1
|
Ye M, Yin D, Wu Y, Miao H, Wu Z, Liu P. Infrared radiation for cancer hyperthermia: the light to brighten up oncology. Expert Rev Anticancer Ther 2024; 24:1147-1160. [PMID: 39390965 DOI: 10.1080/14737140.2024.2416063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Cancer constitutes the greatest public health threat to humans, as its incidence and mortality rates continue to increase worldwide. With the development of medical physics, more practitioners focus on the direct and indirect anti-tumor effects of physical factors. Infrared radiation (INR) is currently the most rapidly developing physical therapy method for tumors and has become a favored target for many oncologists and researchers owing to its advantages of high efficiency, low toxicity, and strong feasibility. AREAS COVERED This work provides a comprehensive collection of the latest information on INR anti-tumor research, drawing from public medical databases (PubMed, Web of Science, Embase, and Clinical Trials) from the last 10 years (2014 to 2024), and encompassing both basic and clinical research in oncology and physics. This article reviews the application of INR in tumor hyperthermia, summarizes and analyzes the practical value of INR for tumor treatment, and discusses future development trends to provide valuable assistance for the subsequent development of oncology. EXPERT OPINION Currently, INR has continuously accumulated excellent data in the field of tumor hyperthermia, bringing practical survival benefits to patients with cancer, and playing an important role in basic and clinical cancer research.
Collapse
Affiliation(s)
- Mengna Ye
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Dashan Yin
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Wu
- ACS (International) School of Singapore, Singapore, Singapore
| | - Hua Miao
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Li Y, Miao W, Yuan C, Tang J, Zhong N, Jin Y, Hu Y, Tang Y, Wang S. PARP inhibitor boost the efficacy of photothermal therapy to TNBC through enhanced DNA damage and inhibited homologous recombination repair. Drug Deliv Transl Res 2024:10.1007/s13346-024-01650-6. [PMID: 38954244 DOI: 10.1007/s13346-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Triple-negative breast cancer (TNBC) could benefit from PARP inhibitors (PARPi) for their frequent defective homologous recombination repair (HR). However, the efficacy of PARPi is limited by their lower bioavailability and high susceptibility to drug resistance, so it often needs to be combined with other treatments. Herein, polydopamine nanoparticles (PDMN) were constructed to load Olaparib (AZD) as two-channel therapeutic nanoplatforms. The PDMN has a homogeneous spherical structure around 100 nm and exhibits a good photothermal conversion efficiency of 62.4%. The obtained AZD-loaded nanoplatform (PDMN-AZD) showed enhanced antitumor effects through the combination of photothermal therapy (PTT) and PARPi. By western blot and flow cytometry, we found that PTT and PARPi could exert synergistic antitumor effects by further increasing DNA double-strand damage (DSBs) and enhancing HR defects. The strongest therapeutic effect of PDMN-AZD was observed in a BRCA-deficient mouse tumor model. In conclusion, the PDMN-AZD nanoplatform designed in this study demonstrated the effectiveness of PTT and PARPi for synergistic treatment of TNBC and preliminarily explained the mechanism.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Wenfang Miao
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Chen Yuan
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Jiajia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Nan Zhong
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Yingying Jin
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Yongzhi Hu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Yuxia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300, Guangzhoulu, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Li Y, Lin J, He Y, Wang K, Huang C, Zhang R, Liu X. Tumour-microenvironment-responsive Na 2S 2O 8 nanocrystals encapsulated in hollow organosilica-metal-phenolic networks for cycling persistent tumour-dynamic therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230054. [PMID: 38855614 PMCID: PMC11022624 DOI: 10.1002/exp.20230054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/16/2023] [Indexed: 06/11/2024]
Abstract
Traditional tumour-dynamic therapy still inevitably faces the critical challenge of limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascade-responsive dual cycling amplification of •SO4 -/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na2S2O8 nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetra-sulphide cleavage of nanoreactors to explosively release Na+/S2O8 2 - /Fe2+ and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO4 - (Fe2+-catalyzed S2O8 2 - oxidation), proton (•SO4 --catalyzed H2O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe3+ will be in turn recovered into Fe2+ by excessive EG to circularly amplify •SO4 -/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na+ overload and weaken the ROS-scavenging systems by GSH exhaustion to further amplify oxidative stress. Our yolk-shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.
Collapse
Affiliation(s)
- Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouPeople's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouPeople's Republic of China
- Department of Translational Medicine and Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare‐Earth Materials, Haixi InstituteChinese Academy of SciencesXiamenPeople's Republic of China
| | - Jinyan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouPeople's Republic of China
| | - Yueyang He
- Xiang'an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenPeople's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Department of Pharmaceutics, Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangPeople's Republic of China
| | - Cailin Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouPeople's Republic of China
- Department of Translational Medicine and Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare‐Earth Materials, Haixi InstituteChinese Academy of SciencesXiamenPeople's Republic of China
| | - Ruifeng Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouPeople's Republic of China
- Department of Translational Medicine and Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare‐Earth Materials, Haixi InstituteChinese Academy of SciencesXiamenPeople's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouPeople's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouPeople's Republic of China
- Department of Translational Medicine and Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare‐Earth Materials, Haixi InstituteChinese Academy of SciencesXiamenPeople's Republic of China
| |
Collapse
|
4
|
Liang Y, Lei P, An R, Du P, Liu S, Wei Y, Zhang H. Biodegradable Monometallic Aluminum as a Biotuner for Tumor Pyroptosis. Angew Chem Int Ed Engl 2024; 63:e202317304. [PMID: 38298089 DOI: 10.1002/anie.202317304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Pyroptosis is an effective anti-tumor strategy. However, monometallic pyroptosis biotuners have not been explored until now. Here, we discover for the first time that biodegradable monometallic Al can act as a pyroptosis biotuner for tumor therapy. pH-sensitive Al nanoparticles (Al@P) are obtained by equipping polyethylene glycol-b-(poly(methyl methacrylate)-co-poly(4-vinylpyridine), which can exert their effect at the tumor site without affecting normal cells. The H2 and Al3+ release by Al@P in the acidic environment of tumors disrupts the redox balance and ionic homeostasis in tumor cells, thus generating large amounts of reactive oxygen species (ROS), leading to caspase-1 activation, gasdermin D cleavage, and IL-1β/LDH release, which induces canonical pyroptotic death. Meanwhile, the prodrug Doxorubicin (Pro-DOX) is successfully loaded onto Al@P (Al@P-P) and can be activated by ROS to release DOX in the tumor cells, thus further improving the tumor-killing efficiency. Ultimately, Al@P-P is degradable and exhibits efficient tumor inhibition.
Collapse
Affiliation(s)
- Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi, Ganzhou, 341000, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi, Ganzhou, 341000, China
| |
Collapse
|
5
|
Liang Y, Lei P, An R, Du P, Liu S, Wei Y, Zhang H. Wireless Photoactivated Targeted Nanosystem for Oncotherapy Via Synergistic Effects of Hyperthermia/Redox Stress Amplification/GSK-3β Activity Inhibition. NANO LETTERS 2024; 24:347-355. [PMID: 38149649 DOI: 10.1021/acs.nanolett.3c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Highly soluble salts and gas mediated therapies are emerging antitumor strategies. However, the therapeutic efficacy remains restricted by difficulty in delivering them to the tumor site and poorly controlled release in deep tissues. Here, an intelligent wireless photoactivated targeted nanosystem is designed for delivering LiCl and H2 to tumors for therapy. LiCl causes cell death by inhibiting the activity of GSK-3β. H2 selectively interacts with reactive oxygen species in the tumor, leading to redox stress, which induces apoptosis. The significant heat generated by the nanosystem not only kills tumor cells but also accelerates the dissolution of LiCl and the release of H2. The rapid dissolution of LiCl leads to a surge in intracellular osmotic pressure, which further intensifies the redox stress response and enhances the efficiency of therapy. The nanosystem shows efficient tumor therapeutic capability via synergistic effects of hyperthermia/redox stress amplification/GSK-3β activity inhibition.
Collapse
Affiliation(s)
- Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
6
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
7
|
Meng Z, Wang B, Liu Y, Wan Y, Liu Q, Xu H, Liang R, Shi Y, Tu P, Wu H, Xu C. Mitochondria-targeting Polydopamine-coated Nanodrugs for Effective Photothermal- and Chemo- Synergistic therapies Against Lung Cancer. Regen Biomater 2022; 9:rbac051. [PMID: 35958515 PMCID: PMC9362997 DOI: 10.1093/rb/rbac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Targeting mitochondria via nano platform emerged as an attractive anti-tumor pathway due to the central regulation role in cellar apoptosis and drug resistance. Here, a mitochondria-targeting nanoparticle (TOS-PDA-PEG-TPP) was designed to precisely deliver polydopamine (PDA) as the photothermal agent and alpha-tocopherol succinate (α-TOS) as the chemotherapeutic drug to the mitochondria of the tumor cells, which inhibits the tumor growth through chemo- and photothermal- synergistic therapies. TOS-PDA-PEG-TPP was constructed by coating PDA on the surface of TOS NPs self-assembled by α-TOS, followed by grafting PEG and triphenylphosphonium (TPP) on their surface to prolong the blood circulation time and target delivery of TOS and PDA to the mitochondria of tumor cells. In vitro studies showed that TOS-PDA-PEG-TPP could be efficiently internalized by tumor cells and accumulated at mitochondria, resulting in cellular apoptosis and synergistic inhibition of tumor cell proliferation. In vivo studies demonstrated that TOS-PDA-PEG-TPP could be efficiently localized at tumor sites and significantly restrain the tumor growth under NIR irradiation without apparent toxicity or deleterious effects. Conclusively, the combination strategy adopted for functional nanodrugs construction aimed at target-delivering therapeutic agents with different action mechanisms to the same intracellular organelles can be extended to other nanodrugs-dependent therapeutic systems.
Collapse
Affiliation(s)
- Ziyu Meng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Binchao Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiqiang Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Yejian Wan
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Qianshi Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Huasheng Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Renchuan Liang
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Peng Tu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Hong Wu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Chuan Xu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| |
Collapse
|
8
|
Li Y, Lin J, Wang P, Zhu F, Wu M, Luo Q, Zhang Y, Liu X. Tumor Microenvironment-Responsive Yolk-Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy via Osmolarity Surge and Oxidative Stress Amplification. ACS NANO 2022; 16:7380-7397. [PMID: 35435672 DOI: 10.1021/acsnano.1c09496] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-interference therapy, which utilizes ions to disturb intracellular biological processes, provides inspiration for tumor therapy. Artificially reversing osmotic pressure by transporting large amounts of physiological ions to tumor cells is a straightforward yet low-toxic strategy for ion-interference therapy. However, it is hard to achieve due to the serious limitations of single-ion delivery. Herein, we skillfully deliver NaCl nanocrystals to tumor sites and sequentially realize the explosive release of Na+/Cl- inside tumor cells by utilizing a virus-mimicking and glutathione (GSH)-responsive hollow mesoporous tetrasulfide-bridged organosilica (ssss-VHMS). Once the ssss-VHMS-wrapped NaCl nanocrystals (NaCl@ssss-VHMS) accumulate in the tumors, they would rapidly invade tumor cells via spike surface-assisted endocytosis, thus bypassing Na+/K+-ATPase transmembrane ion transporters. Afterward, the intracellular overproduced GSH of tumor cells would trigger the rapid degradation of ssss-VHMS via thiol-tetrasulfide exchange, which could not only remarkably deplete the GSH but also explosively release the Na+/Cl-, leading to the osmolarity surge accompanied by reactive oxygen species (ROS) generation. The cell swelling, ROS storm, and GSH exhaustion of NaCl@ssss-VHMS effectively eradicated tumor cells by caspase-1-dependent pyroptosis, caspase-3-dependent apoptosis, and GPX4-dependent ferroptosis, respectively, thus synergistically inhibiting tumor growth. We believe that NaCl@ssss-VHMS would be a potential cancer therapeutic agent, and this discovery could provide a perspective for exploring synergistic ion-interference therapy.
Collapse
Affiliation(s)
- Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Jinyan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Peiyuan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Fukai Zhu
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Qiang Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yun Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| |
Collapse
|