1
|
Marchianò S, Biagioli M, Bordoni M, Morretta E, Di Giorgio C, Vellecco V, Roselli R, Bellini R, Massa C, Cari L, Urbani G, Ricci P, Monti MC, Giordano A, Brancaleone V, Bucci M, Zampella A, Distrutti E, Cieri E, Cirino G, Fiorucci S. Defective Bile Acid Signaling Promotes Vascular Dysfunction, Supporting a Role for G-Protein Bile Acid Receptor 1/Farnesoid X Receptor Agonism and Statins in the Treatment of Nonalcoholic Fatty Liver Disease. J Am Heart Assoc 2023; 12:e031241. [PMID: 37996988 PMCID: PMC10727350 DOI: 10.1161/jaha.123.031241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Patients with nonalcoholic fatty liver disease are at increased risk to develop atherosclerotic cardiovascular diseases. FXR and GPBAR1 are 2 bile acid-activated receptors exploited in the treatment of nonalcoholic fatty liver disease: whether dual GPBAR1/FXR agonists synergize with statins in the treatment of the liver and cardiovascular components of nonalcoholic fatty liver disease is unknown. METHODS AND RESULTS Investigations of human aortic samples obtained from patients who underwent surgery for aortic aneurysms and Gpbar1-/-, Fxr-/-, and dual Gpbar1-/-Fxr-/- mice demonstrated that GPBAR1 and FXR are expressed in the aortic wall and regulate endothelial cell/macrophage interactions. The expression of GPBAR1 in the human endothelium correlated with the expression of inflammatory biomarkers. Mice lacking Fxr and Gpbar1-/-/Fxr-/- display hypotension and aortic inflammation, along with altered intestinal permeability that deteriorates with age, and severe dysbiosis, along with dysregulated bile acid synthesis. Vasomotor activities of aortic rings were altered by Gpbar1 and Fxr gene ablation. In apolipoprotein E-/- and wild-type mice, BAR502, a dual GPBAR1/FXR agonist, alone or in combination with atorvastatin, reduced cholesterol and low-density lipoprotein plasma levels, mitigated the development of liver steatosis and aortic plaque formation, and shifted the polarization of circulating leukocytes toward an anti-inflammatory phenotype. BAR502/atorvastatin reversed intestinal dysbiosis and dysregulated bile acid synthesis, promoting a shift of bile acid pool composition toward FXR antagonists and GPBAR1 agonists. CONCLUSIONS FXR and GPBAR1 maintain intestinal, liver, and cardiovascular homeostasis, and their therapeutic targeting with a dual GPBAR1/FXR ligand and atorvastatin holds potential in the treatment of liver and cardiovascular components of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Silvia Marchianò
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Michele Biagioli
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Martina Bordoni
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Elva Morretta
- Department of PharmacyUniversity of SalernoSalernoItaly
| | | | | | | | - Rachele Bellini
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmen Massa
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Luigi Cari
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Ginevra Urbani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Patrizia Ricci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | | | | | | | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Enrico Cieri
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Giuseppe Cirino
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Stefano Fiorucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| |
Collapse
|
2
|
Biagioli M, Marchianò S, Di Giorgio C, Bordoni M, Urbani G, Bellini R, Massa C, Sami Ullah Khan R, Roselli R, Chiara Monti M, Morretta E, Giordano A, Vellecco V, Bucci M, Jilani Iqbal A, Saviano A, Ab Mansour A, Ricci P, Distrutti E, Zampella A, Cieri E, Cirino G, Fiorucci S. Activation of GPBAR1 attenuates vascular inflammation and atherosclerosis in a mouse model of NAFLD-related cardiovascular disease. Biochem Pharmacol 2023; 218:115900. [PMID: 37926268 DOI: 10.1016/j.bcp.2023.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
While patients with nonalcoholic fatty liver disease (NAFLD) are at increased risk to develop clinically meaningful cardiovascular diseases (CVD), there are no approved drug designed to target the liver and CVD component of NAFLD. GPBAR1, also known as TGR5, is a G protein coupled receptor for secondary bile acids. In this study we have investigated the effect of GPBAR1 activation by BAR501, a selective GPBAR1 agonist, in Apolipoprotein E deficient (ApoE-/-) mice fed a high fat diet and fructose (Western diet), a validated model of NAFLD-associated atherosclerosis. Using aortic samples from patients who underwent surgery for abdominal aneurism, and ex vivo experiments with endothelial cells and human macrophages, we were able to co-localize the expression of GPBAR1 in CD14+ and PECAM1+ cells. Similar findings were observed in the aortic plaques from ApoE-/- mice. Treating ApoE-/- mice with BAR501, 30 mg/kg for 14 weeks, attenuated the body weight gain while ameliorated the insulin sensitivity by increasing the plasma concentrations of GLP-1 and FGF15. Activation of GPBAR1 reduced the aorta thickness and severity of atherosclerotic lesions and decreased the amount of plaques macrophages. Treating ApoE-/- mice reshaped the aortic transcriptome promoting the expression of anti-inflammatory genes, including IL-10, as also confirmed by tSNE analysis of spleen-derived macrophages. Feeding ApoE-/- mice with BAR501 redirected the bile acid synthesis and the composition of the intestinal microbiota. In conclusion, GPBAR1 agonism attenuates systemic inflammation and improve metabolic profile in a genetic/dietetic model of atherosclerosis. BAR501 might be of utility in the treatment for NAFLD-related CVD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Antonino Giordano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anella Saviano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adel Ab Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Enrico Cieri
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
3
|
Xu W, Xu N, Zhang M, Wang Y, Ling G, Yuan Y, Zhang P. Nanotraps based on multifunctional materials for trapping and enrichment. Acta Biomater 2022; 138:57-72. [PMID: 34492372 DOI: 10.1016/j.actbio.2021.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Many biomarkers for early diagnosis of cancer and other diseases are difficult to detect because they often exist in body fluids in very low concentrations and are masked by high-abundance proteins such as albumin and immunoglobulins. At the same time, water pollution is one of the most serious environmental problems, but the existing adsorption materials have many shortcomings such as slow kinetics, small adsorption capacity and low adsorption efficiency. Nanotraps, mixed with gases or liquids, can capture and concentrate target substances, such as biomolecules, metal ions and oxoanions. Using nanotraps is a versatile sample pre-processing approach and it can improve the sensitivity of downstream analysis techniques. Herein, the preparations and applications of different types of nanotraps are mainly introduced. What's more, the shortcomings of using nanotraps in practical applications are also discussed. Using nanotraps is a promising sample pre-processing technology, which is of great significance for biomarkers discovery, diseases diagnosis, sewage purification and valuable ions recovery. STATEMENT OF SIGNIFICANCE: This review collates and summarizes the preparations and applications of different types of nanotraps, and discusses the shortcomings of using nanotraps in practical applications. Nanotraps, mixed with gases or liquids, can capture and concentrate target materials, such as biomolecules, metal ions and oxoanions. Using nanotraps is a versatile sample pre-processing approach and it can improve the sensitivity of downstream analysis techniques. During the COVID-19 pandemic, hydrogel nanotraps were successfully utilized for RT-PCR analysis with the FDA Emergency Used Authorization for COVID-19. Using nanotraps is a promising sample pre-processing technology, which is of great significance for biomarkers discovery, diseases diagnosis, sewage purification and valuable ions recovery.
Collapse
Affiliation(s)
- Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yue Yuan
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Guryanov I, Korzhikov-Vlakh V, Bhattacharya M, Biondi B, Masiero G, Formaggio F, Tennikova T, Urtti A. Conformationally Constrained Peptides with High Affinity to the Vascular Endothelial Growth Factor. J Med Chem 2021; 64:10900-10907. [PMID: 34269584 DOI: 10.1021/acs.jmedchem.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The design of efficient vascular endothelial growth factor (VEGF) inhibitors is a high-priority research area aimed at the treatment of pathological angiogenesis. Among other compounds, v114* has been identified as a potent VEGF-binding peptide. In order to improve the affinity to VEGF, we built a conformational constrain in its structure. To this aim, Cα-tetrasubstituted amino acid Aib was introduced into the N-terminal tail, peptide loop, or C-terminal helix. NMR studies confirmed the stabilization of the helical conformation in proximity to the Aib residue. We found that the induction of the N-terminal helical structure or stabilization of the C-terminal helix can noticeably increase the peptide affinity to the VEGF. These peptides efficiently inhibited VEGF-stimulated cell proliferation as well. The insertion of the non-proteinogenic Aib residue significantly enhanced the stability of the peptides in the vitreous environment. Thus, these Aib-containing peptides are promising candidates for the design of VEGF inhibitors with improved properties.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Madhushree Bhattacharya
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, Helsinki 00014, Finland
| | - Barbara Biondi
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Giulia Masiero
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, Peterhof, St. Petersburg 198504, Russia
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, Helsinki 00014, Finland.,School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70211, Finland
| |
Collapse
|
5
|
Effect of Poly(L-lysine) and Heparin Coatings on the Surface of Polyester-Based Particles on Prednisolone Release and Biocompatibility. Pharmaceutics 2021; 13:pharmaceutics13060801. [PMID: 34072016 PMCID: PMC8229182 DOI: 10.3390/pharmaceutics13060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations.
Collapse
|
6
|
Polymer Particles Bearing Recombinant LEL CD81 as Trapping Systems for Hepatitis C Virus. Pharmaceutics 2021; 13:pharmaceutics13050672. [PMID: 34067169 PMCID: PMC8151308 DOI: 10.3390/pharmaceutics13050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C is one of the most common social diseases in the world. The improvements in both the early diagnostics of the hepatitis C and the treatment of acute viremia caused by hepatitis C virus are undoubtedly an urgent task. In present work, we offered the micro- and nanotraps for the capturing of HCV. As a capturing moiety, we designed and synthesized in E. coli a fusion protein consisting of large extracellular loop of CD81 receptor and streptavidin as spacing part. The obtained protein has been immobilized on the surface of PLA-based micro- and nanoparticles. The developed trapping systems were characterized in terms of their physico-chemical properties. In order to illustrate the ability of developed micro- and nanotraps to bind HCV, E2 core protein of HCV was synthesized as a fusion protein with GFP. Interaction of E2 protein and hepatitis C virus-mimicking particles with the developed trapping systems were testified by several methods.
Collapse
|
7
|
Meng Q, Tian R, Long H, Wu X, Lai J, Zharkova O, Wang J, Chen X, Rao L. Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVID-19 Cytokine Storm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100012. [PMID: 33837596 PMCID: PMC8250356 DOI: 10.1002/adma.202100012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/21/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great impact on the global economy and people's daily life. In the clinic, most patients with COVID-19 show none or mild symptoms, while approximately 20% of them develop severe pneumonia, multiple organ failure, or septic shock due to infection-induced cytokine release syndrome (the so-called "cytokine storm"). Neutralizing antibodies targeting inflammatory cytokines may potentially curb immunopathology caused by COVID-19; however, the complexity of cytokine interactions and the multiplicity of cytokine targets make attenuating the cytokine storm challenging. Nonspecific in vivo biodistribution and dose-limiting side effects further limit the broad application of those free antibodies. Recent advances in biomaterials and nanotechnology have offered many promising opportunities for infectious and inflammatory diseases. Here, potential mechanisms of COVID-19 cytokine storm are first discussed, and relevant therapeutic strategies and ongoing clinical trials are then reviewed. Furthermore, recent research involving emerging biomaterials for improving antibody-based and broad-spectrum cytokine neutralization is summarized. It is anticipated that this work will provide insights on the development of novel therapeutics toward efficacious management of COVID-19 cytokine storm and other inflammatory diseases.
Collapse
Affiliation(s)
- Qian‐Fang Meng
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
- School of Physics and TechnologyWuhan UniversityWuhan430072China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Haiyi Long
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
- Department of Medical UltrasoundThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510080China
| | - Xianjia Wu
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
- School of Physics and TechnologyWuhan UniversityWuhan430072China
| | - Jialin Lai
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| | - Olga Zharkova
- Department of Surgery and Cardiovascular Research InstituteYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Jiong‐Wei Wang
- Department of Surgery and Cardiovascular Research InstituteYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic RadiologyChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore117597Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| |
Collapse
|
8
|
Pisani A, Pompa PP, Bardi G. Potential Applications of Nanomaterials to Quench the Cytokine Storm in Coronavirus Disease 19. Front Bioeng Biotechnol 2020; 8:906. [PMID: 32974295 PMCID: PMC7466734 DOI: 10.3389/fbioe.2020.00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
9
|
Kritchenkov IS, Zhukovsky DD, Mohamed A, Korzhikov-Vlakh VA, Tennikova TB, Lavrentieva A, Scheper T, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. Functionalized Pt(II) and Ir(III) NIR Emitters and Their Covalent Conjugates with Polymer-Based Nanocarriers. Bioconjug Chem 2020; 31:1327-1343. [PMID: 32223218 DOI: 10.1021/acs.bioconjchem.0c00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two NIR-emitting platinum [Pt(N^N^C)(phosphine)] and iridium [Ir(N^C)2(N^N)]+ complexes containing reactive succinimide groups were synthesized and characterized with spectroscopic methods (N^N^C, 1-phenyl-3-(pyridin-2-yl)benzo[4,5]imidazo[1,2-a]pyrazine, N^C, 6-(2-benzothienyl)phenanthridine, phosphine-3-(diphenylphosphaneyl)propanoic acid N-hydroxysuccinimide ether, and N^N, 4-oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid N-hydroxysuccinimide ether). Their photophysics were carefully studied and analyzed using time-dependent density functional theory calculations. These complexes were used to prepare luminescent micro- and nanoparticles with the "core-shell" morphology, where the core consisted of biodegradable polymers of different hydrophobicity, namely, poly(d,l-lactic acid), poly(ε-caprolactone), and poly(ω-pentadecalactone), whereas the shell was formed by covalent conjugation with poly(l-lysine) covalently labeled with the platinum and iridium emitters. The surface of the species was further modified with heparin to reverse their charge from positive to negative values. The microparticles' size determined with dynamic laser scanning varies considerably from 720 to 1480 nm, but the nanoparticles' diameter falls in a rather narrow range, 210-230 nm. The species with a poly(l-lysine) shell display a high positive (>30 mV) zeta-potential that makes them essentially stable in aqueous media. Inversion of the surface charge to a negative value with the heparin cover did not deteriorate the species' stability. The iridium- and platinum-containing particles displayed emissions the spectral patterns of which were essentially similar to those of unconjugated complexes, which indicate retention of the chromophore nature upon binding to the polymer and further immobilization onto polyester micro- and nanoparticles for drug delivery. The obtained particles were tested to determine their ability to penetrate into different cells types: cancer cells, stem cells, and fibroblasts. It was found that all types of particles could effectively penetrate into all cells types under investigation. Nanoparticles were shown to penetrate into the cells more effectively than microparticles. However, positively charged nanoparticles covered with poly(l-lysine) seem to interact with negatively charged proteins in the medium and enter the inner part of the cells less effectively than nanoparticles covered with poly(l-lysine)/heparin. In the case of microparticles, the species with positive zeta-potentials were more readily up-taken by the cells than those with negative values.
Collapse
Affiliation(s)
- Ilya S Kritchenkov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Daniil D Zhukovsky
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Abdelrahman Mohamed
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia.,Faculty of Science, Chemistry Department, Beni-Suef University, 62511 Beni-Suef, Egypt
| | | | - Tatiana B Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | | | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University, 30167 Hannover, Germany
| | - Vladimir V Pavlovskiy
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Vitaly V Porsev
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Robert A Evarestov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Sergey P Tunik
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| |
Collapse
|
10
|
Bolotin DS, Korzhikov-Vlakh V, Sinitsyna E, Yunusova SN, Suslonov VV, Shetnev A, Osipyan A, Krasavin M, Kukushkin VY. Biocompatible zinc(II) 8-(dihydroimidazolyl)quinoline complex and its catalytic application for synthesis of poly(L,L-lactide). J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Guryanov I, Real-Fernández F, Sabatino G, Prisco N, Korzhikov-Vlakh V, Biondi B, Papini AM, Korzhikova-Vlakh E, Rovero P, Tennikova T. Modeling interaction between gp120 HIV protein and CCR5 receptor. J Pept Sci 2019; 25:e3142. [PMID: 30680875 DOI: 10.1002/psc.3142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The study of the process of HIV entry into the host cell and the creation of biomimetic nanosystems that are able to selectively bind viral particles and proteins is a high priority research area for the development of novel diagnostic tools and treatment of HIV infection. Recently, we described multilayer nanoparticles (nanotraps) with heparin surface and cationic peptides comprising the N-terminal tail (Nt) and the second extracellular loop (ECL2) of CCR5 receptor, which could bind with high affinity some inflammatory chemokines, in particular, Rantes. Because of the similarity of the binding determinants in CCR5 structure, both for chemokines and gp120 HIV protein, here we expand this approach to the study of the interactions of these biomimetic nanosystems and their components with the peptide representing the V3 loop of the activated form of gp120. According to surface plasmon resonance results, a conformational rearrangement is involved in the process of V3 and CCR5 fragments binding. As in the case of Rantes, ECL2 peptide showed much higher affinity to V3 peptide than Nt (KD = 3.72 × 10-8 and 1.10 × 10-6 M, respectively). Heparin-covered nanoparticles bearing CCR5 peptides effectively bound V3 as well. The presence of both heparin and the peptides in the structure of the nanotraps was shown to be crucial for the interaction with the V3 loop. Thus, short cationic peptides ECL2 and Nt proved to be excellent candidates for the design of CCR5 receptor mimetics.
Collapse
Affiliation(s)
- I Guryanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - F Real-Fernández
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - G Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.,CNR Istituto di Biostrutture e Bioimmagini, 95126, Catania, Italy
| | - N Prisco
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, 50019, Sesto Fiorentino, Italy
| | - V Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - B Biondi
- CNR-ICB, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - A M Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, 95031, Cergy-Pontoise CEDEX, France
| | - E Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - P Rovero
- CNR Istituto di Biostrutture e Bioimmagini, 95126, Catania, Italy.,Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, 50019, Sesto Fiorentino, Italy
| | - T Tennikova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| |
Collapse
|
12
|
Churilov L, Korzhikov-Vlakh V, Sinitsyna E, Polyakov D, Darashkevich O, Poida M, Platonova G, Vinogradova T, Utekhin V, Zabolotnykh N, Zinserling V, Yablonsky P, Urtti A, Tennikova T. Enhanced Delivery of 4-Thioureidoiminomethylpyridinium Perchlorate in Tuberculosis Models with IgG Functionalized Poly(Lactic Acid)-Based Particles. Pharmaceutics 2018; 11:E2. [PMID: 30577686 PMCID: PMC6359407 DOI: 10.3390/pharmaceutics11010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
The compound 4-thioureidoiminomethylpyridinium perchlorate (perchlozone©) is a novel anti-tuberculosis drug that is active in multiple drug resistance cases, but the compound is hepatotoxic. To decrease the systemic load and to achieve targeting, we encapsulated the drug into poly(lactic acid)-based micro- (1100 nm) and nanoparticles (170 nm) that were modified with single-chain camel immunoglobulin G (IgG) for targeting. Both micro- and nanoparticles formed stable suspensions in saline solution at particle concentrations of 10⁻50 mg/mL. The formulations were injected intraperitoneally and intravenously into the mice with experimental tuberculosis. The survival of control animals was compared to that of mice which were treated with daily oral drug solution, single intraperitoneal administration of drug-loaded particles, and those treated both intravenously and intraperitoneally by drug-loaded particles modified with polyclonal camel IgGs. The distribution of particles in the organs of mice was analyzed with immunofluorescence and liquid chromatography/mass spectrometry. Morphological changes related to tuberculosis and drug toxicity were registered. Phagocytic macrophages internalized particles and transported them to the foci of tuberculosis in inner organs. Nanoparticle-based drug formulations, especially those with IgG, resulted in better survival and lower degree of lung manifestations than the other modes of treatment.
Collapse
Affiliation(s)
- Leonid Churilov
- Faculty of Medicine, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Ekaterina Sinitsyna
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi pr. V.O. 31, 199004 St. Petersburg, Russia.
| | - Dmitry Polyakov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Oleg Darashkevich
- Republican Center for Innovative and Technical Creativity, Slavinskogo str. 12, 220086 Minsk, Belarus.
| | - Mikhail Poida
- Faculty of Medicine, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Galina Platonova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi pr. V.O. 31, 199004 St. Petersburg, Russia.
| | - Tatiana Vinogradova
- St. Petersburg Research Institute of Phthisiopulmonology, Polytechnical str. 32, 194064 St. Petersburg, Russia.
| | - Vladimir Utekhin
- Faculty of Medicine, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Natalia Zabolotnykh
- St. Petersburg Research Institute of Phthisiopulmonology, Polytechnical str. 32, 194064 St. Petersburg, Russia.
| | - Vsevolod Zinserling
- Faculty of Medicine, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Peter Yablonsky
- Faculty of Medicine, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
- St. Petersburg Research Institute of Phthisiopulmonology, Polytechnical str. 32, 194064 St. Petersburg, Russia.
| | - Arto Urtti
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| | - Tatiana Tennikova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russia.
| |
Collapse
|