1
|
Kamaraj M, Moghimi N, McCarthy A, Chen J, Cao S, Chethikkattuveli Salih AR, Joshi A, Jucaud V, Panayi A, Shin SR, Noshadi I, Khademhosseini A, Xie J, John JV. Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS NANO 2024; 18:28335-28348. [PMID: 39356827 DOI: 10.1021/acsnano.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Selena Cao
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | | | - Akshat Joshi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Adriana Panayi
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg 69117, Germany
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| |
Collapse
|
2
|
Xia Y, Chen Z, Zheng Z, Chen H, Chen Y. Nanomaterial-integrated injectable hydrogels for craniofacial bone reconstruction. J Nanobiotechnology 2024; 22:525. [PMID: 39217329 PMCID: PMC11365286 DOI: 10.1186/s12951-024-02801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The complex anatomy and biology of craniofacial bones pose difficulties in their effective and precise reconstruction. Injectable hydrogels (IHs) with water-swollen networks are emerging as a shape-adaptive alternative for noninvasively rebuilding craniofacial bones. The advent of versatile nanomaterials (NMs) customizes IHs with strengthened mechanical properties and therapeutically favorable performance, presenting excellent contenders over traditional substitutes. Structurally, NM-reinforced IHs are energy dissipative and covalently crosslinked, providing the mechanics necessary to support craniofacial structures and physiological functions. Biofunctionally, incorporating unique NMs into IH expands a plethora of biological activities, including immunomodulatory, osteogenic, angiogenic, and antibacterial effects, further favoring controllable dynamic tissue regeneration. Mechanistically, NM-engineered IHs optimize the physical traits to direct cell responses, regulate intracellular signaling pathways, and control the release of biomolecules, collectively bestowing structure-induced features and multifunctionality. By encompassing state-of-the-art advances in NM-integrated IHs, this review offers a foundation for future clinical translation of craniofacial bone reconstruction.
Collapse
Affiliation(s)
- Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zihan Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zebin Zheng
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huimin Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuming Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
3
|
Peyravian N, Milan PB, Kebria MM, Mashayekhan S, Ghasemian M, Amiri S, Hamidi M, Shavandi A, Moghtadaei M. Designing and synthesis of injectable hydrogel based on carboxymethyl cellulose/carboxymethyl chitosan containing QK peptide for femoral head osteonecrosis healing. Int J Biol Macromol 2024; 270:132127. [PMID: 38718991 DOI: 10.1016/j.ijbiomac.2024.132127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release. Also, the safety and efficacy were evaluated following an in vitro hydrogel injection study and an avascular necrosis (AVN) animal model. According to the results, the hydrogel exhibited an appropriate swelling ratio and water uptake (>90 %, 24 h) as well as a suitable degradation rate over 21 days accompanied by a continuous peptide release. Also, data showed that hydrogels containing QK peptide boosted the proliferation, differentiation, angiogenesis, and osteogenic potential of both Bone Marrow mesenchymal Stem Cells (BM-MSCs) and human umbilical vein endothelial cells (HUVECs) (****p < 0.0001 and ***p < 0.001, respectively). Furthermore, molecular and histological evaluations significantly demonstrated the overexpression of Runx2, Osteocalcin, Collagen I, VEGF and CD34 genes (**p < 0.01 and ***p < 0.001, respectively), and also femoral head necrosis was effectively prohibited, and more blood vessels were detected in defect area by OCMC-CMCS hydrogel containing QK peptide (bone trabeculae >9000, ***p < 0.001). In conclusion, the findings demonstrate that OCMC-CMCS-QK injectable hydrogel could be considered as an impressive therapeutic construct for femoral head AVN healing.
Collapse
Affiliation(s)
- Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Melina Ghasemian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Shohadaye Haftom-e-tir Hospital, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles - 3BIO-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles - 3BIO-BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Mehdi Moghtadaei
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Orthopaedic Department, Hazrat-Rasul Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
5
|
Zhang Y, Jiang S, Xu D, Li Z, Guo J, Li Z, Cheng G. Application of Nanocellulose-Based Aerogels in Bone Tissue Engineering: Current Trends and Outlooks. Polymers (Basel) 2023; 15:polym15102323. [PMID: 37242898 DOI: 10.3390/polym15102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The complex or compromised bone defects caused by osteomyelitis, malignant tumors, metastatic tumors, skeletal abnormalities, and systemic diseases are difficult to be self-repaired, leading to a non-union fracture. With the increasing demands of bone transplantation, more and more attention has been paid to artificial bone substitutes. As biopolymer-based aerogel materials, nanocellulose aerogels have been widely utilized in bone tissue engineering. More importantly, nanocellulose aerogels not only mimic the structure of the extracellular matrix but could also deliver drugs and bioactive molecules to promote tissue healing and growth. Here, we reviewed the most recent literature about nanocellulose-based aerogels, summarized the preparation, modification, composite fabrication, and applications of nanocellulose-based aerogels in bone tissue engineering, as well as giving special focus to the current limitations and future opportunities of nanocellulose aerogels for bone tissue engineering.
Collapse
Affiliation(s)
- Yaoguang Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430079, China
| | - Dongdong Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325015, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Chen Y, Xu W, Shafiq M, Song D, Wang T, Yuan Z, Xie X, Yu X, Shen Y, Sun B, Liu Y, Mo X. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta Biomater 2023; 157:593-608. [PMID: 36435438 DOI: 10.1016/j.actbio.2022.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases, which accounts for a large proportion of physical disabilities worldwide. Herein, we fabricated injectable gelatin/poly(L-lactide)-based nanofibrous microspheres (MS) via electrospraying technology, which were further modified with tannic acid (TA) named as TMS or metal phenolic networks (MPNs) consisting of TA and strontium ions (Sr2+) and named as TSMS to enhance their bioactivity for OA therapy. The TA-modified microspheres exhibited stable porous structure and anti-oxidative activity. Notably, TSMS showed a sustained release of TA as compared to TMS, which exhibited a burst release of TA. While all types of microspheres exhibited good cytocompatibility, TSMS displayed good anti-inflammatory properties with higher cell viability and cartilage-related extracellular matrix (ECM) secretion. The TSMS microspheres also showed less apoptosis of chondrocytes in the hydrogen peroxide (H2O2)-induced inflammatory environment. The TSMS also inhibited the degradation of cartilage along with the considerable repair outcome in the papain-induced OA rabbit model in vivo as well as suppressed the expression level of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β). Taken together, TSMS may provide a highly desirable therapeutic option for intra-articular treatment of OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is a chronic disease, which is caused by the inflammation of joint. Current treatments for OA achieve pain relief but hardly prevent or slow down the disease progression. Microspheres are at the forefront of drug delivery and tissue engineering applications, which can also be minimal-invasively injected into the joint. Polyphenols and therapeutic ions have been shown to be beneficial for the treatment of diseases related to the joints, including OA. Herein, we prepared gelatin/poly(L-lactide)-based nanofibrous microspheres (MS) via electrospinning incorporated electrospraying technology and functionalized them with the metal phenolic networks (MPNs) consisting of TA and strontium ions (Sr2+), and assessed their potential for OA therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Wei Xu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China; Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China; Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Daiying Song
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China
| | - Tao Wang
- Department of Plastic and Cosmetic Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200001, China
| | - Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, China
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Yihong Shen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang 261000, China; Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai 200001, China.
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, China.
| |
Collapse
|
7
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
8
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
9
|
Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. ADVANCED FIBER MATERIALS 2022; 4:959-986. [DOI: 10.1007/s42765-022-00170-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/06/2025]
|
10
|
Bupphathong S, Quiroz C, Huang W, Chung PF, Tao HY, Lin CH. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals (Basel) 2022; 15:ph15020171. [PMID: 35215284 PMCID: PMC8878046 DOI: 10.3390/ph15020171] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/26/2022] Open
Abstract
To recreate or substitute tissue in vivo is a complicated endeavor that requires biomaterials that can mimic the natural tissue environment. Gelatin methacrylate (GelMA) is created through covalent bonding of naturally derived polymer gelatin and methacrylic groups. Due to its biocompatibility, GelMA receives a lot of attention in the tissue engineering research field. Additionally, GelMA has versatile physical properties that allow a broad range of modifications to enhance the interaction between the material and the cells. In this review, we look at recent modifications of GelMA with naturally derived polymers, nanomaterials, and growth factors, focusing on recent developments for vascular tissue engineering and wound healing applications. Compared to polymers and nanoparticles, the modifications that embed growth factors show better mechanical properties and better cell migration, stimulating vascular development and a structure comparable to the natural-extracellular matrix.
Collapse
Affiliation(s)
- Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
| | - Carlos Quiroz
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| | - Pei-Feng Chung
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsuan-Ya Tao
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
- Correspondence:
| |
Collapse
|
11
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_31-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_31-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
McCarthy A, Shah R, John JV, Brown D, Xie J. Understanding and utilizing textile-based electrostatic flocking for biomedical applications. APPLIED PHYSICS REVIEWS 2021; 8:041326. [PMID: 35003482 PMCID: PMC8715800 DOI: 10.1063/5.0070658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 05/10/2023]
Abstract
Electrostatic flocking immobilizes electrical charges to the surface of microfibers from a high voltage-connected electrode and utilizes Coulombic forces to propel microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. This traditional textile engineering technique has been used to modify surfaces or to create standalone anisotropic structures. Notably, a small body of evidence validating the use of electrostatic flocking for biomedical applications has emerged over the past several years. Noting the growing interest in utilizing electrostatic flocking in biomedical research, we aim to provide an overview of electrostatic flocking, including the principle, setups, and general and biomedical considerations, and propose a variety of biomedical applications. We begin with an introduction to the development and general applications of electrostatic flocking. Additionally, we introduce and review some of the flocking physics and mathematical considerations. We then discuss how to select, synthesize, and tune the main components (flocking fibers, adhesives, substrates) of electrostatic flocking for biomedical applications. After reviewing the considerations necessary for applying flocking toward biomedical research, we introduce a variety of proposed use cases including bone and skin tissue engineering, wound healing and wound management, and specimen swabbing. Finally, we presented the industrial comments followed by conclusions and future directions. We hope this review article inspires a broad audience of biomedical, material, and physics researchers to apply electrostatic flocking technology to solve a variety of biomedical and materials science problems.
Collapse
Affiliation(s)
- Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Rajesh Shah
- Spectro Coating Corporation, Leominster, Massachusetts 01453, USA
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Demi Brown
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Jingwei Xie
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
John JV, McCarthy A, Wang H, Luo Z, Li H, Wang Z, Cheng F, Zhang YS, Xie J. Freeze-Casting with 3D-Printed Templates Creates Anisotropic Microchannels and Patterned Macrochannels within Biomimetic Nanofiber Aerogels for Rapid Cellular Infiltration. Adv Healthc Mater 2021; 10:e2100238. [PMID: 34029004 PMCID: PMC8222158 DOI: 10.1002/adhm.202100238] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Indexed: 01/08/2023]
Abstract
A new approach is described for fabricating 3D poly(ε-caprolactone) (PCL)/gelatin (1:1) nanofiber aerogels with patterned macrochannels and anisotropic microchannels by freeze-casting with 3D-printed sacrificial templates. Single layer or multiple layers of macrochannels are formed through an inverse replica of 3D-printed templates. Aligned microchannels formed by partially anisotropic freezing act as interconnected pores between templated macrochannels. The resulting macro-/microchannels within nanofiber aerogels significantly increase preosteoblast infiltration in vitro. The conjugation of vascular endothelial growth factor (VEGF)-mimicking QK peptide to PCL/gelatin/gelatin methacryloyl (1:0.5:0.5) nanofiber aerogels with patterned macrochannels promotes the formation of a microvascular network of seeded human microvascular endothelial cells. Moreover, nanofiber aerogels with patterned macrochannels and anisotropic microchannels show significantly enhanced cellular infiltration rates and host tissue integration compared to aerogels without macrochannels following subcutaneous implantation in rats. Taken together, this novel class of nanofiber aerogels holds great potential in biomedical applications including tissue repair and regeneration, wound healing, and 3D tissue/disease modeling.
Collapse
Affiliation(s)
- Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hongbin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Zixuan Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Feng Cheng
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
15
|
Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 2021; 122:82-100. [PMID: 33326882 DOI: 10.1016/j.actbio.2020.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Nanofiber films produced by electrospinning currently provide a promising platform for different applications. Although nonfunctionalized nanofiber films from natural or synthetic polymers are extensively used, electrospun materials combined with peptides are gaining more interest. In fact, the selection of specific peptides improves the performance of the material for biological applications and mainly for tissue engineering, mostly by maintaining similar mechanical properties with respect to the simple polymer. The main drawback in using peptides blended with a polymer is the quick release of the peptides. To avoid this problem, covalent linking of the peptide is more beneficial. Here, we reviewed synthetic protocols that enable covalent grafting of peptides to polymers before or after the electrospinning procedures to obtain more robust electrospun materials. Applications and the performance of the new material compared to that of the starting polymer are discussed.
Collapse
|
16
|
Chen Y, Shafiq M, Liu M, Morsi Y, Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact Mater 2020; 5:963-979. [PMID: 32671291 PMCID: PMC7334396 DOI: 10.1016/j.bioactmat.2020.06.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Electrospinning is a versatile strategy for creating nanofiber materials with various structures, which has broad application for a myriad of areas ranging from tissue engineering, energy harvesting, filtration and has become one of the most important academic and technical activities in the field of material science in recent years. In addition to playing a significant role in the construction of two-dimensional (2D) nanomaterials, electrospinning holds great promise as a robust method for producing three-dimensional (3D) aerogels and scaffolds. This article reviews and summarizes the recent advanced methods for fabricating electrospun three-dimensional nanofiber aerogels and scaffolds, including gas foaming, direct electrospinning of 3D nanofibrous scaffold, short nanofibers assembling into 3D aerogels/scaffolds, 3D printing, electrospray, origami and cell sheet engineering, centrifugal electrospinning, and other methods. Besides, intriguing formation process, crosslinking pathway, properties, and applications of 3D aerogels and scaffolds are also introduced. Taken together, these aerogels and scaffolds with various excellent features present tremendous potential in various fields.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Muhammad Shafiq
- Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan
| | - Mingyue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC, 3122, Australia
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
17
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
18
|
Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B 2020; 8:3733-3746. [PMID: 32211735 PMCID: PMC7205582 DOI: 10.1039/d0tb00271b] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, electrospinning has emerged as an enabling nanotechnology to produce nanofiber materials for various biomedical applications. In particular, therapeutic/cellloaded nanofiber scaffolds have been widely examined in drug delivery, wound healing, and tissue repair and regeneration. However, due to the insufficient porosity, small pore size, noninjectability, and inaccurate spatial control in nanofibers of scaffolds, many efforts have been devoted to exploring new forms of nanofiber materials including expanded nanofiber scaffolds, nanofiber aerogels, short nanofibers, and nanofiber microspheres. This short review discusses the preparation and potential biomedical applications of new forms of nanofiber materials.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Johnson V John
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
John JV, McCarthy A, Wang H, Chen S, Su Y, Davis E, Li X, Park JS, Reinhardt RA, Xie J. Engineering Biomimetic Nanofiber Microspheres with Tailored Size, Predesigned Structure, and Desired Composition via Gas Bubble-Mediated Coaxial Electrospray. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907393. [PMID: 32212416 PMCID: PMC7457332 DOI: 10.1002/smll.201907393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 05/07/2023]
Abstract
Minimally invasive therapies avoiding surgical complexities evoke great interest in developing injectable biomedical devices. Herein, a versatile approach is reported for engineering injectable and biomimetic nanofiber microspheres (NMs) with tunable sizes, predesigned structures, and desired compositions via gas bubble-mediated coaxial electrospraying. The sizes and structures of NMs are controlled by adjusting processing parameters including air flow rate, applied voltage, distance, and spinneret configuration in the coaxial setup. Importantly, unlike the self-assembly method, this technique can be used to fabricate NMs from any material feasible for electrospinning or other nanofiber fabrication techniques. To demonstrate the versatility, open porous NMs are successfully fabricated that consist of various short nanofibers made of poly(ε-caprolactone), poly(lactic-co-glycolic acid), gelatin, methacrylated gelatin, bioglass, and magneto-responsive polymer composites. Open porous NMs support human neural progenitor cell growth in 3D with a larger number and more neurites than nonporous NMs. Additionally, highly open porous NMs show faster cell infiltration and host tissue integration than nonporous NMs after subcutaneous injection to rats. Such a novel class of NMs holds great potential for many biomedical applications such as tissue filling, cell and drug delivery, and minimally invasive tissue regeneration.
Collapse
Affiliation(s)
- Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ethan Davis
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Xiaowei Li
- Department of Neurological Sciences, and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jae Sung Park
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Richard A. Reinhardt
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
20
|
Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P. Angiogenesis in Tissue Engineering: As Nature Intended? Front Bioeng Biotechnol 2020; 8:188. [PMID: 32266227 PMCID: PMC7099606 DOI: 10.3389/fbioe.2020.00188] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the steady increase in the number of studies focusing on the development of tissue engineered constructs, solutions delivered to the clinic are still limited. Specifically, the lack of mature and functional vasculature greatly limits the size and complexity of vascular scaffold models. If tissue engineering aims to replace large portions of tissue with the intention of repairing significant defects, a more thorough understanding of the mechanisms and players regulating the angiogenic process is required in the field. This review will present the current material and technological advancements addressing the imperfect formation of mature blood vessels within tissue engineered structures.
Collapse
Affiliation(s)
- Valeria Mastrullo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| | - William Cathery
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Paola Campagnolo
- Section of Cardiovascular Sciences, Department of Biochemical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|