1
|
He Y, Zhang L, Huang S, Tang Y, Li Y, Li H, Chen G, Chen X, Zhang X, Zhao W, Deng F, Yu D. Magnetic Graphene Oxide Nanocomposites Boosts Craniomaxillofacial Bone Regeneration by Modulating circAars/miR-128-3p/SMAD5 Signaling Axis. Int J Nanomedicine 2024; 19:3143-3166. [PMID: 38585472 PMCID: PMC10999216 DOI: 10.2147/ijn.s454718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Background The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Lejia Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Siyuan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Yuquan Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, 518107, People’s Republic of China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| |
Collapse
|
2
|
He Y, Shi F, Hu J, Li H, Chen X, Yuan L, Lu Y, Du W, Li R, Wu J, Deng F, Yu D. Magnetic graphene oxide nanocomposites induce cytotoxicity in ADSCs via GPX4 regulating ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115745. [PMID: 38029583 DOI: 10.1016/j.ecoenv.2023.115745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Magnetic graphene oxide nanocomposites (MGO NPs) have been widely studied in biomedical applications. However, their cytotoxicity and underlying mechanisms remain unclear. In this study, the biosafety of MGO NPs was investigated, and the mechanism involved in ferroptosis was further explored. MGO can produce cytotoxicity in ADSCs, which is dependent on their concentration. Ferroptosis was involved in MGO NP-induced ADSC survival inhibition by increasing total ROS and lipid ROS accumulation as well as regulating the expression levels of ferroptosis-related genes and proteins. GPX4 played a critical role in the MGO NP-induced ADSC ferroptosis process, and overexpressing GPX4 suppressed ferroptosis to increase cell survival. This study provides a theoretical basis for the biosafety management of MGO NPs used in the field of biomedical treatment.
Collapse
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fangyang Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lingyu Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yunyang Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weidong Du
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Sun X, Yang J, Ma J, Wang T, Zhao X, Zhu D, Jin W, Zhang K, Sun X, Shen Y, Xie N, Yang F, Shang X, Li S, Zhou X, He C, Zhang D, Wang J. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Biofabrication 2023; 15. [PMID: 36716493 DOI: 10.1088/1758-5090/acb73e] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The periosteum is a connective tissue membrane adhering to the surface of bone tissue that primarily provides nutrients and regulates osteogenesis during bone development and injury healing. However, building an artificial periosteum with good adhesion properties and satisfactory osteogenesis for bone defect repair remains a challenge, especially using three-dimensional (3D) bioprinting. In this study, dopamine was first grafted onto the molecular chain of gelatin usingN-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride andN-hydroxysuccinimide (NHS) to activate the carboxyl group and produce modified gelatin-dopamine (GelDA). Next, a methacrylated gelatin, methacrylated silk fibroin, GelDA, and graphene oxide nanosheet composite bioink loaded with bone marrow mesenchymal stem cells was prepared and used for bioprinting. The physicochemical properties, biocompatibility, and osteogenic roles of the bioink and 3D bioprinted artificial periosteum were then systematically evaluated. The results showed that the developed bioink showed good thermosensitivity and printability and could be used to build 3D bioprinted artificial periosteum with satisfactory cell viability and high adhesion. Finally, the 3D bioprinted artificial periosteum could effectively enhance osteogenesis bothin vitroandin vivo. Thus, the developed 3D bioprinted artificial periosteum can prompt new bone formation and provides a promising strategy for bone defect repair.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Jin Yang
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xue Zhao
- Department of Radiology, Huangpu Branch of Shanghai Ninth People's Hospital, affiliated to Shanghai Jiao Tong University, No. 58 Puyu East Road, Shanghai 200011, People's Republic of China
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai 201999, People's Republic of China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xuzhou Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Neng Xie
- Shanghai Evaluation and Verification Center for Medical Devices and Cosmetics, No. 210 Nanchang Road, Shanghai 200020, People's Republic of China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China.,School of Rehabilitation Medicine, Weifang Medical University, No. 7166 Baotong West Street, Weifang 261053, Shangdong, People's Republic of China
| |
Collapse
|
5
|
Yang J, Wu J, Guo Z, Zhang G, Zhang H. Iron Oxide Nanoparticles Combined with Static Magnetic Fields in Bone Remodeling. Cells 2022; 11:cells11203298. [PMID: 36291164 PMCID: PMC9600888 DOI: 10.3390/cells11203298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are extensively used in bone-related studies as biomaterials due to their unique magnetic properties and good biocompatibility. Through endocytosis, IONPs enter the cell where they promote osteogenic differentiation and inhibit osteoclastogenesis. Static magnetic fields (SMFs) were also found to enhance osteoblast differentiation and hinder osteoclastic differentiation. Once IONPs are exposed to an SMF, they become rapidly magnetized. IONPs and SMFs work together to synergistically enhance the effectiveness of their individual effects on the differentiation and function of osteoblasts and osteoclasts. This article reviewed the individual and combined effects of different types of IONPs and different intensities of SMFs on bone remodeling. We also discussed the mechanism underlying the synergistic effects of IONPs and SMFs on bone remodeling.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiawen Wu
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Zengfeng Guo
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Gejing Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Zhang
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
- Correspondence: ; Tel.: +86-13823352822
| |
Collapse
|
6
|
Mahdavi MR, Kehtari M, Mellati A, Mansour RN, Mahdavi M, Mahdavi M, Enderami SE. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO. Cell Biochem Funct 2022; 40:189-198. [PMID: 35118692 DOI: 10.1002/cbf.3688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
Among the many polymers introduced for bone tissue engineering, natural polymers have more advantages due to their high biocompatibility and biodegradability, despite their low mechanical properties. Herein, gelatin nanofibers with and without magnesium oxide (MgO) and graphene oxide (GO) nanoparticles were fabricated by electrospinning. The fabricated gelatin and gelatin/GO/MgO nanofibers were examined using scanning electron microscopy, protein adsorption, cell attachment and viability assays. The results revealed that biological behaviours of the gelatin nanofibers significantly improved while incorporated with MgO and GO nanoparticles. In the following, osteosupportive capacity of the fabricated scaffolds was investigated by Alizarin-red staining, alkaline phosphatase activity, and calcium content, and bone-related gene and protein assays. The results revealed that the highest osteogenic differentiation potential of human-induced pluripotent stem cells (hiPSCs) was detected while these cells were cultured on the gelatin/GO/MgO nanofibers. However, these makers in the hiPSCs cultured on the gelatin nanofibers were also significantly increased in comparison with the cells cultured on the tissue culture plates as a control. In conclusion, the results revealed that predictable disadvantages in gelatin nanofibers can be greatly improved by the addition of MgO and GO nanoparticles, and the resulting composite scaffold could be a potential candidate for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mousa Kehtari
- School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and regenerative medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mehrad Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Mahan Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Ikram R, Shamsuddin SAA, Mohamed Jan B, Abdul Qadir M, Kenanakis G, Stylianakis MM, Anastasiadis SH. Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules 2022; 27:379. [PMID: 35056690 PMCID: PMC8781794 DOI: 10.3390/molecules27020379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Thanks to stem cells' capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.
Collapse
Affiliation(s)
- Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Greece
| | - Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
| |
Collapse
|