1
|
Shang N, Zhu L, Li Y, Song C, Liu X. Targeting CDK1 and copper homeostasis in breast cancer via a nanopolymer drug delivery system. Cell Biol Toxicol 2024; 41:16. [PMID: 39724454 DOI: 10.1007/s10565-024-09958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis. Through a comprehensive approach involving bioinformatics analyses, in vitro experiments, and in vivo models, the study identified CDK1 as a significant factor in BRCA progression under copper homeostasis. MBVP-Gel, a novel thermosensitive hydrogel incorporating NPs, was developed to enhance the delivery of chemotherapy drugs and regulate copper homeostasis in breast cancer treatment. The MBVP-Gel, formulated with copper chelation and VCR NPs, effectively suppressed CDK1 expression, thereby restraining BRCA cell growth and metastasis while enhancing the therapeutic impact of VCR. This investigation offers fresh insights and experimental validation on the interaction between copper homeostasis and BRCA, providing a valuable foundation for refining future treatment strategies. These findings underscore the potential advantages of targeting copper homeostasis and CDK1 in enhancing BRCA therapy, setting the stage for individualized interventions and improved patient consequences.
Collapse
Affiliation(s)
- Nan Shang
- Department of Urinary Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Lisi Zhu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Yan Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Chengyang Song
- Department of Thoracic and Cardiac Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| |
Collapse
|
2
|
Adeyemo OM, Ashimiyu‐Abdusalam Z, Adewunmi M, Ayano TA, Sohaib M, Abdel‐Salam R. Network-based identification of key proteins and repositioning of drugs for non-small cell lung cancer. Cancer Rep (Hoboken) 2024; 7:e2031. [PMID: 38600056 PMCID: PMC11006715 DOI: 10.1002/cnr2.2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND NSCLC is a lethal cancer that is highly prevalent and accounts for 85% of cases of lung cancer. Conventional cancer treatments, such as chemotherapy and radiation, frequently exhibit limited efficacy and notable adverse reactions. Therefore, a drug repurposing method is proposed for effective NSCLC treatment. AIMS This study aims to evaluate candidate drugs that are effective for NSCLC at the clinical level using a systems biology and network analysis approach. METHODS Differentially expressed genes in transcriptomics data were identified using the systems biology and network analysis approaches. A network of gene co-expression was developed with the aim of detecting two modules of gene co-expression. Following that, the Drug-Gene Interaction Database was used to find possible drugs that target important genes within two gene co-expression modules linked to non-small cell lung cancer (NSCLC). The use of Cytoscape facilitated the creation of a drug-gene interaction network. Finally, gene set enrichment analysis was done to validate candidate drugs. RESULTS Unlike previous research on repositioning drugs for NSCLC, which uses a gene co-expression network, this project is the first to research both gene co-expression and co-occurrence networks. And the co-occurrence network also accounts for differentially expressed genes in cancer cells and their adjacent normal cells. For effective management of non-small cell lung cancer (NSCLC), drugs that show higher gene regulation and gene affinity within the drug-gene interaction network are thought to be important. According to the discourse, NSCLC genes have a lot of control over medicines like vincristine, fluorouracil, methotrexate, clotrimazole, etoposide, tamoxifen, sorafenib, doxorubicin, and pazopanib. CONCLUSION Hence, there is a possibility of repurposing these drugs for the treatment of non-small-cell lung cancer.
Collapse
Affiliation(s)
- Oluwatosin Maryam Adeyemo
- Department of BiochemistryFederal University of TechnologyAkureNigeria
- Cancer Research with AI (CaresAI)HobartAustralia
| | - Zainab Ashimiyu‐Abdusalam
- Cancer Research with AI (CaresAI)HobartAustralia
- Department of Biochemistry and NutritionNigeria Institute of Medical ResearchLagosNigeria
| | - Mary Adewunmi
- Cancer Research with AI (CaresAI)HobartAustralia
- College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Temitope Ayanfunke Ayano
- Cancer Research with AI (CaresAI)HobartAustralia
- Department of MicrobiologyObafemi Awolowo UniversityIle‐IfeNigeria
| | | | - Reem Abdel‐Salam
- Cancer Research with AI (CaresAI)HobartAustralia
- Department of Computer Engineering, Faculty of EngineeringCairo UniversityCairoEgypt
| |
Collapse
|
3
|
Redruello-Guerrero P, Córdoba-Peláez P, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo M, Mesas C, Ortiz R, Prados J, Perazzoli G. Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review. Curr Drug Deliv 2024; 21:1346-1361. [PMID: 38099532 DOI: 10.2174/0115672018272162231116093143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. METHODS A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. RESULTS The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. CONCLUSION Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.
Collapse
Affiliation(s)
- Pablo Redruello-Guerrero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | | | | | - Mario Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| |
Collapse
|
4
|
Gandhi S, Roy I. Lipid-Based Inhalable Micro- and Nanocarriers of Active Agents for Treating Non-Small-Cell Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15051457. [PMID: 37242697 DOI: 10.3390/pharmaceutics15051457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) afflicts about 2 million people worldwide, with both genetic (familial) and environmental factors contributing to its development and spread. The inadequacy of currently available therapeutic techniques, such as surgery, chemotherapy, and radiation therapy, in addressing NSCLC is reflected in the very low survival rate of this disease. Therefore, newer approaches and combination therapy regimens are required to reverse this dismal scenario. Direct administration of inhalable nanotherapeutic agents to the cancer sites can potentially lead to optimal drug use, negligible side effects, and high therapeutic gain. Lipid-based nanoparticles are ideal agents for inhalable delivery owing to their high drug loading, ideal physical traits, sustained drug release, and biocompatibility. Drugs loaded within several lipid-based nanoformulations, such as liposomes, solid-lipid nanoparticles, lipid-based micelles, etc., have been developed as both aqueous dispersed formulations as well as dry-powder formulations for inhalable delivery in NSCLC models in vitro and in vivo. This review chronicles such developments and charts the future prospects of such nanoformulations in the treatment of NSCLC.
Collapse
Affiliation(s)
- Sona Gandhi
- Department of Chemistry, School of Basic & Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
5
|
Bhatt HN, Pena-Zacarias J, Beaven E, Zahid MI, Ahmad SS, Diwan R, Nurunnabi M. Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment. ACS APPLIED BIO MATERIALS 2023; 6:365-383. [PMID: 36753355 PMCID: PMC9975046 DOI: 10.1021/acsabm.2c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last decades, photomedicine has made a significant impact and progress in treating superficial cancer. With tremendous efforts many of the technologies have entered clinical trials. Photothermal agents (PTAs) have been considered as emerging candidates for accelerating the outcome from photomedicine based cancer treatment. Besides various inorganic and organic candidates, 2D materials such as graphene, boron nitride, and molybdenum disulfide have shown significant potential for photothermal therapy (PTT). The properties such as high surface area to volume, biocompatibility, stability in physiological media, ease of synthesis and functionalization, and high photothermal conversion efficiency have made 2D nanomaterials wonderful candidates for PTT to treat cancer. The targeting or localized activation could be achieved when PTT is combined with chemotherapies, immunotherapies, or photodynamic therapy (PDT) to provide better outcomes with fewer side effects. Though significant development has been made in the field of phototherapeutic drugs, several challenges have restricted the use of PTT in clinical use and hence they have not yet been tested in large clinical trials. In this review, we attempted to discuss the progress, properties, applications, and challenges of 2D materials in the field of PTT and their application in photomedicine.
Collapse
Affiliation(s)
- Himanshu N. Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Jaqueline Pena-Zacarias
- Department of Biological Sciences, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Sheikh Shafin Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, Environmental Science & Engineering, and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
6
|
Man RJ, Lu T, Zheng CC, Li T, Wu MK, Li DD, He XM. Discovery of pyrazole-carbohydrazide with indole moiety as tubulin polymerization inhibitors and anti-tumor candidates. Drug Dev Res 2023; 84:110-120. [PMID: 36433708 DOI: 10.1002/ddr.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
In this work, a series of indole-containing pyrazole-carbohydrazide derivatives A1-A25 were synthesized, and their biological activity on tubulin polymerization inhibition and mitotic catastrophe was evaluated. For introducing indole group to CA-4 pattern, the carbohydrazide linker was used for the first time. As the top hit, A18 suggested notable antiproliferation efficacy and tubulin polymerization inhibitory activity. Inferring comparable antitubulin effect with the positive control Colchicine, A18 indicated obviously lower cyto-toxicity. The cell scratch test showed that A18 could block the cell migration, while the confocal imaging depicted that A18 could induce the mitotic catastrophe via a Colchicine-like approach. The docking simulation visualized the probable binding pattern of A18. With the information in this work, some new hints on modification might be involved in further tubulin-related investigations.
Collapse
Affiliation(s)
- Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China
| | - Tian Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, China.,Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Dong Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xue-Mei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| |
Collapse
|
7
|
Gupta C, Jaipuria A, Gupta N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics 2022; 15:139. [PMID: 36678768 PMCID: PMC9861595 DOI: 10.3390/pharmaceutics15010139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer has been the leading cause of mortalities, with lung cancer contributing 18% to overall deaths. Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. The primary form of therapy used to treat lung cancer still includes oral and systemic administration of drugs, radiotherapy, or chemotherapy. Some patients have to go through a regime of combination therapy. Despite being the only available form of therapy, their use is limited due to the adverse effects, toxicity, and development of resistance over prolonged use. This led to a shift and progressive evolution into using pulmonary drug delivery systems. Being a non-invasive method of drug-administration and allowing localized delivery of drugs to cancer cells, inhalable drug delivery systems can lead to lower dosing and fewer systemic toxicities over other conventional routes. In this way, we can increase the actual local concentration of the drug in lungs, which will ultimately lead to better antitumor therapy. Nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening, and tracking. Regardless of the advantages, pulmonary delivery is still in the early stages of development and various factors such as pharmacology, immunology, and toxicology should be taken into consideration for the development of suitable inhalable nano-based chemotherapeutic drugs. They face numerous physiological barriers such as lung retention and efficacy, and could also lead to toxicity due to prolonged exposure. Nano-carriers with a sustained drug release mechanism could help in overcoming these challenges. This review article will focus on the various inhalable formulations for targeted drug delivery, including nano-based delivery systems such as lipids, liposome, polymeric and inorganic nanocarriers, micelles, microparticles and nanoaggregates for lung cancer treatment. Various devices used in pulmonary drug delivery loaded on various nano-carriers are also discussed in detail.
Collapse
Affiliation(s)
- Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aadya Jaipuria
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Ahlawat P, Phutela K, Bal A, Singh N, Sharma S. Therapeutic potential of human serum albumin nanoparticles encapsulated actinonin in murine model of lung adenocarcinoma. Drug Deliv 2022; 29:2403-2413. [PMID: 35892161 PMCID: PMC9336490 DOI: 10.1080/10717544.2022.2067600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer comprises 85% of the global lung cancer cases. Conventional chemotherapeutics possess certain limitations like systemic toxicity and drug resistance that requires the development of new therapeutic agents for successful treatment of lung cancer. Actinonin, a human peptide deformylase inhibitor, has demonstrated anti-cancerous properties in various leukemias and solid cancer types. However, it has limited therapeutic application because of its low bioavailability and systemic toxicity if administered in free form. This limitation can be overcome by using nano-delivery systems that will increase the therapeutic efficacy of actinonin. In the present study, human serum albumin actinonin nanoparticles were prepared using a desolvation technique and folic acid was conjugated to lysine residues of albumin for effective delivery to the lung. The lung adenocarcinoma model was established 24 weeks after intraperitoneal administration of urethane and chemotherapeutic efficacy of free as well as nanoencapsulated actinonin was evaluated. This study demonstrated anti-proliferative potential of folic acid conjugated human serum albumin nanoparticles encapsulating actinonin. The intraperitoneally administered nanoformulation exhibited sustain release profile of actinonin with longer half-life and mean retention time. The reduced dose frequency resulted in therapeutic efficacy comparable to free drug in vivo in terms of 100% survival and reduced tumor burden along with downregulation of epidermal growth factor receptor, folate receptor α and peptide deformylase expression in lung adenocarcinoma mice model. Therefore, actinonin encapsulated albumin nanoparticles-based therapy holds great potential as an alternative strategy to improve its anti-cancerous activity against lung adenocarcinoma.
Collapse
Affiliation(s)
- Priyanca Ahlawat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Phutela
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Chen J, Lin Y, Wu M, Li C, Cen K, Liu F, Liao Y, Zhou X, Xu J, Cheng Y. Glycyrrhetinic acid proliposomes mediated by mannosylated ligand: Preparation, physicochemical characterization, environmental stability and bioactivity evaluation. Colloids Surf B Biointerfaces 2022; 218:112781. [PMID: 36007313 DOI: 10.1016/j.colsurfb.2022.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Glycyrrhetinic acid is a bioactive compound extracted from licorice that exhibits inhibition effect on various cancers. However, its hydrophobicity results in low bioavailability that limits application. We aim to overcome this barrier, the present research was performed to prepare glycyrrhetinic acid proliposomes mediated mannosylated ligand (mannose-diester lauric diacid-cholesterol, MDC) and to evaluate its physicochemical characterizations, environmental stability and bioactivity. In preliminary optimization studies of glycyrrhetinic acid proliposomes mediated MDC (MDC-GA-PL), four optimum operating parameters, cryoprotectant of glucose and mannitol, the mixed cryoprotectant ratio (glucose/mannitol) of 1:1, a cryoprotectant/egg phosphatidylcholine mass ratio of 10/1, and -60 ℃ pre-freezing temperature, were obtained after investigation. Under the optimum lyophilization conditions, MDC-GA-PL was freeze-dried and reconstituted proliposomes were characterized. These proliposomes showed that MDC-GA-PL were well-dispersible spherical particles with an average particle size of 120.80 nm, a polydispersity index about 0.095, a zeta potential of -33.15 mV, encapsulation efficiency of 85.9% and drug loading of 6.38%. In vitro drug release study showed that glycyrrhetinic acid release of MDC-GA-PL conforms to the Higuchi release model. In addition, these proliposomes were stable during six months at 4 ℃. Moreover, acute toxicity assay revealed no substantial safety concern for MDC-GA-PL. Finally, in vitro bioactivity of proliposomes was evaluated. Cytotoxicity effect and apoptosis efficiency of MDC-GA-PL by HepG2 cells was significantly higher than that of glycyrrhetinic acid proliposomes without MDC, demonstrating that MDC has a desirable effect on liver target. Overall, we have reason to believe that MDC-GA-PL would be a promising target delivery to improve therapeutic against hepatic diseases.
Collapse
Affiliation(s)
- Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Yuan Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Min Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Chuangnan Li
- Neurosurgery Department, Jiangmen Wuyi Hospital of TCM, Affiliated Jiangmen TCM Hospital of Jinan University, Jiangmen 529020, PR China
| | - Kaijie Cen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Fujin Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yazhi Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xiaoqing Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jucai Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yi Cheng
- School of Chinese Material Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Pham DT, Nguyen LP, Pham QTH, Pham CK, Pham DTN, Viet NT, Nguyen HVT, Tran TQ, Nguyen DT. A low-cost, flexible extruder for liposomes synthesis and application for Murrayafoline A delivery for cancer treatment. J Biomater Appl 2022; 37:872-880. [PMID: 35786069 DOI: 10.1177/08853282221112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomal encapsulation is a drug delivery strategy with many advantages, such as improved bioavailability, ability to carry large drug loads, as well as controllability and specificity towards various targeted diseased tissues. Currently, most preparation techniques require an additional extrusion or filtering step to obtain monodisperse liposomes with the size of less than 100 nm. In this study, a compact liposome extruder was designed at a cost of $4.00 and used to synthesize liposome suspensions with defined particle size and high homogeneity for Murrayafoline A (Mu-A) loading and release. The synthesized MuA-loaded liposomes displayed a biphasic drug release and remained stable under the storage condition of 4°C. They also significantly reduced the viability of HepG2 cells in the cancer spheroids by 25%. The low-cost, flexible liposome extruder would allow the researchers to study liposomes and their applications in a cost-effective manner.
Collapse
Affiliation(s)
- Dan The Pham
- 61797Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | | | | - Chi Khanh Pham
- 61797Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, 384731Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Viet
- Institute of Applied Technology and Sustainable Development, 384731Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | | | - Toan Quoc Tran
- 61797Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | |
Collapse
|
11
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Diao W, Yang B, Sun S, Wang A, Kou R, Ge Q, Shi M, Lian B, Sun T, Wu J, Bai J, Qu M, Wang Y, Yu W, Gao Z. PNA-Modified Liposomes Improve the Delivery Efficacy of CAPIRI for the Synergistic Treatment of Colorectal Cancer. Front Pharmacol 2022; 13:893151. [PMID: 35784721 PMCID: PMC9240350 DOI: 10.3389/fphar.2022.893151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tumor-associated antigen mucin 1 (MUC1) is highly expressed in colorectal cancer and is positively correlated with advanced stage at diagnosis and poor patient outcomes. The combination of irinotecan and capecitabine is standard chemotherapy for metastatic colorectal cancer and is known as XELIRI or CAPIRI, which significantly prolongs the progression-free survival and overall survival of colorectal cancer patients compared to a single drug alone. We previously reported that peanut agglutinin (PNA)-conjugated liposomes showed enhanced drug delivery efficiency to MUC1-positive liver cancer cells. In this study, we prepared irinotecan hydrochloride (IRI) and capecitabine (CAP)-coloaded liposomes modified by peanut agglutinin (IRI/CAP-PNA-Lips) to target MUC1-positive colorectal cancer. The results showed that IRI/CAP-PNA-Lips showed an enhanced ability to target MUC1-positive colorectal cancer cells compared to unmodified liposomes. Treatment with IRI/CAP-PNA-Lips also increased the proportion of apoptotic cells and inhibited the proliferation of colorectal cancer cells. The targeting specificity for tumor cells and the antitumor effects of PNA-modified liposomes were significantly increased in tumor-bearing mice with no severe cytotoxicity to normal tissues. These results suggest that PNA-modified liposomes could provide a new delivery strategy for the synergistic treatment of colorectal cancer with clinical chemotherapeutic agents.
Collapse
Affiliation(s)
- Wenbin Diao
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Ben Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Sipeng Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Anping Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Rongguan Kou
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Qianyun Ge
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Bo Lian
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Tongyi Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Jingliang Wu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Jingkun Bai
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
| | - Meihua Qu
- Translational Medical Center, Second People’s Hospital of Weifang, Weifang, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
- *Correspondence: Yubing Wang, ; Wenjing Yu, ; Zhiqin Gao,
| | - Wenjing Yu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
- *Correspondence: Yubing Wang, ; Wenjing Yu, ; Zhiqin Gao,
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang, China
- *Correspondence: Yubing Wang, ; Wenjing Yu, ; Zhiqin Gao,
| |
Collapse
|
13
|
Ghosh S, Mishra P, Banerjee S, Maiti K, Khopade A, Misra A, Sawant K, Bhowmick S. Exploration of the cardinal formulation parameters influencing the encapsulation and physicochemical properties of co-loaded anticancer dual drug nanoliposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
15
|
Kavaliauskas P, Opazo FS, Acevedo W, Petraitiene R, Grybaitė B, Anusevičius K, Mickevičius V, Belyakov S, Petraitis V. Synthesis, Biological Activity, and Molecular Modelling Studies of Naphthoquinone Derivatives as Promising Anticancer Candidates Targeting COX-2. Pharmaceuticals (Basel) 2022; 15:ph15050541. [PMID: 35631366 PMCID: PMC9144205 DOI: 10.3390/ph15050541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-associated mortalities worldwide. Therefore, it is crucial to develop a novel therapeutic option targeting localized and metastatic NSCLC. In this paper, we describe the synthesis and biological activity characterization of naphthoquinone derivatives bearing selective anticancer activity to NSCLC via a COX-2 mediated pathway. The biological evaluation of compounds 9−16 showed promising structure-dependent anticancer activity on A549 cells in 2D and 3D models. Compounds were able to significantly (p < 0.05) reduce the A549 viability after 24 h of treatment in comparison to treated control. Compounds 9 and 16 bearing phenylamino and 4-hydroxyphenylamino substituents demonstrated the most promising anticancer activity and were able to induce mitochondrial damage and ROS formation. Furthermore, most promising compounds showed significantly lower cytotoxicity to non-cancerous Vero cells. The in silico ADMET properties revealed promising drug-like properties of compounds 9 and 16. Both compounds demonstrated favorable predicted GI absorption values, while only 16 was predicted to be permeable through the blood−brain barrier. Molecular modeling studies identified that compound 16 is able to interact with COX-2 in arachidonic acid site. Further studies are needed to better understand the safety and in vivo efficacy of compounds 9 and 16.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA; (R.P.); (V.P.)
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence:
| | - Felipe Stambuk Opazo
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso. Av. Universidad N° 330, Curauma, Valparaiso 2373223, Chile;
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso. Av. Universidad N° 330, Curauma, Valparaiso 2373223, Chile;
| | - Ruta Petraitiene
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Laboratory of Physical Organic Chemistry, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Vidmantas Petraitis
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso. Av. Universidad N° 330, Curauma, Valparaiso 2373223, Chile;
| |
Collapse
|
16
|
Khodaverdi H, Zeini MS, Moghaddam MM, Vazifedust S, Akbariqomi M, Tebyanian H. Lipid-Based Nanoparticles for Targeted Delivery of the Anti-Cancer Drugs: A Review. Curr Drug Deliv 2022; 19:1012-1033. [DOI: 10.2174/1567201819666220117102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.
Collapse
Affiliation(s)
- Hamed Khodaverdi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Shokrian Zeini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mostafa Akbariqomi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Kanugo A, Gautam RK, Kamal MA. Recent advances of nanotechnology in the diagnosis and therapy of triple-negative breast cancer (TNBC). Curr Pharm Biotechnol 2021; 23:1581-1595. [PMID: 34967294 DOI: 10.2174/1389201023666211230113658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of advanced treatment of triple-negative breast cancer (TNBC) is the utmost need of an era. TNBC is recognized as the most aggressive, metastatic cancer and the leading cause of mortality in females worldwide. The lack of expression of triple receptors namely, estrogen, progesterone, and human epidermal receptor2 defined TNBC. OBJECTIVE The current review introduced the novel biomarkers such as miRNA and family, PD1, EGFR, VEGF, TILs, P53, AR and PI3K, etc. contributed significantly to the prognosis and diagnosis of TNBC. Once diagnosed the utilization advanced approaches available for TNBC because of the limitations of chemotherapy. Novel approaches include lipid-based (liposomes, SLN, NLC, and SNEDDS), polymer-based (micelle, nanoparticles, dendrimers, and quantum dots), advanced nanocarriers such as (exosomes, antibody and peptide-drug conjugates), carbon-based nanocarriers (Carbon nanotubes, and graphene oxide). Lipid-based delivery is used for excellent carriers for hydrophobic drugs, biocompatibility, and lesser systemic toxicities than chemotherapeutic agents. Polymer-based approaches are preferred over lipids for providing longer circulation time, nanosize, high loading efficiency, high linking; avoiding the expulsion of drugs, targeted action, diagnostic and biosensing abilities. Advanced approaches like exosomes, conjugated moieties are preferred over polymeric for possessing potency, high penetrability, biomarkers, and avoiding the toxicity of tissues. Carbon-based gained wide applicability for their unique properties like a versatile carrier, prognostic, diagnostic, sensing, photodynamic, and photothermal characteristics. CONCLUSION The survival rate can be increased by utilizing several kinds of biomarkers. The advanced approaches can also be significantly useful in the prognosis and theranostic of triple-negative breast cancer. One of the biggest successes in treating with nanotechnology-based approaches is the marked reduction of systemic toxicity with high therapeutic effectiveness compared with chemotherapy, surgery, etc. The requirements such as prompt diagnosis, longer circulation time, high efficiency, and high potency, can be fulfilled with these nanocarriers.
Collapse
Affiliation(s)
- Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India
| | - Rupesh K Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala (Haryana) India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
18
|
Urbina-Jara LK, Martinez-Ledesma E, Rojas-Martinez A, Rodriguez-Recio FR, Ortiz-Lopez R. DNA Repair Genes as Drug Candidates for Early Breast Cancer Onset in Latin America: A Systematic Review. Int J Mol Sci 2021; 22:13030. [PMID: 34884835 PMCID: PMC8657579 DOI: 10.3390/ijms222313030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
The prevalence of breast cancer in young women (YWBC) has increased alarmingly. Significant efforts are being made to elucidate the biological mechanisms concerning the development, prognosis, and pathological response in early-onset breast cancer (BC) patients. Dysfunctional DNA repair proteins are implied in BC predisposition, progression, and therapy response, underscoring the need for further analyses on DNA repair genes. Public databases of large patient datasets such as METABRIC, TCGA, COSMIC, and cancer cell lines allow the identification of variants in DNA repair genes and possible precision drug candidates. This study aimed at identifying variants and drug candidates that may benefit Latin American (LA) YWBC. We analyzed pathogenic variants in 90 genes involved in DNA repair in public BC datasets from METABRIC, TCGA, COSMIC, CCLE, and COSMIC Cell Lines Project. Results showed that reported DNA repair germline variants in the LA dataset are underrepresented in large databases, in contrast to other populations. Additionally, only six gene repair variants in women under 50 years old from the study population were reported in BC cell lines. Therefore, there is a need for new approaches to study DNA repair variants reported in young women from LA.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico; (L.K.U.-J.); (E.M.-L.); (A.R.-M.); (F.R.R.-R.)
| |
Collapse
|
19
|
Ma Z, Dong Z. Dual anticancer drug-loaded self-assembled nanomaterials delivery system for the treatment of prostate cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2103-2117. [PMID: 34328067 DOI: 10.1080/09205063.2021.1958449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study explains the engineering of polylactide-polyethylene succinate glycol nanomaterials (NMs), to achieve superior anticancer effectiveness in prostate cancer therapy as a carriers of crizotinib (CZT) and marizomib (MAR). We have shown that the block polymers and hydrophobic drugs can be self-assembled to construct a highly stable nanocarrier with highly adaptable to support the use of cancer medicines. The Drug Release analysis revealed that the interference in the hydrophobic cores of micelles was a continuous release series. In both PC3pip and LNCAP prostate cancer cells, CZT@MAR NMs demonstrated noticeable cytotoxic effects in a dose-responsive method. In addition, morphology analysis and the AO-EB and nuclear staining assay showed a higher effectiveness in prostate cancer for nanomaterials. The polymeric nanomaterials displayed a prominent existence in the cytoplasmic cell regions, which shows a characteristic cell uptake by endocytosis. A significant apoptosis, compared to free CZT@MAR apoptosis, was found in the FITC-Annexin V/PI staining-based apoptosis analysis. In this juncture, the alternative drug delivery mechanism for the improvement of CZT@MAR chemotherapeutic effectiveness in prostate cancer chemotherapy modification PLA nanoparticles.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Urology Surgery, Shijiazhuang Third Hospital, Shijiazhuang, China
| | - Zhongyi Dong
- Department of Urology Surgery, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
20
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|