1
|
Luo Q, Teng X, Dai M, Yang J, Cheng W, Chen K, Zhou L. Global trends in the application of fluorescence imaging in pancreatic diseases: a bibliometric and knowledge graph analysis. Front Oncol 2024; 14:1383798. [PMID: 39099697 PMCID: PMC11294181 DOI: 10.3389/fonc.2024.1383798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Background In recent years, with the continuous development of fluorescence imaging technology, research on its application in pancreatic diseases has surged. This area is currently of high research interest and holds the potential to become a non-invasive and effective tool in the diagnosis and treatment of pancreatic diseases. The objective of this study is to explore the hotspots and trends in the field of fluorescence imaging technology applications in pancreatic diseases from 2003 to 2023 through bibliometric and visual analysis. Methods This study utilized the Web of Science (core collection) to identify publications related to the application of fluorescence imaging technology in pancreatic diseases from 2003 to 2023. Tools such as CiteSpace (V 6.2.R6), VOSviewer (v1.6.20), and R Studio (Bibliometrix: R-tool version 4.1.4) were employed to analyze various dimensions including publication count, countries, institutions, journals, authors, co-cited references, keywords, burst words, and references. Results A comprehensive analysis was conducted on 913 papers published from January 1, 2003, to December 1, 2023, on the application of fluorescence imaging technology in pancreatic diseases. The number of publications in this field has rapidly increased, with the United States being the central hub. The University of California, San Diego emerged as the most active institution. "Biomaterials" was identified as the most influential journal. Authors with the most publications and the highest average citations per article are Hoffman, Robert M. and Luiken, George A., respectively. Keywords such as pancreatic cancer, cancer, expression, indocyanine green, and nanoparticles received widespread attention, with indocyanine green and nanoparticles being current active research hotspots in the field. Conclusion This study is the first bibliometric analysis in the field of fluorescence imaging technology applications in pancreatic diseases. Our data will facilitate a better understanding of the developmental trends, identification of research hotspots, and direction in this field. The findings provide practical information for other scholars to grasp key directions and cutting-edge insights.
Collapse
Affiliation(s)
- Quanneng Luo
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - ManXiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Jun Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan Schistosomiasis Control Center (Hunan Third People’s Hospital), Yueyang, Hunan, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
2
|
Bagheri P, Eremina OE, Fernando A, Kamal M, Stegis I, Vazquez C, Shishido SN, Kuhn P, Zavaleta C. A Systematic Approach toward Enabling Maximal Targeting Efficiency of Cell Surface Proteins with Actively Targeted SERS Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15847-15860. [PMID: 38507685 DOI: 10.1021/acsami.3c18959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
With their intricate design, nanoparticles (NPs) have become indispensable tools in the quest for precise cellular targeting. Among various NPs, gold NPs stand out with unique features such as chemical stability, biocompatibility, adjustable shape, and size-dependent optical properties, making them particularly promising for molecular detection by leveraging the surface-enhanced Raman scattering (SERS) effect. Their multiplexing abilities for the simultaneous identification of multiple biomarkers are important in the rapidly evolving landscape of diverse cellular phenotypes and biomolecular profiling. However, the challenge is ensuring that SERS NPs can effectively target specific cells and biomarkers among intricate cell types and biomolecules with high specificity. In this study, we improve the functionalization of SERS NPs, optimizing their targeting efficiency in cellular applications for ca. 160 nm NP-based probes. Spherical SERS NPs, conjugated with antibodies targeting epidermal growth factor receptor and human epidermal growth factor receptor 2, were incubated with cells overexpressing these proteins, and their specific binding potential was quantified at each stage by using flow cytometry to achieve optimal targeting efficiency. We determined that maintaining an average of 3.5 × 105 thiols per NP, 300 antibodies per NP, 18,000 NPs per cell, conducting a 15 min staining incubation at 4 °C in a shaker, and using SM(PEG)12 as a cross-linker for the NP conjugation were crucial to achieve the highest targeting efficiency. Fluorescence and Raman imaging were used with these parameters to observe the maximum ability of these NPs to efficiently target suspended cells. These highly sensitive contrast agents demonstrate their pivotal role in effective active targeting, making them invaluable for multiplexing applications across diverse biological environments.
Collapse
Affiliation(s)
- Pegah Bagheri
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Ingus Stegis
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, California 90089, United States
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Sohrab SS, Raj R, Nagar A, Hawthorne S, Paiva-Santos AC, Kamal MA, El-Daly MM, Azhar EI, Sharma A. Chronic Inflammation's Transformation to Cancer: A Nanotherapeutic Paradigm. Molecules 2023; 28:molecules28114413. [PMID: 37298889 DOI: 10.3390/molecules28114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Banglore 560056, India
| | - Amka Nagar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mohammad Amjad Kamal
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics Inc., Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow G1 0RE, UK
| |
Collapse
|
6
|
A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study. SEPARATIONS 2023. [DOI: 10.3390/separations10020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A selective, sensitive, and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of ICG in rat plasma. The chromatographic separation was achieved using an ACE excel C18 (3 µm, 50 × 3.0 mm) column, with a mobile phase composition of 0.1% formic acid and 0.1% formic acid in acetonitrile, using a gradient flow at a rate of 0.3 mL/min. The MS was operated at a unit resolution in the multiple reaction monitoring mode, using the precursor ion → product ion combinations of 753.3 → 330.2 m/z (ICG) and 747.45 → 717.50 (Cy7.5 amine) with a run time of 5 min. The assay was linear over a concentration range of 1–1000 ng/mL with a regression coefficient (r2) of 0.998 or better. The inter and intra-batch precision (% relative standard deviation, %RSD) was lower than 13.5%, with accuracy (%Bias) between −10.03% and 11.56%. The ICG was stable under laboratory storage and handling conditions. The validated method was successfully applied to preclinical pharmacokinetic (PK) studies of ICG at a dose of 0.39 mg/kg in rats. PK parameters suggested the highest plasma concentration within 2 min of intravenous dosing with restricted systemic distribution and rapid clearance.
Collapse
|
7
|
Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14051015. [PMID: 35631600 PMCID: PMC9144181 DOI: 10.3390/pharmaceutics14051015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species. These effects caused damage in cancer cells at the primary site and can also (i) relieve tumor hypoxia, (ii) release tumor-associated antigens and danger-associated molecular patterns, and (iii) induced a pro-inflammatory response. Such events will then synergize with the activity of immunostimulants and immune checkpoint inhibitors, paving the way for strong T cell responses against metastasized cancer cells and the creation of immune memory. Among the different nanomaterials aimed for cancer immuno-phototherapy, those incorporating near infrared-absorbing heptamethine cyanines (Indocyanine Green, IR775, IR780, IR797, IR820) have been showing promising results due to their multifunctionality, safety, and straightforward formulation. In this review, combined approaches based on phototherapies mediated by heptamethine cyanine-loaded nanomaterials and immunostimulants/immune checkpoint inhibitor actions are analyzed, focusing on their ability to modulate the action of the different immune system cells, eliminate metastasized cancer cells, and prevent tumor recurrence.
Collapse
|
8
|
Zhang X, Zeng Z, Liu H, Xu L, Sun X, Xu J, Song G. Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma. NANOSCALE 2022; 14:3306-3323. [PMID: 35170601 DOI: 10.1039/d1nr08394e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. Given its inconspicuous and atypical early symptoms and hidden location, most patients have already reached the terminal stage before diagnosis. At present, the diagnosis of PDAC mainly depends on serological and imaging examinations. However, serum tests cannot identify specific tumor locations and each imaging technology has its own defects, bringing great challenges to the early diagnosis of PDAC. Therefore, it is of great significance to find new strategies for the early and accurate diagnosis of PDAC. In recent years, a magneto-optical nanoplatform integrating near infrared fluorescence, photoacoustic, magnetic resonance imaging, etc. has attracted widespread attention, giving full play to the complementary advantages of each imaging modality. Herein, we summarize the recent advances of imaging modalities in the diagnosis of pancreatic cancer, and then discuss in detail the construction and modification of magneto or/and optical probes for multimodal imaging, and advances in early diagnosis using the combination of various imaging modalities, which can provide potential tools for the early diagnosis or even intraoperative navigation and post-treatment follow-up of PDAC patients.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Zhiming Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xin Sun
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Xu
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
9
|
Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, White BM, Mallapragada SK, Wannemuehler MJ, Kumar S, Solheim JC, Batra SK, Salem AK, Narasimhan B, Jain M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022; 12:1030-1060. [PMID: 35154473 PMCID: PMC8771545 DOI: 10.7150/thno.64805] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - John C. Christiansen
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
| | - Brianna M. White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Joyce C. Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
10
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Yoon KC, Kim KG, Lee SH. Design of a Surgical Pen-Type Probe for Real-Time Indocyanine Green Fluorescence Emission Diagnosis. J Med Device 2021. [DOI: 10.1115/1.4052587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
The advantage of handheld type surgical microscope is that the size of the probe is small and light, and that both the working distance (15–30 cm) and field of view (30 deg) can be adjusted. The shortness working distance will minimize the loss of light source energy. However, the currently developed handheld type surgical microscope is still large, heavy, and uses relatively high energy (600 mW/cm2). To address the aforementioned problems, this study aimed to develop a pen-type surgical fluorescence microscope that is compact, portable, and has an adjustable beam angle and working distance. These features enable real-time diagnosis. The pen-type probe consists of a laser diode, CMOS camera, light source brightness control device, filter, and power switch. The IR-cut filter inside the CMOS camera was removed to facilitate transmission of the fluorescence emission wavelength. In addition, a long-pass filter was attached to the camera so that the external light source was blocked and only the fluorescence emission wavelength was allowed to pass through. The performance of the pen-type probe was tested through a large animal experiment. Indocyanine green (2.5 mg/kg) was injected into a pig's vein. Fluorescence emission of 805-830 nm was achieved by irradiating an external light source (785 nm and 4 mW/cm2), and liver-uptake occurred after 2.4 min. The designed pen-type probe was capable of sufficiently fluorescence expression through low-energy irradiation, and the pen-type probe is small and light and easy to handle by hand because both the pen-based laser device and the camera device are integrated. In addition, it is easy to adjust the working distance and field of view.
Collapse
Affiliation(s)
- Ki-Cheol Yoon
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, South Korea; Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, South Korea
| | - Kwang Gi Kim
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, South Korea; Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, South Korea; Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 219
| | - Seung Hoon Lee
- School of Medicine, Eulji University, 77 Gyeryong-ro 771 Beon-gil, Jung-gu, Daejeon 34824, South Korea; Department of Neurosurgery, Daejeon Eulji Medical Center, Eulji University, 95, Dunsanseo-ro, Seo-gu, Daejeon 35233, South Korea
| |
Collapse
|
12
|
Nedelcu A, Mocan T, Grapa C, Mocan L. Recent Advances in Nanoparticle-Mediated Diagnosis and the Treatment of Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms22158060. [PMID: 34360829 PMCID: PMC8347356 DOI: 10.3390/ijms22158060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC), one of the most lethal solid tumors in humans, has a five-year survival rate of only 4%. Surgical treatment is the only accepted therapy with curative intent because the vast majority of these tumors are chemoresistant. Unfortunately, due to the aggressive nature of these tumors, fewer than 20% are resectable when the first symptoms occur. Novel therapies are required to overcome all these therapeutic issues, and the development of active nanocarriers represents an exciting opportunity to improve PC outcomes. The present review focuses on recent advances in the field of nanotechnology with application in PC treatment.
Collapse
Affiliation(s)
- Andreea Nedelcu
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania; (A.N.); (L.M.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
- Regina Maria Hospital, 400158 Cluj-Napoca, Romania
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-439696; Fax: +40-264-439696
| | - Cristiana Grapa
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania
| | - Lucian Mocan
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania; (A.N.); (L.M.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
| |
Collapse
|
13
|
Matsumoto S, Nakata K, Sagara A, Guan W, Ikenaga N, Ohuchida K, Nakamura M. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells. Oncol Lett 2021; 22:633. [PMID: 34267825 PMCID: PMC8258615 DOI: 10.3892/ol.2021.12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a key role in desmoplastic stroma, which is a characteristic of pancreatic ductal adenocarcinoma (PDAC), and they also enhance the malignancy of pancreatic cancer cells. Our previous study reported chloroquine's mitigating effects on PSC activation; however, the drug is known to induce adverse effects in clinical practice. The present study aimed to reduce chloroquine doses and develop a useful pre-treatment that targets PSCs using nanoparticles. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as carriers and loaded with indocyanine green (Nano-ICG) or chloroquine (Nano-CQ). Tumor accumulation of Nano-ICG was evaluated using an in vivo imaging system. The effects of chloroquine, Nano-CQ and/or chemotherapy drug gemcitabine were investigated in an orthotopic xenograft mouse model. Nano-ICG selectively accumulated in pancreatic tumors and persisted therein for over 7 days after administration. Additionally, Nano-ICG accumulated in the peritoneal metastasized regions, but not in the liver, kidney and normal pancreatic tissues. Nano-CQ reduced the density of activated PSCs at lower chloroquine doses and significantly restrained tumor progression in combination with gemcitabine. In conclusion, the PLGA nanosystem successfully delivered the drug to pancreatic tumors. Nano-CQ efficiently reduced PSC activation and may be a promising novel pre-treatment strategy for PDAC.
Collapse
Affiliation(s)
- Sokichi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Sagara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Weiyu Guan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Yoon K, Kim K, Lee S. A Surgical Pen-Type Probe Design for Real-Time Optical Diagnosis of Tumor Status Using 5-Aminolevulinic Acid. Diagnostics (Basel) 2021; 11:diagnostics11061014. [PMID: 34206028 PMCID: PMC8228542 DOI: 10.3390/diagnostics11061014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
A surgical microscope is large in size, which makes it impossible to be portable. The distance between the surgical microscope and the observation tissue is 15–30 cm, and the adjustment range of the right and left of the camera is a maximum of 30°. Therefore, the surgical microscope generates an attenuation (above 58%) of irradiation of the optical source owing to the long working distance (WD). Moreover, the observation of tissue is affected because of dazzling by ambient light as the optical source power is strong (55 to 160 mW/cm2). Further, observation blind spot phenomena will occur due to the limitations in adjusting the right and left of the camera. Therefore, it is difficult to clearly observe the tumor. To overcome these problems, several studies on the handheld surgical microscope have been reported. In this study, a compact pen-type probe with a portable surgical microscope is presented. The proposed surgical microscope comprises a small and portable pen-type probe that can adjust the WD between the probe and the observed tissue. In addition, it allows the adjustment of the viewing angle and fluorescence brightness. The proposed probe has no blind spots or optical density loss.
Collapse
Affiliation(s)
- Kicheol Yoon
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea;
- Medical Devices R&D Center, Gachon University Gil Hospital, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Korea
| | - Kwanggi Kim
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea;
- Medical Devices R&D Center, Gachon University Gil Hospital, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Dokjom-ro, Namdong-gu, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-458-2770
| | - Seunghoon Lee
- Department of Neurosurgery, Daejeon Eulji Medical Center (Eulji University Hospital), Dunsanseo-ro, Seo-gu, Daejeon 35233, Korea;
- School of Medicine, Eulji University, 77 Gyeryong-ro 771 Beon-gil, Jung-gu, Daejeon 34824, Korea
| |
Collapse
|
15
|
Miyasato DL, Mohamed AW, Zavaleta C. A path toward the clinical translation of nano-based imaging contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1721. [PMID: 33938151 DOI: 10.1002/wnan.1721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Recently, nanoparticles have evolved ubiquitously in therapeutic applications to treat a range of diseases. Despite their regular use as therapeutic agents in the clinic, we have yet to see much progress in their clinical translation as diagnostic imaging agents. Several clinical and preclinical studies support their use as imaging contrast agents, but their use in the clinical setting has been limited to off-label imaging procedures (i.e., Feraheme). Since diagnostic imaging has been historically used as an exploratory tool to rule out disease or to screen patients for various cancers, nanoparticle toxicity remains a concern, especially when introducing exogenous contrast agents into a potentially healthy patient population, perhaps rationalizing why several nano-based therapeutic agents have been clinically translated before nano-based imaging agents. Another potential hindrance toward their clinical translation could be their market potential, as most therapeutic drugs have higher earning potential than small-molecule imaging contrast agents. With these considerations in mind, perhaps a clinical path forward for nano-based imaging contrast agents is to help guide/manage therapy. Several studies have demonstrated the ability of nanoparticles to produce more accurate imaging preoperatively, intraoperatively, and postoperatively. These applications illustrate a more reliable method of cancer detection and treatment that can prevent incomplete tumor resection and incorrect assessment of tumor progression following treatment. The aim of this review is to highlight the research that supports the use of nanoparticles in biomedical imaging applications and offer a new perspective to illustrate how nano-based imaging agents have the potential to better inform therapeutic decisions. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Dominie L Miyasato
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Ahmed W Mohamed
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Salinas HR, Miyasato DL, Eremina OE, Perez R, Gonzalez KL, Czaja AT, Burkitt S, Aron A, Fernando A, Ojeda LS, Larson KN, Mohamed AW, Campbell JL, Goins BA, Zavaleta C. A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection. Biomater Sci 2021; 9:482-495. [PMID: 32812951 PMCID: PMC7855687 DOI: 10.1039/d0bm01099e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Providing physicians with new imaging agents to help detect cancer with better sensitivity and specificity has the potential to significantly improve patient outcomes. Development of new imaging agents could offer improved early cancer detection during routine screening or help surgeons identify tumor margins for surgical resection. In this study, we evaluate the optical properties of a colorful class of dyes and pigments that humans routinely encounter. The pigments are often used in tattoo inks and the dyes are FDA approved for the coloring of foods, drugs, and cosmetics. We characterized their absorption, fluorescence and Raman scattering properties in the hopes of identifying a new panel of dyes that offer exceptional imaging contrast. We found that some of these coloring agents, coined as "optical inks", exhibit a multitude of useful optical properties, outperforming some of the clinically approved imaging dyes on the market. The best performing optical inks (Green 8 and Orange 16) were further incorporated into liposomal nanoparticles to assess their tumor targeting and optical imaging potential. Mouse xenograft models of colorectal, cervical and lymphoma tumors were used to evaluate the newly developed nano-based imaging contrast agents. After intravenous injection, fluorescence imaging revealed significant localization of the new "optical ink" liposomal nanoparticles in all three tumor models as opposed to their neighboring healthy tissues (p < 0.05). If further developed, these coloring agents could play important roles in the clinical setting. A more sensitive imaging contrast agent could enable earlier cancer detection or help guide surgical resection of tumors, both of which have been shown to significantly improve patient survival.
Collapse
Affiliation(s)
- Helen R Salinas
- Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
18
|
Wojtynek NE, Olson MT, Bielecki TA, An W, Bhat AM, Band H, Lauer SR, Silva-Lopez E, Mohs AM. Nanoparticle Formulation of Indocyanine Green Improves Image-Guided Surgery in a Murine Model of Breast Cancer. Mol Imaging Biol 2020; 22:891-903. [PMID: 31820350 PMCID: PMC7280079 DOI: 10.1007/s11307-019-01462-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Negative surgical margins (NSMs) have favorable prognostic implications in breast tumor resection surgery. Fluorescence image-guided surgery (FIGS) has the ability to delineate surgical margins in real time, potentially improving the completeness of tumor resection. We have recently developed indocyanine green (ICG)-loaded self-assembled hyaluronic acid (HA) nanoparticles (NanoICG) for solid tumor imaging, which were shown to enhance intraoperative contrast. PROCEDURES This study sought to assess the efficacy of NanoICG on completeness of breast tumor resection and post-surgical survival. BALB/c mice bearing iRFP+/luciferase+ 4T1 syngeneic breast tumors were administered NanoICG or ICG, underwent FIGS, and were compared to bright light surgery (BLS) and sham controls. RESULTS NanoICG increased the number of complete resections and improved tumor-free survival. This was a product of improved intraoperative contrast enhancement and the identification of a greater number of small, occult lesions than ICG and BLS. Additionally, NanoICG identified chest wall invasion and predicted recurrence in a model of late-stage breast cancer. CONCLUSIONS NanoICG is an efficacious intraoperative contrast agent and could potentially improve surgical outcomes in breast cancer.
Collapse
Affiliation(s)
- Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott R Lauer
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Edibaldo Silva-Lopez
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaron M Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
19
|
Olson MT, Wojtynek NE, Talmon GA, Caffrey TC, Radhakrishnan P, Ly QP, Hollingsworth MA, Mohs AM. Development of a MUC16-Targeted Near-Infrared Fluorescent Antibody Conjugate for Intraoperative Imaging of Pancreatic Cancer. Mol Cancer Ther 2020; 19:1670-1681. [PMID: 32404409 PMCID: PMC8009292 DOI: 10.1158/1535-7163.mct-20-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 05/07/2020] [Indexed: 01/11/2023]
Abstract
Surgical resection is currently the only potentially curative option for patients with pancreatic cancer. However, the 5-year survival rate after resection is only 25%, due in part to high rates of R1 resections, in which cells are left behind at the surgical margin, resulting in disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to reduce incomplete resections and improve intraoperative assessment of cancer. Mucin-16 (MUC16), a protein biomarker highly overexpressed in pancreatic cancer, is a potential target for FGS. In this study, we developed a fluorescent MUC16-targeted antibody probe, AR9.6-IRDye800, for image-guided resection of pancreatic cancer. We demonstrated the efficacy of this probe to bind human pancreatic cancer cell lines in vitro and in vivo In an orthotopic xenograft model, AR9.6-IRDye800 exhibited superior fluorescence enhancement of tumors and lower signal in critical background organs in comparison to a nonspecific IgG control. The results of this study suggest that AR9.6-IRDye800 has potential for success as a probe for FGS in pancreatic cancer patients, and MUC16 is a feasible target for intraoperative imaging.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey A Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
20
|
Sevieri M, Silva F, Bonizzi A, Sitia L, Truffi M, Mazzucchelli S, Corsi F. Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment? Front Chem 2020; 8:535. [PMID: 32766203 PMCID: PMC7378786 DOI: 10.3389/fchem.2020.00535] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Indocyanine green (ICG) is a Food and Drug Administration–approved near-infrared fluorescent dye, employed as an imaging agent for different clinical applications due to its attractive physicochemical properties, high sensitivity, and safety. However, free ICG suffers from some drawbacks, such as relatively short circulation half-life, concentration-dependent aggregation, and rapid clearance from the body, which would confine its feasible application in oncology. Here, we aim to discuss encapsulation of ICG within a nanoparticle formulation as a strategy to overcome some of its current limitations and to enlarge its possible applications in cancer diagnosis and treatment. Our purpose is to provide a short but exhaustive overview of clinical outcomes that these nanocomposites would provide, discussing opportunities, limitations, and possible impacts with regard to the main clinical needs in oncology.
Collapse
Affiliation(s)
- Marta Sevieri
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Filippo Silva
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Arianna Bonizzi
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Leopoldo Sitia
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Marta Truffi
- Laboratorio di Nanomedicina e Imaging Molecolare, Istituti Clinici Scientifici Spa-Società Benefit IRCCS, Pavia, Italy
| | - Serena Mazzucchelli
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Fabio Corsi
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Laboratorio di Nanomedicina e Imaging Molecolare, Istituti Clinici Scientifici Spa-Società Benefit IRCCS, Pavia, Italy
| |
Collapse
|
21
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
22
|
Ma L, Yang X, Yao X, Weng W. Solubilization of Hexyl Aminolevulinate by Surfactants for Tumor Fluorescence Detection. Photochem Photobiol 2020; 96:1088-1095. [PMID: 32125708 DOI: 10.1111/php.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
Hexyl aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinic acid (5-ALA) and can induce more protoporphyrin IX (PpIX) formation and stronger fluorescence intensity (FI) than 5-ALA, which will greatly facilitate photodynamic diagnosis and therapy. The main drawback of HAL is its low solubility in neutral aqueous media. In this study, surfactants were used to increase HAL solubility in the cell culture medium and serum, followed by in vitro fluorescence formation measurement in human pancreatic cancer cells (SW1990) and in vivo fluorescence detection in tumor-bearing mice. The results showed that Tween 80 (TW80) and Kolliphor® HS 15 (HS15) increased the solubility of HAL in the selected media. Although TW80 and HS15 exhibited in vitro cytotoxicity at high concentrations (5 mg mL-1 ), they facilitated fluorescent signal formation at the early stage of cell incubation. When surfactants were used, the FI should be determined without the routine washing process because surfactant-containing culture medium caused the loss of synthesized PpIX during the washing process. When HAL dissolved in TW80 solution was injected intraperitoneally into pancreatic cancer-bearing mice at a dose of 50 mg kg-1 , the tumors exhibited red fluorescence, which indicated that systemic administration of surfactant-solubilized HAL might be applicable for tumor fluorescence detection in vivo.
Collapse
Affiliation(s)
- Lirong Ma
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xuanlin Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuzhong Yao
- Department of Radiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiyu Weng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
23
|
Qi B, Crawford AJ, Wojtynek NE, Talmon GA, Hollingsworth MA, Ly QP, Mohs AM. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging. Theranostics 2020; 10:3413-3429. [PMID: 32206099 PMCID: PMC7069077 DOI: 10.7150/thno.40688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The prognosis of pancreatic cancer remains poor. Intraoperative fluorescence imaging of tumors could improve staging and surgical resection, thereby improving prognosis. However, imaging pancreatic cancer with macromolecular delivery systems, is often hampered by nonspecific organ accumulation. Methods: We describe the rational development of hyaluronic acid (HA) conjugates that vary in molecular weight and are conjugated to near infrared fluorescent (NIRF) dyes that have differences in hydrophilicity, serum protein binding affinity, and clearance mechanism. We systematically investigated the roles of each of these properties on tumor accumulation, relative biodistribution, and the impact of intraoperative imaging of orthotopic, syngeneic pancreatic cancer. Results: Each HA-NIRF conjugate displayed intrapancreatic tumor enhancement. Regardless of HA molecular weight, Cy7.5 conjugation directed biodistribution to the liver, spleen, and bowels. Conjugation of IRDye800 to 5 and 20 kDa HA resulted in low liver and spleen signal while enhancing the tumor up to 14-fold compared to healthy pancreas, while 100 kDa HA conjugated to IRDye800 resulting in liver and spleen accumulation. Conclusion: These studies demonstrate that by tuning HA molecular weight and the physicochemical properties of the conjugated moiety, in this case a NIRF probe, peritoneal biodistribution can be substantially altered to achieve optimized delivery to tumors intraoperative abdominal imaging.
Collapse
|
24
|
Brachi G, Bussolino F, Ciardelli G, Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front Bioeng Biotechnol 2019; 7:307. [PMID: 31824928 PMCID: PMC6880757 DOI: 10.3389/fbioe.2019.00307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma has the worst outcome among all cancer types, with a 5-year survival rate as low as 10%. The lethal nature of this cancer is a result of its silent onset, resistance to therapies, and rapid spreading. As a result, most patients remain asymptomatic and present at diagnosis with an already infiltrating and incurable disease. The tumor microenvironment, composed of a dense stroma and of disorganized blood vessels, coupled with the dysfunctional signal pathways in tumor cells, creates a set of physical and biological barriers that make this tumor extremely hard-to-treat with traditional chemotherapy. Nanomedicine has great potential in pancreatic adenocarcinoma, because of the ability of nano-formulated drugs to overcome biological barriers and to enhance drug accumulation at the target site. Moreover, monitoring of disease progression can be achieved by combining drug delivery with imaging probes, resulting in early detection of metastatic patterns. This review describes the latest development of theranostic formulations designed to concomitantly treat and image pancreatic cancer, with a specific focus on their interaction with physical and biological barriers.
Collapse
Affiliation(s)
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute -IRCCS-FPO, Candiolo, Italy
| | | | | |
Collapse
|
25
|
Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine 2019; 14:7823-7838. [PMID: 31576126 PMCID: PMC6768149 DOI: 10.2147/ijn.s207486] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.
Collapse
Affiliation(s)
- Claire Egloff-Juras
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Lina Bezdetnaya
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Gilles Dolivet
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| |
Collapse
|
26
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
27
|
Philp L, Chan H, Rouzbahman M, Overchuk M, Chen J, Zheng G, Bernardini MQ. Use of Porphysomes to detect primary tumour, lymph node metastases, intra-abdominal metastases and as a tool for image-guided lymphadenectomy: proof of concept in endometrial cancer. Am J Cancer Res 2019; 9:2727-2738. [PMID: 31131064 PMCID: PMC6525988 DOI: 10.7150/thno.31225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate Porphysome fluorescence image-guided resection (PYRO-FGR) for detection of uterine tumour, metastatic lymph nodes and abdominal metastases in a model of endometrial cancer. Methods: White New Zealand rabbits were inoculated with VX2 cells via intra-myometrial injection. At 30 days, Porphysomes were administered intravenously. At 24 h the abdomen was imaged and fluorescent tissue identified (PYRO-FGR). After complete resection of fluorescent tissue, fluorescence-negative lymph nodes and peritoneal biopsies were removed. Histopathology including ultra-staging and analysis by a pathologist was used to detect tumour. Fluorescence signal to background ratio (SBR) was calculated and VX2 (+) tissue compared to VX2 (-) tissue. Biodistribution was calculated and Porphysome accumulation in fluorescent VX2 (+) tissue compared to fluorescent VX2 (-) and non-fluorescent VX2 (-) tissue. Results: Of 17 VX2 models, 10 received 4 mg/kg of Porphysomes and 7 received 1 mg/kg. Seventeen tumours (UT), 81 lymph nodes (LN) and 54 abdominal metastases (AM) were fluorescence-positive and resected. Of these, 17 UT, 60 LN and 45 AM were VX2 (+), while 16 LN and 5 AM were VX2 (-). Nine specimens were excluded from analysis. Thirty-one LN and 53 peritoneal biopsies were fluorescence-negative and resected. Of these, all LN and 51/53 biopsies were VX2 (-) with only 2 false-negative biopsies. Sensitivity and specificity of PYRO-FGR for VX2 (+) tissue was 98.4% / 80.0% overall, 100% / 100% for UT, 100% / 66.0 % for LN and 95.7% / 91.4% for AM. Increased SBR and biodistribution was observed in VX2 (+) tissue vs. VX2 (-) tissue. Conclusions: Porphysomes are a highly sensitive imaging agent for intra-operative detection and resection of uterine tumour, metastatic lymph nodes and abdominal metastases.
Collapse
|
28
|
Kydd J, Jadia R, Rai P. Co-Administered Polymeric Nano-Antidotes for Improved Photo-Triggered Response in Glioblastoma. Pharmaceutics 2018; 10:pharmaceutics10040226. [PMID: 30423822 PMCID: PMC6321570 DOI: 10.3390/pharmaceutics10040226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Polymer-based nanoparticles (NPs) are useful vehicles in treating glioblastoma because of their favorable characteristics such as small size and ability to cross the blood–brain barrier, as well as reduced immunogenicity and side effects. The use of a photosensitizer drug such as Verteporfin (BPD), in combination with a pan-vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI), Cediranib (CED), encapsulated in NPs will provide the medical field with new research on the possible ways to treat glioblastoma. Concomitant administration of BPD and CED NPs have the potential to induce dual photocytotoxic and cytostatic effects in U87 MG cells by (1) remotely triggering BPD through photodynamic therapy by irradiating laser at 690 nm and subsequent production of reactive oxygen species and (2) inhibiting cell proliferation by VEGFR interference and growth factor signaling mechanisms which may allow for longer progression free survival in patients and fewer systemic side effects. The specific aims of this research were to synthesize, characterize and assess cell viability and drug interactions for polyethylene-glycolated (PEGylated) polymeric based CED and BPD NPs which were less than 100 nm in size for enhanced permeation and retention effects. Synergistic effects were found using the co-administered therapies compared to the individual drugs. The major goal of this research was to investigate a new combination of photodynamic-chemotherapy drugs in nano-formulation for increased efficacy in glioblastoma treatment at reduced concentrations of therapeutics for enhanced drug delivery in vitro.
Collapse
Affiliation(s)
- Janel Kydd
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| | - Rahul Jadia
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| | - Prakash Rai
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
29
|
Rho SY, Kim JS, Chong JU, Hwang HK, Yoon DS, Lee WJ, Kang CM. Indocyanine Green Perfusion Imaging-Guided Laparoscopic Pancreaticoduodenectomy: Potential Application in Retroperitoneal Margin Dissection. J Gastrointest Surg 2018; 22:1470-1474. [PMID: 29633118 DOI: 10.1007/s11605-018-3760-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/24/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND During laparoscopic pancreaticoduodenectomy (LPD), dissecting uncinate process from the superior mesenteric artery (SMA) will determine one of the important surgical margins (retroperitoneal margin) for predicting oncological outcomes and the quality of LPD. However, clear identification of the division line for retroperitoneal margin is not easy as the uncinate process of the pancreas is anatomically very close to SMA and intermingled with the nerve plexus and soft tissues around SMA. In this study, we present data regarding the potential usefulness of indocyanine green (ICG)-enhanced approach in obtaining retroperitoneal margin during LPD. METHODS From January to September 2017, medical records of patients who underwent LPD for periampullary pathological conditions were retrospectively reviewed. ICG (5 mg/2 cm3) was prepared and intravenously injected when dissecting uncinate process of the pancreas. Perioperative outcomes, including gender, age, diagnosis, body mass index, operation time, estimated blood loss, transfusion, presence of postoperative pancreatic fistulas (POPFs), and length of hospital stay, were evaluated. RESULTS During the study period, a total of 37 patients underwent LPD for periampullary pathological lesions. Among them, ICG-enhanced dissection of uncinate process of the pancreas was applied in 10 patients (27%). All patients were able to obtain margin-negative resection. There were no significant differences between the perioperative outcomes of patients who did and did not undergo ICG-enhanced approach. DISCUSSION ICG perfusion-based laparoscopic dissection of retroperitoneal margin is feasible and safe in LPD. This intraoperative visual difference can provide the surgeon with very helpful real-time visual information. Further study is mandatory.
Collapse
Affiliation(s)
- Seoung Yoon Rho
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Ji Su Kim
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Uk Chong
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Dong Sub Yoon
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Woo Jung Lee
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea. .,Pancreatobiliary Cancer Clinic, Yonsei Cancer Center, Severance Hospital, Seoul, Korea.
| |
Collapse
|
30
|
Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater 2018; 75:323-333. [PMID: 29890268 DOI: 10.1016/j.actbio.2018.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
The presence of positive surgical margins confers an increased risk of biochemical relapse and need for salvage therapy in men undergoing radical prostatectomy. Image-guided surgery using near-infrared (NIR) fluorescent contrast agents is a potential method to detect remaining cancerous tissue. The objective of this study was to evaluate three hyaluronic acid (HA) nanoparticle (NP) formulations loaded with NIR fluorophore for their ability to contrast-enhance prostate cancer. HA was modified by conjugation with the hydrophobic ligand, aminopropyl-1-pyrenebutanamide to drive nanoparticle self-assembly. Indocyanine green (ICG) was physicochemically entrapped in the HA-NP, termed NanoICG. Alternatively, Cy7.5 was directly conjugated to amphiphilic HA, termed NanoCy7.5. NanoCy7.5 was synthesized with two HA molecular weights to determine the HA size contribution to delivery to PC3 prostate tumor xenografts. Contrast-enhancement of the tumors and relative biodistribution were assessed by a series of fluorescence imaging, image-guided surgery with spectroscopy, and microscopic techniques. Intravenously administered NanoICG improved tumor signal-to-noise ratio (SNR) at 24 h over ICG by 2.9-fold. NanoCy7.5 with 10 kDa and 100 kDa HA improved tumor SNR by 6.6- and 3.1-fold over Cy7.5 alone, respectively. The PC3 xenograft was clearly identified with the image-guided system providing increased contrast enhancement compared to surrounding tissue for NanoICG and NanoCy7.5 with 10 kDa HA. NIR fluorescence microscopy showed that Cy7.5 in NPs with 10 kDa HA were distributed throughout the tumor, while NanoCy7.5 with 100 kDa HA or NanoICG delivered dye mainly to the edge of the tumor. CD31 staining suggested that PC3 tumors are poorly vascularized. These studies demonstrate the efficacy of a panel of HA-derived NPs in identifying prostate tumors in vivo, and suggest that by tuning the structural properties of these NPs, optimized delivery can be achieved to poorly vascularized tumors. STATEMENT OF SIGNIFICANCE We have demonstrated the potential of a panel of near-infrared fluorescent (NIRF) nanoparticles (NPs) for image-guided surgery in a prostate cancer xenograft model. Image-guided surgery and imaging of organs ex vivo showed greater tumor signal and contrast when mice were administered NIRF dyes that were covalently conjugated to (NanoCy7.510k-PBA) or physicochemically entrapped in (NanoICGPBA) hyaluronic acid (HA) NPs, compared to free dyes. These results show the potential to use these NPs as tools to detect the margins of tumors and to differentiate healthy and tumor tissue intraoperatively. Moreover, this project provides insight into selecting optimal formulation strategies for poorly vascularized tumors.
Collapse
|
31
|
Svechkarev D, Kyrychenko A, Payne WM, Mohs AM. Probing the self-assembly dynamics and internal structure of amphiphilic hyaluronic acid conjugates by fluorescence spectroscopy and molecular dynamics simulations. SOFT MATTER 2018; 14:4762-4771. [PMID: 29799600 PMCID: PMC5999590 DOI: 10.1039/c8sm00908b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polymeric nanoparticles are increasingly used as biocompatible carriers for drugs and imaging agents. Understanding their self-assembly dynamics and morphology is of ultimate importance to develop nanoformulations with optimal characteristics. To achieve better performance, it is vital to account for cargo-carrier interactions at the molecular level. The self-assembly dynamics were studied and the internal structure of nanoparticles derived from a series of hydrophobically modified hyaluronic acid was revealed. Environment-sensitive ratiometric fluorescent probes provide valuable information about the nanoparticle's interior morphology, and molecular dynamics simulations complement the overall picture with insights into intramolecular and intermolecular interactions of the polymer, as well as its interactions with the small-molecule load. van der Waals and π-π interactions of the hydrophobic side fragments play a leading role in self-assembly and loading of hydrophobic small molecules. Aliphatic substituents form more extensive hydrophobic domains, while aromatic moieties allow more interaction of the loaded small molecules with the surrounding solvent.
Collapse
Affiliation(s)
- Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
32
|
Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E360. [PMID: 29882932 PMCID: PMC6027497 DOI: 10.3390/nano8060360] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.
Collapse
Affiliation(s)
- Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|