1
|
Wang Z, Zhao M, Huang X, Wang Y, Li W, Qiao J, Yang X. Therapeutic types and advantages of functionalized nanoparticles in inducing ferroptosis in cancer therapy. Ann Med 2024; 56:2396568. [PMID: 39276361 PMCID: PMC11404394 DOI: 10.1080/07853890.2024.2396568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The clinical efficacy of cancer treatment protocols remains unsatisfactory; however, the emergence of ferroptosis-driven therapy strategies has renewed hope for tumor treatment, owing to their remarkable tumor suppression effects. Biologically based small-molecule inducers are used in conventional method to induce ferroptosis. Nevertheless, some molecular drugs have limited solubility, poor ability to target cells, and fast metabolism, which hinder their ability to induce ferroptosis over a prolonged period. Fortunately, further investigations of ferroptosis and the development of nanotechnology have demonstrated that nanoparticles (NPs) are more efficient in inducing ferroptosis than drugs alone, which opens up new perspectives for cancer therapy. OBJECTIVE In order to organize a profile of recent advance in NPs for inducing ferroptosis in cancer therapy, and NPs were comprehensively classified in a new light.Materials and methods: We comprehensively searched the databases such as PubMed and Embase. The time limit for searching was from the establishment of the database to 2023.11. All literatures were related to "ferroptosis", "nanoparticles", "nanodelivery systems", "tumors", "cancer". RESULTS We summarized and classified the available NPs from a new perspective. The NPs were classified into six categories based on their properties: (1) iron oxide NPs (2) iron - based conversion NPs (3) core-shell structure (4) organic framework (5) silica NPs (6) lipoprotein NPs. According to the therapeutic types of NPs, they can be divided into categories: (1) NPs induced ferroptosis-related immunotherapy (2) NPs loaded with drugs (3) targeted therapy of NPs (4) multidrug resistance therapy (5) gene therapy with NPs (6) energy conversion therapy. CONCLUSIONS The insights gained from this review can provide ideas for the development of original NPs and nanodelivery systems, pave the way for related nanomaterials application in clinical cancer therapy, and advance the application and development of nanotechnology in the medical field.
Collapse
Affiliation(s)
- Ziying Wang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Miaomiao Zhao
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaotong Huang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuxin Wang
- School of Pharmacy, Binzhou Medical College, Yantai, Shandong, China
| | - Wentong Li
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jianhong Qiao
- Department of Outpatient, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiao Yang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Ishikawa C, Mori N. A New Strategy for Adult T-Cell Leukemia Treatment Targeting Glycogen Synthase Kinase-3β. Eur J Haematol 2024; 113:852-862. [PMID: 39239903 DOI: 10.1111/ejh.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES The role of glycogen synthase kinase (GSK)-3β in adult T-cell leukemia (ATL) caused by human T-cell leukemia virus type 1 (HTLV-1) is paradoxical and enigmatic. Here, we investigated the role of GSK-3β and its potential as a therapeutic target for ATL. METHODS Cell proliferation/survival, cell cycle, apoptosis, and reactive oxygen species (ROS) generation were examined using the WST-8 assay, flow cytometry, and Hoechst 33342 staining, respectively. Expression of GSK-3β and cell cycle/death-related proteins, and survival signals was analyzed using RT-PCR, immunofluorescence staining, and immunoblotting. RESULTS HTLV-1-infected T-cell lines showed nuclear accumulation of GSK-3β. GSK-3β knockdown and its inhibition with 9-ING-41 and LY2090314 suppressed cell proliferation/survival. 9-ING-41 induced G2/M arrest by enhancing the expression of γH2AX, p53, p21, and p27, and suppressing the expression of CDK1, cyclin A/B, and c-Myc. It induced caspase-mediated apoptosis by decreasing the expression of Bcl-xL, Mcl-1, XIAP, c-IAP1/2, and survivin, and increasing the expression of Bak and Bax. 9-ING-41 also induced ferroptosis and necroptosis, promoted JNK phosphorylation, and suppressed IKKγ and JunB expression. It inhibited the phosphorylation of IκBα, Akt, and STAT3/5, induced ROS production, and reduced glycolysis-derived lactate levels. CONCLUSION GSK-3β functions as an oncogene in ATL and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
3
|
Wang S, Yi K, Guan X, Zhou Z, Cao Y, Zhang X. Construction of charge-reversible coordination-crosslinked spherical nucleic acids to deliver dual anti-cancer genes and ferroptosis payloads. Int J Biol Macromol 2024; 277:134515. [PMID: 39106627 DOI: 10.1016/j.ijbiomac.2024.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Spherical nucleic acids (SNAs) are nanostructures with the DNA arranged radially on the surface, thus allowing specific binding with cancer cells expressing high levels of scavenger receptor-A to enhance cellular uptake. However, conventional carriers for SNAs are cytotoxic, not degradable and difficult to deliver multiple payloads. In this study, we developed charge-reversible coordination-crosslinked SNAs to deliver dual anti-cancer genes and ferroptosis payload for anti-cancer purposes. To this end, we modified poly(lactic acid) (PLA) with functionalized side chains to allow its binding with antisense oligonucleotides (ASOs) and siRNA, annealed two single-stranded RNAs to obtain double-stranded RNA, and introduced a polyethylene glycol (PEG) shell to enhance the circulation time. Additionally, the ferroptosis payload imidazole was coordinated with iron ions as a core-crosslinked group to enhance the stability of SNAs and efficiency to kill cancer cells. We demonstrated that this novel nanocomplex efficiently internalized and killed CT-26 cells in vitro. In vivo data confirmed that the dual gene delivery system successfully targeted CT-26 tumors in tumor-bearing BALB/c mice, and exhibited strong tumor suppression ability, without inducing adverse toxic effects. Taken together, our dual gene therapy system offered an enhanced anti-tumor solution by simultaneously delivering dual anti-cancer genes and ferroptosis payload in tumor microenvironment.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Kailong Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Xiaoqi Guan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Zeyu Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuefei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
4
|
Ishikawa C, Mori N. Inhibitory effect of a neddylation blockade on HTLV-1-infected T cells via modulation of NF-κB, AP-1, and Akt signaling. Leuk Lymphoma 2024; 65:978-988. [PMID: 38489672 DOI: 10.1080/10428194.2024.2328219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Adult T-cell leukemia (ATL), caused by HTLV-1, is the most lethal hematological malignancy. NEDD8-activating enzyme (NAE) is a component of the NEDD8 conjunction pathway that regulates cullin-RING ubiquitin ligase (CRL) activity. HTLV-1-infected T cells expressed higher levels of NAE catalytic subunit UBA3 than normal peripheral blood mononuclear cells. NAE1 knockdown inhibited proliferation of HTLV-1-infected T cells. The NAE1 inhibitor MLN4924 suppressed neddylation of cullin and inhibited the CRL-mediated turnover of tumor suppressor proteins. MLN4924 inhibited proliferation of HTLV-1-infected T cells by inducing DNA damage, leading to S phase arrest and caspase-dependent apoptosis. S phase arrest was associated with CDK2 and cyclin A downregulation. MLN4924-induced apoptosis was mediated by the upregulation of pro-apoptotic and downregulation of anti-apoptotic proteins. Furthermore, MLN4924 inhibited NF-κB, AP-1, and Akt signaling pathways and activated JNK. Therefore, neddylation inhibition is an attractive strategy for ATL therapy. Our findings support the use of MLN4924 in ATL clinical trials.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
5
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
6
|
Ta N, Jiang X, Zhang Y, Wang H. Ferroptosis as a promising therapeutic strategy for melanoma. Front Pharmacol 2023; 14:1252567. [PMID: 37795022 PMCID: PMC10546212 DOI: 10.3389/fphar.2023.1252567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Malignant melanoma (MM) is the most common and deadliest type of skin cancer and is associated with high mortality rates across all races and ethnicities. Although present treatment options combined with surgery provide short-term clinical benefit in patients and early diagnosis of non-metastatic MM significantly increases the probability of survival, no efficacious treatments are available for MM. The etiology and pathogenesis of MM are complex. Acquired drug resistance is associated with a pool prognosis in patients with advanced-stage MM. Thus, these patients require new therapeutic strategies to improve their treatment response and prognosis. Multiple studies have revealed that ferroptosis, a non-apoptotic form of regulated cell death (RCD) characterized by iron dependant lipid peroxidation, can prevent the development of MM. Recent studies have indicated that targeting ferroptosis is a promising treatment strategy for MM. This review article summarizes the core mechanisms underlying the development of ferroptosis in MM cells and its potential role as a therapeutic target in MM. We emphasize the emerging types of small molecules inducing ferroptosis pathways by boosting the antitumor activity of BRAFi and immunotherapy and uncover their beneficial effects to treat MM. We also summarize the application of nanosensitizer-mediated unique dynamic therapeutic strategies and ferroptosis-based nanodrug targeting strategies as therapeutic options for MM. This review suggests that pharmacological induction of ferroptosis may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Na Ta
- Department of Neurosurgery, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaodong Jiang
- Department of Anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng, China
| | - Yongchun Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
7
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
8
|
Gong L, Huang D, Shi Y, Liang Z, Bu H. Regulated cell death in cancer: from pathogenesis to treatment. Chin Med J (Engl) 2023; 136:653-665. [PMID: 35950752 PMCID: PMC10129203 DOI: 10.1097/cm9.0000000000002239] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Regulated cell death (RCD), including apoptosis, pyroptosis, necroptosis, and ferroptosis, is regulated by a series of evolutionarily conserved pathways, and is required for development and tissue homeostasis. Based on previous genetic and biochemical explorations of cell death subroutines, the characteristics of each are generally considered distinctive. However, recent in-depth studies noted the presence of crosstalk between the different forms of RCD; hence, the concept of PANoptosis appeared. Cancer, a complex genetic disease, is characterized by stepwise deregulation of cell apoptosis and proliferation, with significant morbidity and mortality globally. At present, studies on the different RCD pathways, as well as the intricate relationships between different cell death subroutines, mainly focus on infectious diseases, and their roles in cancer remain unclear. As cancers are characterized by dysregulated cell death and inflammatory responses, most current treatment strategies aim to selectively induce cell death via different RCD pathways in cancer cells. In this review, we describe five types of RCD pathways in detail with respect to tumorigenesis and cancer progression. The potential value of some of these key effector molecules in tumor diagnosis and therapeutic response has also been raised. We then review and highlight recent progress in cancer treatment based on PANoptosis and ferroptosis induced by small-molecule compounds, immune checkpoint inhibitors, and nanoparticles. Together, these findings may provide meaningful evidence to fill in the gaps between cancer pathogenesis and RCD pathways to develop better cancer therapeutic strategies.
Collapse
Affiliation(s)
- Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zong’an Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Bu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Huang H, Chen Y, Yin N, Li G, Ye S, Guo L, Feng M. Unsaturated Fatty Acid Liposomes Selectively Regulate Glutathione Peroxidase 4 to Exacerbate Lipid Peroxidation as an Adaptable Liposome Platform for Anti-Tumor Therapy. Mol Pharm 2023; 20:290-302. [PMID: 36368878 DOI: 10.1021/acs.molpharmaceut.2c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulating non-apoptotic cell death of cancer cells provides a promising strategy to overcome apoptosis resistance during cancer treatment. Lipids are essential components to exacerbate several non-apoptotic cell death pathways. In the present study, unsaturated fatty acid (UFA) liposomes prepared with linoleic acid, oleic acid, or α-linolenic acid have the potential to affect lipid metabolism. Notably, UFA liposomes markedly increased cellular reactive oxygen species (ROS) and down-regulated the expression of glutathione peroxidase 4 (GPX4) in tumor cells, resulting in lipid peroxidation, which in turn caused rapid membrane rupture and induced non-apoptotic cell death of tumor cells. Concomitantly, UFA liposomes induced ROS-mediated tumor-associated macrophages toward a tumoricidal phenotype to reverse the immunosuppressive tumor microenvironment. Consequently, UFA liposomes substantially inhibited tumor growth in a melanoma model by promoting lipid peroxidation, inducing non-apoptotic cell death of tumor cells, and increasing infiltration of anti-tumor immune cells at tumor sites. Therefore, UFA liposomes regulate GXP4 to exacerbate lipid peroxidation and provide a versatile liposome platform for enhancing anti-tumor therapy which could be readily extended to the delivery of anticancer agents.
Collapse
Affiliation(s)
- Huan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Na Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gaojie Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Li Y, Yin R, Liang M, Chen C. Nrf2 suppresses erastin-induced ferroptosis through activating system Xc(-) in ovarian cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
12
|
Kumar V, Bhatt D, Saruchi, Pandey S. Luminescence Nanomaterials for Biosensing Applications. LUMINESCENCE 2022. [PMID: 36042553 DOI: 10.1002/bio.4373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Due to their capabilities of immobilizing more bioreceptor parts with reduced volumes, nanomaterials have emerged as potential tools for increasing sensitivity to specific molecules. Furthermore, carbon nanotube, gold nanoparticles, polymer nanoparticles, semiconductor quantum dots, graphene, nano-diamonds and graphene are among the nanomaterials that are under investigation. Due to the fast development of such a field of research, review summarises the classification of biosensors using main receptors, and designing biosensors. Numerous studies have concentrated on the manipulation of Persistent luminescence nanoparticles (PLNPs) in biosensing, cell tracking, bioimaging, and cancer therapy due to the effective removal of the autofluorescence interferences from tissues and the ultra-long near-infrared afterglow emission. As luminescence has a unique optical property, it can be detected without constant external illumination, preventing autofluorescence and light dispersion through tissues. These successes sparked an increasing curiosity in creating novel PLNP kinds with desired superior properties and multiple purposes. In this review, we emphasize the most recent developments in biosensing, imaging, and image-guided therapy while summarizing the research on synthesis methods, bio applications, bio membrane modification and bio-safety of PLNPs. Finally, the remaining issues and difficulties are examined together with prospective future developments in the field of biomedical applications.
Collapse
Affiliation(s)
- Vaneet Kumar
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Diksha Bhatt
- School of Natural Science, CT University, Ludhiana, Punjab, India
| | - Saruchi
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences (CTIPS) , CT Group of Institutions, Shahpur Campus Jalandhar, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
13
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Wu T, Wang X, Cheng J, Liang X, Li Y, Chen M, Kong L, Tang M. Nitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia. Part Fibre Toxicol 2022; 19:22. [PMID: 35331277 PMCID: PMC8944010 DOI: 10.1186/s12989-022-00464-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Along with the wild applications of nitrogen-doped graphene quantum dots (N-GQDs) in the fields of biomedicine and neuroscience, their increasing exposure to the public and potential biosafety problem has gained more and more attention. Unfortunately, the understanding of adverse effects of N-GQDs in the central nervous system (CNS), considered as an important target of nanomaterials, is still limited. Results After we found that N-GQDs caused cell death, neuroinflammation and microglial activation in the hippocampus of mice through the ferroptosis pathway, microglia was used to assess the molecular mechanisms of N-GQDs inducing ferroptosis because it could be the primary target damaged by N-GQDs in the CNS. The microarray data suggested the participation of calcium signaling pathway in the ferroptosis induced by N-GQDs. In microglial BV2 cells, when the calcium content above the homeostatic level caused by N-GQDs was reversed, the number of cell death, ferroptosis alternations and excessive inflammatory cytokines release were all alleviated. Two calcium channels of L-type voltage-gated calcium channels (L-VGCCs) in plasma membrane and ryanodine receptor (RyR) in endoplasmic reticulum (ER) took part in N-GQDs inducing cytosolic calcium overload. L-VGCCs and RyR calcium channels were also involved in promoting the excess iron influx and triggering ER stress response, respectively, which both exert excessive ROS generation and result in the ferroptosis and inflammation in BV2 cells. Conclusion N-GQDs exposure caused ferroptosis and inflammatory responses in hippocampus of mice and cultured microglia through activating two calcium channels to disrupt intracellular calcium homeostasis. The findings not only posted an alert for biomedical applications of N-GQDs, but also highlighted an insight into mechanism researches of GQDs inducing multiple types of cell death in brain tumor therapy in the future. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00464-z.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xue Liang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
15
|
Jia M, Zhang H, Qin Q, Hou Y, Zhang X, Chen D, Zhang H, Chen Y. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur J Pharmacol 2021; 908:174319. [PMID: 34252441 DOI: 10.1016/j.ejphar.2021.174319] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Nonviral liver disease is a global public health problem due to its high mortality and morbidity. However, its underlying mechanism is unclear. Ferroptosis is a novel form of cell death that is involved in a variety of disease processes. Both abnormal iron metabolism (e.g., iron overload) and lipid peroxidation, which is induced by deletion of glutathione (GSH) or glutathione peroxidase 4 (GPX4), and the accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-PLs) trigger ferroptosis. Recently, ferroptosis has been involved in the pathological process of nonviral liver diseases [including alcohol-related liver disease (ALD); nonalcoholic fatty liver disease (NAFLD); hereditary hemochromatosis (HH); drug-, ischemia/reperfusion- or immune-induced liver injury; liver fibrosis; and liver cancer]. Hepatocyte ferroptosis is activated in ALD; NAFLD; HH; drug-, ischemia/reperfusion- or immune-induced liver injury; and liver fibrosis, whereas hepatic stellate cell and liver cancer cell ferroptosis are inhibited in liver fibrosis and liver cancer, respectively. Thus, ferroptosis is an ideal target for nonviral liver diseases. In the present review, we discuss the latest findings on ferroptosis and potential drugs targeting ferroptosis for nonviral liver diseases. This review will highlight further directions for the treatment and prevention of nonviral liver diseases.
Collapse
Affiliation(s)
- Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital (the Affiliated Hospital of Xi'an Medical University), Xi'an Medical University, Xi'an, Shaanxi, 710068, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
16
|
α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021; 26:molecules26175119. [PMID: 34500560 PMCID: PMC8434247 DOI: 10.3390/molecules26175119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG’s cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
Collapse
|
17
|
Copperpod Plant Synthesized AgNPs Enhance Cytotoxic and Apoptotic Effect in Cancer Cell Lines. Processes (Basel) 2021. [DOI: 10.3390/pr9050888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The utilization of biological resources on the manufacture of nano silver has attracted the interest of researchers to develop an eco-friendly, cost-effective technology in nanomaterials production. In the present study, plant-mediated silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of the Copperpod plant, which was well characterized. The ultraviolet-visible spectrophotometric study showed a maximum absorbance peak at 425 nm, and the observation of transmission electron microscopic features revealed that the nanoparticles size ranged between 20 and 70 nm. The synthesized AgNPs were tested for in vitro cytotoxic effects against cancerous cells, such as HepG2, A549 and MCF-7 cells. The findings showed that the IC50 values of AgNPs against cancerous cells viz., HepG2, MCF-7 and A549 cells, were observed to be 69 µg/mL, 62 µg/mL and 53 µg/mL, respectively. In addition, the apoptosis property was analysed using propidium iodide and acridine orange-ethidium bromide via the DNA fragmentation technique. Thus, the outcomes of the current analysis presume that the plant mediated AgNPs obtained from a synthesized Copperpod plant possess significant anti-cancer properties against various cancerous cells.
Collapse
|
18
|
Yadav M, Niveria K, Sen T, Roy I, Verma AK. Targeting nonapoptotic pathways with functionalized nanoparticles for cancer therapy: current and future perspectives. Nanomedicine (Lond) 2021; 16:1049-1065. [PMID: 33970686 DOI: 10.2217/nnm-2020-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptotic death evasion is a hallmark of cancer progression. In this context, past decades have witnessed cytotoxic agents targeting apoptosis. However, owing to cellular defects in the apoptotic machinery, tumors develop resistance to apoptosis-based cancer therapies. Hence, targeting nonapoptotic cell-death pathways displays enhanced therapeutic success in apoptosis-defective tumor cells. Exploitation of multifunctional properties of engineered nanoparticles may allow cancer therapeutics to target yet unexplored pathways such as ferroptosis, autophagy and necroptosis. Necroptosis presents a programmed necrotic death initiated by same apoptotic death signals that are caspase independent, whereas autophagy is self-degradative causing vacuolation, and ferroptosis is an iron-dependent form driven by lipid peroxidation. Targeting these tightly regulated nonapoptotic pathways may emerge as a new direction in cancer drug development, diagnostics and novel cancer nanotherapeutics. This review highlights the current challenges along with the advancement in this field of research and finally summarizes the future perspective in terms of their clinical merits.
Collapse
Affiliation(s)
- Monika Yadav
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Karishma Niveria
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Tapas Sen
- School of Natural Sciences, University of Central Lancashire, PR1 2HE, UK
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anita K Verma
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
19
|
Sepand MR, Aghsami M, Keshvadi MH, Bigdelou B, Behzad R, Zanganeh S, Shadboorestan A. The role of macrophage polarization and function in environmental toxicant-induced cancers. ENVIRONMENTAL RESEARCH 2021; 196:110933. [PMID: 33689818 DOI: 10.1016/j.envres.2021.110933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Macrophages are a critical member of the innate immune system and can intensify tumor invasiveness and assist the growth of neoplastic cells. Moreover, they have the capability to reinforce immunosuppression and angiogenesis. Various investigations suggest that health-related issues, including inflammatory disorders and neoplastic diseases may be caused by environmental toxicant exposure. However, it is still unclear what role these environmental toxicants play in causing carcinogenesis by disturbing the mechanisms of migration, polarization, differentiation, and immune-stimulatory functions of macrophages. Accordingly, in this article, we will explore the interaction between environmental chemicals and inflammatory macrophage processes at the molecular level and their association with tumor progression and carcinogenesis.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Keshvadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Bigdelou
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA.
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Xu R, Yang J, Qian Y, Deng H, Wang Z, Ma S, Wei Y, Yang N, Shen Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. NANOSCALE HORIZONS 2021; 6:348-356. [PMID: 33687417 DOI: 10.1039/d0nh00674b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-apoptotic cell death such as ferroptosis and pyroptosis has shed new light on cancer treatment, whereas combinational therapy using both these mechanisms has not yet been fully explored. Herein, a dual-inductive nano-system to realize ferroptosis/pyroptosis mediated anti-cancer effects is presented. The nanodrug (Tf-LipoMof@PL) is constructed with a piperlongumine (PL) loaded metal-organic framework (MOF) coated with transferrin decorated pH sensitive lipid layer. Intracellular iron was enriched with an iron-containing MOF, whose endocytosis can be further facilitated by transferrin decorated on the lipid layer, which provides a prerequisite for the occurrence of ferroptosis and pyroptosis. Piperlongumine as the ferroptosis inducer can strengthen the ferroptotic cell death, and provide H2O2 for the dual induction system to increase ROS generation through Fenton reaction. On the basis of validation of both ferroptosis and pyroptosis, the dual-inductive nanodrug demonstrated ideal anticancer effects in the xenograft mice model, which proved that the ferroptosis/pyroptosis dual-inductive nanoplatform could be an effective and promising anticancer modality.
Collapse
Affiliation(s)
- Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, Schwartz S. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:44-68. [PMID: 35582007 PMCID: PMC9019183 DOI: 10.20517/cdr.2020.59] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Advanced cancer is still considered an incurable disease because of its metastatic spread to distal organs and progressive gain of chemoresistance. Even though considerable treatment progress and more effective therapies have been achieved over the past years, recurrence in the long-term and undesired side effects are still the main drawbacks of current clinical protocols. Moreover, a majority of chemotherapeutic drugs are highly hydrophobic and need to be diluted in organic solvents, which cause high toxicity, in order to reach effective therapeutic dose. These limitations of conventional cancer therapies prompted the use of nanomedicine, the medical application of nanotechnology, to provide more effective and safer cancer treatment. Potential of nanomedicines to overcome resistance, ameliorate solubility, improve pharmacological profile, and reduce adverse effects of chemotherapeutical drugs is thus highly regarded. Their use in the clinical setting has increased over the last decade. Among the various existing nanosystems, nanoparticles have the ability to transform conventional medicine by reducing the adverse effects and providing a controlled release of therapeutic agents. Also, their small size facilitates the intracellular uptake. Here, we provide a closer review of clinical prospects and mechanisms of action of nanomedicines to overcome drug resistance. The significance of specific targeting towards cancer cells is debated as well.
Collapse
Affiliation(s)
- Anna Ulldemolins
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Fernanda Andrade
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza 50009, Spain
| | - Diana Rafael
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza 50009, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza 50009, Spain
| | - Petra Gener
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza 50009, Spain
| | - Simo Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza 50009, Spain
| |
Collapse
|
22
|
Buskaran K, Bullo S, Hussein MZ, Masarudin MJ, Mohd Moklas MA, Fakurazi S. Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. MATERIALS 2021; 14:ma14040817. [PMID: 33572054 PMCID: PMC7915244 DOI: 10.3390/ma14040817] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Liver cancer is listed as the fifth-ranked cancer, responsible for 9.1% of all cancer deaths globally due to its assertive nature and poor survival rate. To overcome this obstacle, efforts have been made to ensure effective cancer therapy via nanotechnology utilization. Recent studies have shown that functionalized graphene oxide (GO)-loaded protocatechuic acid has shown some anticancer activities in both passive and active targeting. The nanocomposites’ physicochemical characterizations were conducted. A lactate dehydrogenase experiment was conducted to estimate the severity of cell damage. Subsequently, a clonogenic assay was carried out to examine the colony-forming ability during long-term exposure of the nanocomposites. The Annexin V/ propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Following the intervention of nanocomposites, cell cycle arrest was ascertained at G2/M phase. There was depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. Finally, the proteomic profiling array and quantitative reverse transcription polymerase chain reaction revealed the expression of pro-apoptotic and anti-apoptotic proteins induced by graphene oxide conjugated PEG loaded with protocatechuic acid drug folic acid coated nanocomposite (GOP–PCA–FA) in HepG2 cells. In conclusion, GOP–PCA–FA nanocomposites treated HepG2 cells exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid and GOP–PCA nanocomposites, due to the utilization of a folic acid-targeting nanodrug delivery system.
Collapse
Affiliation(s)
- Kalaivani Buskaran
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Saifullah Bullo
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.B.); (M.Z.H.)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.B.); (M.Z.H.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, School of Biotechnology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Sharida Fakurazi
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
- Correspondence: ; Tel.: +603-9769-2352
| |
Collapse
|
23
|
Salek Maghsoudi A, Hassani S, Mirnia K, Abdollahi M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine 2021; 16:803-832. [PMID: 33568907 PMCID: PMC7870343 DOI: 10.2147/ijn.s294417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Heavy metals cause considerable environmental pollution due to their extent and non-degradability in the environment. Analysis and trace levels of arsenic, lead, mercury, and cadmium as the most toxic heavy metals show that they can cause various hazards in humans' health. To achieve rapid, high-sensitivity methods for analyzing ultra-trace amounts of heavy metals in different environmental and biological samples, novel biosensors have been designed with the participation of strategies applied in nanotechnology. This review attempted to investigate the novel, sensitive, efficient, cost-benefit, point of care, and user-friendly biosensors designed to detect these heavy metals based on functional mechanisms. The study's search strategies included examining the primary databases from 2015 onwards and various keywords focusing on heavy metal biosensors' performance and toxicity mechanisms. The use of aptamers and whole cells as two important bio-functional nanomaterials is remarkable in heavy metal diagnostic biosensors' bioreceptor design. The application of hybridized nanomaterials containing a specific physicochemical function in the presence of a suitable transducer can improve the sensing performance to achieve an integrated detection system. Our study showed that in addition to both labeled and label-free detection strategies, a wide range of nanoparticles and nanocomposites were used to modify the biosensor surface platform in the detection of heavy metals. The detection limit and linear dynamic range as an essential characteristic of superior biosensors for the primary toxic metals are studied. Furthermore, the perspectives and challenges facing the design of heavy metal biosensors are outlined. The development of novel biosensors and the application of nanotechnology, especially in real samples, face challenges such as the capability to simultaneously detect multiple heavy metals, the interference process in complex matrices, the efficiency and stability of nanomaterials implemented in various laboratory conditions.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|