectively. Dry powders embedding the paclitaxel-loaded F-PEG-HMD micelles were developed by spray-drying. In vitro, good deposition profiles were obtained, with a fine particle fraction of up to 50% and good ability to re-disperse the micelles in physiological buffer. A polymeric micelle-based dry powder without paclitaxel was well-tolerated in vivo, as assessed in healthy mice by determination of total protein content, cell count, and cytokine IL-1β, IL-6, and TNF-α concentrations in bronchoalveolar lavage fluids.
Collapse
Affiliation(s)
- Rémi Rosière
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Matthias Van Woensel
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, Laboratory of Pediatric Immunology, KULeuven, Leuven, Belgium
| | - Véronique Mathieu
- Laboratoire de Cancérologie et Toxicologie Expérimentale, Faculté de Pharmacie, ULB, Brussels, Belgium
| | - Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), ULB, Brussels, Belgium
| | | | | | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|