1
|
Chen X, Duan M, Chang Y, Ye M, Wang Z, Wu S, Duan N. Assembly of a multivalent aptamer for efficient inhibition of thermostable direct hemolysin toxicity induced by Vibrio parahaemolyticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135452. [PMID: 39121740 DOI: 10.1016/j.jhazmat.2024.135452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Thermostable direct hemolysin (TDH) is a key virulence factor of Vibrio parahaemolyticus, capable of causing seafood-mediated outbreaks of gastroenteritis, posing a threat to the aquatic environment and global public health. In the present study, we explored a multivalent aptamer-mediated inhibition strategy to mitigate TDH toxicity. Based on the characteristic structure of TDH, a stable multivalent aptamer, Ap3-5, was rationally designed by truncation, key fragment evolution, and end fixation. Ap3-5 exhibited strong affinity (Kd=39.24 nM), and thermal (Tm=57.6 °C) and enzymatic stability. In silico studies also revealed that Ap3-5 occupied more active sites of TDH and covered its central pore, indicating its potential as a blocking agent for inhibiting TDH toxicity. In the hemolysis assay, Ap3-5 significantly suppressed the hemolytic effect of TDH. A cellular study revealed a substantial (∼80 %) reduction in TDH cytotoxicity. Supporting these findings, in vivo trials confirmed the inhibitory action of Ap3-5 on both the acute and intestinal toxicity of TDH. Overall, benefiting from the strong binding affinity, high stability, and multisite occupation of the multivalent aptamer with TDH, Ap3-5 displayed robust potential against TDH toxicity by inhibiting membrane pore formation, providing a new approach for alleviating bacterial infections.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Nuntawong P, Senoo A, Tayama Y, Caaveiro JMM, Morimoto S, Sakamoto S. An aptamer-based fluorometric method for the rapid berberine detection in Kampo medicines. Anal Chim Acta 2024; 1318:342930. [PMID: 39067935 DOI: 10.1016/j.aca.2024.342930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Berberine (BBR), a key component in Kampo medicine, is a cationic benzylisoquinoline alkaloid whose detection plays a critical role in the quality control of these traditional remedies. Traditional methods for detecting BBR often involve complex procedures, which can be time-consuming and costly. To address this challenge, our study focuses on developing a simpler, faster, and more efficient detection method for BBR in Kampo medicine formulations. RESULTS We successfully developed a rapid fluorometric detection method for BBR using colloidal gold nanoparticle-based systematic evolution of ligands by exponential enrichment (GOLD-SELEX). Initially, specific single-stranded DNA (ssDNA) sequences were selected for their ability to enhance BBR's fluorescence intensity. The optimal ssDNA sequence, identified as BBR38, was further truncated to produce BBR38S, a stem-loop ssDNA that improved fluorescence upon interaction with BBR. To further enhance the fluorescence, the BBR38S aptamer underwent additional modifications, including stem truncation and nucleotide mutations, resulting in the higher fluorescence variant BBR38S-3 A10C. The final product, TetBBR38S, a tetramer version of BBR38S-3 A10C, exhibited a linear detection range of 0.780-50.0 μg mL-1 and a limit of detection of 0.369 μg mL-1. The assay demonstrated sufficient selectivity and was successfully applied to analyze 128 different Kampo medicine formulations, accurately detecting BBR content with high precision. SIGNIFICANCE This study represents an advancement in Kampo medicine research, marking the first successful application of an aptamer-based approach for BBR detection in complex matrices. The developed method is not only simple and rapid (with a detection time of 5 min) but also cost-effective, which is crucial for widespread application.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yorie Tayama
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jose M M Caaveiro
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Kowalska AA, Nowicka AB, Szymborski T, Cywiński P, Kamińska A. Determination of L-selectin in blood plasma using DNA aptamer-based surface-enhanced Raman spectroscopy assay. Anal Bioanal Chem 2024; 416:1189-1197. [PMID: 38191826 DOI: 10.1007/s00216-023-05110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
In the human body, tumor cell occurrence can be indirectly monitored using the L-selectin concentration in the blood, since selectin ligands are present on the surface of tumor cells, and with tumor progression, a decrease in L-selectin levels can be expected and observed. In this study, we present a selective DNA-based surface-enhanced Raman spectroscopy (SERS) assay for the detection and determination of L-selectin in biological samples. Two calibration curves (linear in the 40-190 ng mL-1 region and exponential in the 40-500 ng mL-1 region) are fitted to the obtained SERS experimental data, i.e., the ratio of I732/I1334 band intensities (LOQ = 46 ng mL-1). Calculated determination coefficients are found to be R2 = 0.997 for the linear region of the calibration curve and R2 = 0.977 for the exponential region. Moreover, we demonstrate very good selectivity of the assay even in the presence of P- and E-selectin in a sample containing L-selectin. With our SERS assay, the L-selectin concentration in biological samples can be estimated directly from the calibration curves.
Collapse
Affiliation(s)
- Aneta Aniela Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Cywiński
- Lukasiewicz Institute of Microelectronics and Photonics, al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
4
|
Animesh S, Singh YD. A Comprehensive Study on Aptasensors For Cancer Diagnosis. Curr Pharm Biotechnol 2021; 22:1069-1084. [PMID: 32957883 DOI: 10.2174/1389201021999200918152721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yengkhom D Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| |
Collapse
|
5
|
Mashayekhi K, Sankian M, Haftcheshmeh SM, Taheri RA, Hassanpour K, Farnoosh G. A cross-linked anti-TNF-α aptamer for neutralization of TNF-α-induced cutaneous Shwartzman phenomenon: A simple and novel approach for improving aptamers' affinity and efficiency. Biotechnol Prog 2021; 37:e3191. [PMID: 34218531 DOI: 10.1002/btpr.3191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022]
Abstract
To increase the efficiency of aptamers to their targets, a simple and novel method has been developed based on aptamer oligomerization. To this purpose, previously anti-human TNF-α aptamer named T1-T4 was trimerized through a trimethyl aconitate core for neutralization of in vitro and in vivo of TNF-α. At first, 54 mer T1-T4 aptamers with 5'-NH2 groups were covalently coupled to three ester residues in the trimethyl aconitate. In vitro activity of novel anti-TNF-α aptamer and its dissociation constant (Kd ) was done using the L929 cell cytotoxicity assay. In vivo anti-TNF-α activity of new oligomerized aptamer was assessed in a mouse model of cutaneous Shwartzman. Anchoring of three T1-T4 aptamers to trimethyl aconitate substituent results in formation of the 162 mer fragment, which was well revealed by gel electrophoresis. In vitro study indicated that the trimerization of T1-T4 aptamer significantly improved its anti-TNF-α activity compared to non-modified aptamers (P < 0.0001) from 40% to 60%. The determination of Kd showed that trimerization could effectively enhance Kd of aptamer from 67 nM to 36 nM. In vivo study showed that trimer aptamer markedly reduced mean scar size from 15.2 ± 1.2 mm to 1.6 ± 0.1 mm (P < 0.0001), which prevent the formation of skin lesions. In vitro and in vivo studies indicate that trimerization of anti-TNF-α aptamer with a novel approach could improve the anti-TNF-α activity and therapeutic efficacy. According to our findings, a new anti-TNF-α aptamer described here could be considered an appropriate therapeutic agent in treating several inflammatory diseases.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojtaba Sankian
- Immuno-Biochemistry lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Hassanpour
- Medical School, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals (Basel) 2021; 14:ph14040349. [PMID: 33918832 PMCID: PMC8068899 DOI: 10.3390/ph14040349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional spheroids of non-malignant MCF10A and malignant SKBR3 breast cells were used for subsequent 3D Cell-SELEX to generate aptamers for specific binding and treatment of breast cancer cells. Using 3D Cell-SELEX combined with Next-Generation Sequencing and bioinformatics, ten abundant aptamer families with specific structures were identified that selectively bind to SKBR3, and not to MCF10A cells. Multivalent aptamer polymers were synthesized by co-polymerization and analyzed for binding performance as well as therapeutic efficacy. Binding performance was determined by confocal fluorescence imaging and revealed specific binding and efficient internalization of aptamer polymers into SKBR3 spheroids. For therapeutic purposes, DNA sequences that intercalate the cytotoxic drug doxorubicin were co-polymerized into the aptamer polymers. Viability tests show that the drug-loaded polymers are specific and effective in killing SKBR3 breast cancer cells. Thus, the 3D-selected aptamers enhanced the specificity of doxorubicin against malignant over non-malignant breast cells. The innovative modular DNA aptamer platform based on 3D Cell SELEX and polymer multivalency holds great promise for diagnostics and treatment of breast cancer.
Collapse
|
7
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
8
|
Manochehry S, McConnell EM, Li Y. Unraveling Determinants of Affinity Enhancement in Dimeric Aptamers for a Dimeric Protein. Sci Rep 2019; 9:17824. [PMID: 31780794 PMCID: PMC6883073 DOI: 10.1038/s41598-019-54005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022] Open
Abstract
High-affinity aptamers can be derived de novo by using stringent conditions in SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments or can be engineered post SELEX via dimerization of selected aptamers. Using electrophoretic mobility shift assays, we studied a series of heterodimeric and homodimeric aptamers, constructed from two DNA aptamers with distinct primary sequences and secondary structures, previously isolated for VEGF-165, a homodimeric protein. We investigated four factors envisaged to impact the affinity of a dimeric aptamer to a dimeric protein: (1) length of the linker between two aptamer domains, (2) linking orientation, (3) binding-site compatibility of two component aptamers in a heterodimeric aptamer, and (4) steric acceptability of the two identical aptamers in a homodimeric aptamer. All heterodimeric aptamers for VEGF-165 were found to exhibit monomeric aptamer-like affinity and the lack of affinity enhancement was attributed to binding-site overlap by the constituent aptamers. The best homodimeric aptamer showed 2.8-fold better affinity than its monomeric unit (Kd = 13.6 ± 2.7 nM compared to 37.9 ± 14 nM), however the barrier to further affinity enhancement was ascribed to steric interference of the constituent aptamers. Our findings point to the need to consider the issues of binding-site compatibility and spatial requirement of aptamers for the development of dimeric aptamers capable of bivalent recognition. Thus, determinants highlighted herein should be assessed in future multimerization efforts.
Collapse
Affiliation(s)
- Sepehr Manochehry
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada. .,Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
9
|
Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography. SENSORS 2017; 17:s17020226. [PMID: 28125045 PMCID: PMC5336075 DOI: 10.3390/s17020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/20/2022]
Abstract
l-selectin is a transmembrane receptor expressed on the surface of white blood cells and responsible for the tethering of leukocytes to vascular endothelial cells. This initial intercellular contact is the first step of the complex leukocyte adhesion cascade that ultimately permits extravasation of leukocytes into the surrounding tissue in case of inflammation. Here we show the binding of a soluble histidine tagged l-selectin to a recently described shortened variant of an l-selectin specific DNA aptamer with surface plasmon resonance. The high specificity of this aptamer in combination with its high binding affinity of ~12 nM, allows for a single-step protein purification from cell culture supernatants. In comparison to the well-established Ni-NTA based technology, aptamer affinity chromatography (AAC) was easier to establish, resulted in a 3.6-fold higher protein yield, and increased protein purity. Moreover, due to target specificity, the DNA aptamer facilitated binding studies directly from cell culture supernatant, a helpful characteristic to quickly monitor successful expression of biological active l-selectin.
Collapse
|
10
|
Vorobyeva M, Vorobjev P, Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications. Molecules 2016; 21:molecules21121613. [PMID: 27898020 PMCID: PMC6274531 DOI: 10.3390/molecules21121613] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid aptamers generated through an in vitro selection are currently extensively applied as very valuable biomolecular tools thanks to their prominent advantages. Diversity of spatial structures, ease of production through chemical synthesis and a large variety of chemical modifications make aptamers convenient building blocks for the generation of multifunctional constructs. An opportunity to combine different aptamer functionalities with other molecules of interest such as reporter groups, nanoparticles, chemotherapeutic agents, siRNA or antisense oligonucleotides provides a widest range of applications of multivalent aptamers. The present review summarizes approaches to the design of multivalent aptamers, various examples of multifunctional constructs and the prospects of employing them as components of biosensors, probes for affinity capture, tools for cell research and potential therapeutic candidates.
Collapse
Affiliation(s)
- Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| |
Collapse
|