1
|
Abdelmoneim D, Coates D, Porter G, Schmidlin P, Li KC, Botter S, Lim K, Duncan W. In vitro and in vivo investigation of antibacterial silver nanoparticles functionalized bone grafting substitutes. J Biomed Mater Res A 2024; 112:2042-2054. [PMID: 38864151 DOI: 10.1002/jbm.a.37757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Infection is a major concern in surgery involving grafting and should be considered thoroughly when designing biomaterials. There is considerable renewed interest in silver nanoparticles (AgNPs) owing to their ability to potentiate antibacterial properties against multiple bacterial strains. This study aimed to develop two antibacterial bone regenerative scaffolds by integrating AgNPs in bovine bone particles (BBX) (Product 1), and a light cross-linked hydrogel GelMA (Product 2). The constructs were characterized using scanning electron microscopy. Metabolic activity of osteoblasts and osteoclasts on the constructs was investigated using PrestoBlue™. Disk diffusion assay was conducted to test the antibacterial properties. The regenerative capacity of the optimized AgNP functionalized BBX and GelMA were tested in a rabbit cranial 6 mm defect model. The presence of AgNPs appears to enhance proliferation of osteoblasts compared to AgNP free controls in vitro. We established that AgNPs can be used at a 100 μg dose that inhibits bacteria, with minimal adverse effects on the bone cells. Our rabbit model revealed that both the BBX and GelMA hydrogels loaded AgNPs were biocompatible with no signs of necrosis or inflammatory response. Grafts functionalized with AgNPs can provide antibacterial protection and simultaneously act as a scaffold for attachment of bone cells.
Collapse
Affiliation(s)
- Dina Abdelmoneim
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Gemma Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Patrick Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Kai Chun Li
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Sander Botter
- Swiss Center for Musculoskeletal Biobanking, Balgrist Campus AG, Zurich, Switzerland
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Warwick Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Sharma S, Tiwari V. Polyvinylpyrrolidone capped silver nanoparticles enhance the autophagic clearance of Acinetobacter baumannii from human pulmonary cells. DISCOVER NANO 2024; 19:154. [PMID: 39313578 PMCID: PMC11420407 DOI: 10.1186/s11671-024-04107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Acinetobacter baumannii, an opportunistic pathogen has shown an upsurge in its multi-drug resistant isolates. OmpA of A. baumannii induces incomplete autophagy and apoptosis in host cells. Various therapeutic alternatives are under investigation against A. baumannii. Here, the major emphasis has been laid on comparing the efficacy of AgNP with different capping agents. OmpA targeted lead, Ivermectin capped AgNP (IVM-AgNP) has been compared with the antibacterial polyvinylpyrrolidone capped AgNP (PVP-AgNP) for their role in the modulations of host autophagy. Upregulation of p62 and LC3B confirmed by real-time PCR analysis indicated an increased autophagic flux upon the treatment with AgNPs. The elongation and closure of autophagic vacuoles was also supported by upregulated Atg genes (Atg4, Atg3, Atg5) in A. baumannii infected cells after treatment with AgNP. Autophagic flux increased on treatment with PVP-AgNP as suggested by the rise in mcherryLC3B fluorescence in A549 cells treated with PVP-AgNP as compared to the GFP-LC3B of IVM-AgNP. This suggests that PVP-AgNP treatment more effectively promotes the elongation and maturation stages of autophagy by increasing autophagic flux. These results indicate that capped AgNPs have the efficiency to revert the incomplete autophagy induced by A. baumannii back to normal autophagic levels.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
3
|
Jin N, Wang B, Liu X, Yin C, Li X, Wang Z, Chen X, Liu Y, Bu W, Sun H. Mannose-doped metal-organic frameworks induce tumor cell pyroptosis via the PERK pathway. J Nanobiotechnology 2023; 21:426. [PMID: 37968665 PMCID: PMC10647064 DOI: 10.1186/s12951-023-02175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The implementation of pyroptosis exhibits significant potential as a tactic to enhance tumor immune microenvironments. Previous applications of pyroptosis inducers have encountered various limitations, such as the development of drug resistance, manifestation of toxic side effects, and a deficiency in targeting capabilities. As a result, there is a growing demand for tumor therapeutic molecules that can overcome these obstacles. Therefore, the objective of this study is to develop a multifunctional nanospheres that addresses these challenges by enabling high-precision targeting of tumor cells and inducing effective pyroptosis. RESULTS We prepared a mannose-modified MOF called mannose-doped Fe3O4@NH2-MIL-100 (M-FNM). M-FNM could enter CAL27 cells through MR-mediated endocytosis, which caused in a significant increase in the level of intracellular ROS. This increase subsequently triggered ER stress and activated the PERK-eIF2α-ATF4-CHOP signaling pathway. CHOP then mediated the downstream cascade of Caspase-1, inducing pyroptosis. In in vivo experiments, M-FNM demonstrated excellent targeting ability and exhibited anti-tumor effects. Additionally, M-FNM reshaped the immune microenvironment by promoting the infiltration of anti-tumor immune cells, primarily T lymphocytes. CONCLUSIONS M-FNM significantly decreased tumor growth. This novel approach to induce pyroptosis in tumor cells using M-FNM may offer new avenues for the development of effective immunotherapies against cancer.
Collapse
Affiliation(s)
- Nianqiang Jin
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, P. R. China
| | - Binhang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Sinochem Holdings Corporation Ltd., Beijing, 100031, P. R. China
- Sinochem Quanzhou Petrochemical Co., Ltd., Quanzhou, 362103, P. R. China
| | - Chengcheng Yin
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang, 110001, P. R. China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, P. R. China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, changchun, 130021, P. R. China
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, P. R. China
| | - Xi Chen
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Wenhuan Bu
- Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
4
|
Yuan YG, Xing YT, Liu SZ, Li L, Reza AMMT, Cai HQ, Wang JL, Wu P, Zhong P, Kong IK. Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites. Front Bioeng Biotechnol 2023; 11:1090814. [PMID: 37020511 PMCID: PMC10069586 DOI: 10.3389/fbioe.2023.1090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
The widespread use of graphene oxide-silver nanoparticle nanocomposites (GO-AgNPs) in biomedical sciences is increasing the chances of human and animal exposure to its chronic non-toxic doses. Exposure to AgNPs-related nanomaterials may result in the negative effect on the dam, fetus and offspring. However, there are only little available information for profound understanding of the epigenetic alteration in the cells and animals caused by low-dose chronic exposure of GO-AgNPs. The present study investigated the effect of 0.5 μg/mL GO-AgNPs for 10 weeks on the differential expression of circular RNAs (circRNAs) in caprine fetal fibroblast cells (CFFCs), and this dose of GO-AgNPs did not affect cell viability and ROS level. We predicted the functions of those differentially expressed (DE) circRNAs in CFFCs by bioinformatics analysis. Furthermore, we validated the expression of ten DE circRNAs using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) to ensure the reliability of the sequencing data. Our results showed that the DE circRNAs may potentially regulate the GO-AgNPs-inducing epigenetic toxicity through a regulatory network consisted of circRNAs, miRNAs and messenger RNAs (mRNAs). Therefore, the epigenetics toxicity is essential to assess the biosafety level of GO-AgNPs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Yi-Tian Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Song-Zi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | - He-Qing Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia-Lin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ping Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| |
Collapse
|
5
|
Abdelmoneim D, Porter G, Duncan W, Lim K, Easingwood R, Woodfield T, Coates D. Three-Dimensional Evaluation of the Cytotoxicity and Antibacterial Properties of Alpha Lipoic Acid-Capped Silver Nanoparticle Constructs for Oral Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:705. [PMID: 36839073 PMCID: PMC9958703 DOI: 10.3390/nano13040705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
There is a need to develop bifunctional scaffolds that provide antibacterial protection while encouraging host cell attachment/proliferation. This study evaluates HyStem®-C, and photo-cross-linked GelMA hydrogels for encapsulation and stabilisation of silver nanoparticles (AgNPs). We studied the behaviour of AgNPs and matrix interactions within both hydrogel systems. The cell viability of encapsulated human gingival fibroblasts (HGFs) was determined by Prestoblue® assay and live/dead staining. The release of AgNPs was monitored by inductively coupled plasma-mass spectroscopy. The antibacterial properties of the GelMA-AgNP constructs were determined using disc diffusion. Even distribution of AgNPs in GelMA induced a significant decrease in cell viability (p < 0.0001), whereas AgNP aggregates did not induce cytotoxicity in HyStem®-C. AgNPs doses ≥ 0.5 µg/mL in GelMA were significantly toxic to the HGFs (p < 0.0001). The release of AgNPs from GelMA after 48 h was 20% w/w for 0.1 µg/mL and 51% for 100 µg/mL of AgNPs. At ≥5 µg/mL, a significant intra-construct bactericidal effect was observed. The disc diffusion assay shows that GelMA-incorporated AgNPs were found to be effective against both Escherichia coli and Staphylococcus aureus at 50 and 100 µg/mL, respectively. Visible photo-cross-linked GelMA stably incorporated AgNPs to provide an antimicrobial regenerative construct for oral applications.
Collapse
Affiliation(s)
- Dina Abdelmoneim
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9010, New Zealand
| | - Gemma Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9010, New Zealand
| | - Warwick Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9010, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Richard Easingwood
- Otago Micro and Nanoscale Imaging, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9010, New Zealand
| |
Collapse
|
6
|
Xu P, Cao M, Dong X, Yu Z, Liu J, Tan J, Wang Y, Li T, Zhao S. Nanosized copper particles induced mesangial cell toxicity via the autophagy pathway. Braz J Med Biol Res 2022; 55:e12252. [DOI: 10.1590/1414-431x2022e12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, China
| | - Min Cao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xueqian Dong
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhichao Yu
- Tianjin Sino-German University of Applied Sciences, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, China
| | - Junzhen Tan
- Tianjin University of Traditional Chinese Medicine, China
| | | | - Tao Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Shuwu Zhao
- Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
7
|
Naung NY, Duncan WJ, De Silva RK, Coates DE. HGF/MET in osteogenic differentiation of primary human palatal periosteum-derived mesenchymal stem cells. J Oral Sci 2021; 63:341-346. [PMID: 34526445 DOI: 10.2334/josnusd.21-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study aimed to determine expressions of hepatocyte growth factor (HGF) and MET proto-oncogene receptor tyrosine kinase (MET) in palatal periosteum (PP) and to examine the effect of HGF/MET on osteogenic differentiation of human palatal periosteum-derived mesenchymal stem cells (PD-MSCs). METHODS HGF/MET proteins in human palatal periosteum (n = 3) were localized using immunohistochemistry. PD-MSCs (n = 3) were cultured in serum-free Essential 8 (E8) medium or osteogenic medium with and without Capmatinib, a selective ATP-inhibitor of MET. HGF concentration in vitro was measured with ELISA. Relative gene expression was quantified from PD-MSCs by quantitative reverse transcription real-time polymerase chain reaction. RESULTS Immunohistochemistry detected co-localization of HGF and MET protein in PP. HGF protein levels were significantly higher (P < 0.05) in osteogenic media (day 21: 12.19 ± 8.36 ng/mL) than in E8 medium (day 21: 0.42 ± 0.72 ng/mL). MET inhibitor had a limited feedback effect on the expression profile of the osteogenic genes tested. Gene expression levels for all but three genes were comparable in serum-free and osteogenic media at all time points. CONCLUSION HGF/MET present in human PP and HGF is upregulated in vitro during osteogenesis; however the targeted pathways controlled by MET may not involve osteoblast maturation.
Collapse
Affiliation(s)
- Noel Ye Naung
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago.,Pun Hlaing Hospitals
| | - Warwick J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago
| | - Rohana K De Silva
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago
| |
Collapse
|
8
|
Taboada-López MV, Leal-Martínez BH, Domínguez-González R, Bermejo-Barrera P, Taboada-Antelo P, Moreda-Piñeiro A. Caco-2 in vitro model of human gastrointestinal tract for studying the absorption of titanium dioxide and silver nanoparticles from seafood. Talanta 2021; 233:122494. [PMID: 34215112 DOI: 10.1016/j.talanta.2021.122494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in industry as a white pigment (paints, paper industry and toothpastes), photocatalysts (environmental decontamination and photovoltaic cells), inorganic UV filter (sunscreens and personal care products) and as a food additive (E171) and antimicrobial food packaging material. Silver nanoparticles (Ag NPs) are used in photonics, microelectronics, catalysis and medicine due to their catalytic activity, magnetic and optical polarizability, electrical and thermal conductivities and enhanced Raman scattering. They also have antibacterial, antifungal and antiviral activities, as well as anti-inflammatory potential. The huge increase in the use of nano-based products, mainly metallic NPs, implies the presence of nanomaterials in the environment, and hence, the unintentional human ingestion through water or foods (gastrointestinal tract is the main pathway of NPs intake in humans). The presence of TiO2 NPs and Ag NPs in seafood samples was firstly established using an ultrasound assisted enzymatic hydrolysis procedure and sp-ICP-MS analysis. Several clams, cockles, mussels, razor clams, oysters and variegated scallops, which contain TiO2 NPs and Ag NPs, were subjected to an in vitro digestion process simulating human gastrointestinal digestion in the stomach and in the small and large intestine to determine the bioaccessibility of these NPs. Caco-2 cells were selected as model of human intestinal epithelium for transport studies because of the development of membrane transporters that are responsible for the uptake of chemicals. Parameters as transepithelial electrical resistance (TEER) and permeability of Lucifer Yellow were studied for establishing cell monolayer integrity. TiO2 NPs and Ag NPs transport as well as total Ti and Ag concentrations passing through the gastrointestinal epithelial barrier model (0-2 h) were assessed by sp-ICP-MS and ICP-MS in several molluscs.
Collapse
Affiliation(s)
- María Vanesa Taboada-López
- Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain
| | - Baltazar Hiram Leal-Martínez
- Colloids and Polymer Physics Group, Strategic Grouping in Materials (AEMAT), Department of Particle Physics, Faculty of Physics, Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, S/n. E15782, Santiago de Compostela, Spain
| | - Raquel Domínguez-González
- Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain
| | - Pablo Taboada-Antelo
- Colloids and Polymer Physics Group, Strategic Grouping in Materials (AEMAT), Department of Particle Physics, Faculty of Physics, Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, S/n. E15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida Das Ciencias, S/n. E15782, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|