1
|
Skakic I, Taki AC, Francis JE, Dekiwadia C, Van TTH, Joe CCD, Phan T, Lovrecz G, Gorry PR, Ramsland PA, Walduck AK, Smooker PM. Nanocapsules Comprised of Purified Protein: Construction and Applications in Vaccine Research. Vaccines (Basel) 2024; 12:410. [PMID: 38675791 PMCID: PMC11053559 DOI: 10.3390/vaccines12040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticles show great promise as a platform for developing vaccines for the prevention of infectious disease. We have been investigating a method whereby nanocapsules can be formulated from protein, such that the final capsules contain only the cross-linked protein itself. Such nanocapsules are made using a silica templating system and can be customised in terms of size and porosity. Here we compare the construction and characteristics of nanocapsules from four different proteins: one a model protein (ovalbumin) and three from infectious disease pathogens, namely the influenza virus, Helicobacter pylori and HIV. Two of the nanocapsules were assessed further. We confirm that nanocapsules constructed from the urease A subunit of H. pylori can reduce subsequent infection in a vaccinated mouse model. Further, we show that capsules constructed from the HIV gp120 protein can be taken up by dendritic cells in tissue culture and can be recognised by antibodies raised against the virus. These results point to the utility of this method in constructing protein-only nanocapsules from proteins of varying sizes and isoelectric points.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Aya C. Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Chaitali Dekiwadia
- RMIT Microscopy & Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Thi Thu Hao Van
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Carina C. D. Joe
- CSIRO Manufacturing, Clayton, VIC 3169, Australia; (C.C.D.J.); (T.P.); (G.L.)
| | - Tram Phan
- CSIRO Manufacturing, Clayton, VIC 3169, Australia; (C.C.D.J.); (T.P.); (G.L.)
| | - George Lovrecz
- CSIRO Manufacturing, Clayton, VIC 3169, Australia; (C.C.D.J.); (T.P.); (G.L.)
| | - Paul R. Gorry
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Parkville, VIC 3010, Australia;
| | - Paul A. Ramsland
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Anna K. Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (T.T.H.V.); (P.A.R.)
| |
Collapse
|
2
|
Skakic I, Francis JE, Dekiwadia C, Aibinu I, Huq M, Taki AC, Walduck A, Smooker PM. An Evaluation of Urease A Subunit Nanocapsules as a Vaccine in a Mouse Model of Helicobacter pylori Infection. Vaccines (Basel) 2023; 11:1652. [PMID: 38005984 PMCID: PMC10674275 DOI: 10.3390/vaccines11111652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Using removable silica templates, protein nanocapsules comprising the A subunit of Helicobacter pylori urease (UreA) were synthesised. The templates were of two sizes, with solid core mesoporous shell (SC/MS) silica templates giving rise to nanocapsules of average diameter 510 nm and mesoporous (MS) silica templates giving rise to nanocapsules of average diameter 47 nm. Both were shown to be highly monodispersed and relatively homogenous in structure. Various combinations of the nanocapsules in formulation were assessed as vaccines in a mouse model of H. pylori infection. Immune responses were evaluated and protective efficacy assessed. It was demonstrated that vaccination of mice with the larger nanocapsules combined with an adjuvant was able to significantly reduce colonisation.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Ibukun Aibinu
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Health, Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mohsina Huq
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aya C. Taki
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| |
Collapse
|
3
|
Skakic I, Francis JE, Smooker PM. Design and Synthesis of Protein-Based Nanocapsule Vaccines. Methods Mol Biol 2022; 2412:339-354. [PMID: 34918254 DOI: 10.1007/978-1-0716-1892-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing emergence of infectious diseases is driving demand for new vaccine technologies capable of improving antigen delivery and protective efficacy. Nanoparticle technology is a modern approach to antigen delivery, capable of stabilizing and increasing the amount of antigen delivered to immune cells. Protein-based nanoparticles are a biodegradable alternative to existing nanomaterials, offering a versatile and biocompatible approach to nanoparticle vaccine delivery. In this chapter, the methods for the synthesis and characterization of protein-based nanocapsule vaccines are discussed. Initially, the requirements for a suitable nanoparticle vaccine are outlined, and finally, methods for the design and synthesis of protein-based nanocapsule vaccines are explained.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | | - Peter M Smooker
- School of Science, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
4
|
Solid Lipid Nanoparticle Carrier Platform Containing Synthetic TLR4 Agonist Mediates Non-Viral DNA Vaccine Delivery. Vaccines (Basel) 2020; 8:vaccines8030551. [PMID: 32967285 PMCID: PMC7563538 DOI: 10.3390/vaccines8030551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
There is a growing demand for better delivery systems to improve the stability and efficacy of DNA vaccines. Here we report the synthesis of a non-viral DNA vaccine delivery system using a novel adjuvanted solid lipid nanoparticle (SLN-A) platform as a carrier for a DNA vaccine candidate encoding the Urease alpha (UreA) antigen from Helicobacter pylori. Cationic SLN-A particles containing monophosphoryl lipid A (adjuvant) were synthesised by a modified solvent-emulsification method and were investigated for their morphology, zeta potential and in vitro transfection capacity. Particles were found to bind plasmid DNA to form lipoplexes, which were characterised by electron microscopy, dynamic light scattering and fluorescence microscopy. Cellular uptake studies confirmed particle uptake within 3 h, and intracellular localisation within endosomal compartments. In vitro studies further confirmed the ability of SLN-A particles to stimulate expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) in human macrophage-like Tohoku Hospital Pediatrics-1 (THP-1) cells. Lipoplexes were found to be biocompatible and could be efficiently transfected in murine immune cells for expression of recombinant H. pylori antigen Urease A, demonstrating their potential as a DNA vaccine delivery system.
Collapse
|