1
|
Wang X, Baksh SS, Pratt RE, Dzau VJ, Hodgkinson CP. Modifying miRs for effective reprogramming of fibroblasts to cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102160. [PMID: 38495845 PMCID: PMC10943962 DOI: 10.1016/j.omtn.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Reprogramming scar fibroblasts into cardiomyocytes has been proposed to reverse the damage associated with myocardial infarction. However, the limited improvement in cardiac function calls for enhanced strategies. We reported enhanced efficacy of our miR reprogramming cocktail miR combo (miR-1, miR-133a, miR-208a, and miR-499) via RNA-sensing receptor stimulation. We hypothesized that we could combine RNA-sensing receptor activation with fibroblast reprogramming by chemically modifying miR combo. To test the hypothesis, miR combo was modified to enhance interaction with the RNA-sensing receptor Rig1 via the addition of a 5'-triphosphate (5'ppp) group. Importantly, when compared with unmodified miR combo, 5'ppp-modified miR combo markedly improved reprogramming efficacy in vitro. Enhanced reprogramming efficacy correlated with a type-I interferon immune response with strong and selective secretion of interferon β (IFNβ). Antibody blocking studies and media replacement experiments indicated that 5'ppp-miR combo utilized IFNβ to enhance fibroblast reprogramming efficacy. In conclusion, miRs can acquire powerful additional roles through chemical modification that potentially increases their clinical applications.
Collapse
Affiliation(s)
- Xinghua Wang
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Syeda S. Baksh
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard E. Pratt
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Victor J. Dzau
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad P. Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Dzau VJ, Hodgkinson CP. RNA Therapeutics for the Cardiovascular System. Circulation 2024; 149:707-716. [PMID: 38408142 DOI: 10.1161/circulationaha.123.067373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA therapeutics hold significant promise in the treatment of cardiovascular diseases. RNAs are biologically diverse and functionally specific and can be used for gain- or loss-of-function purposes. The effectiveness of mRNA-based vaccines in the recent COVID-19 pandemic has undoubtedly proven the benefits of an RNA-based approach. RNA-based therapies are becoming more common as a treatment modality for cardiovascular disease. This is most evident in hypertension where several small interfering RNA-based drugs have proven to be effective in managing high blood pressure in several clinical trials. As befits a rapidly burgeoning field, there is significant interest in other classes of RNA. Revascularization of the infarcted heart through an mRNA drug is under clinical investigation. mRNA technology may provide the platform for the expression of paracrine factors for myocardial protection and regeneration. Emergent technologies on the basis of microRNAs and gene editing are tackling complex diseases in a novel fashion. RNA-based gene editing offers hope of permanent cures for monogenic cardiovascular diseases, and long-term control of complex diseases such as essential hypertension, as well. Likewise, microRNAs are proving effective in regenerating cardiac muscle. The aim of this review is to provide an overview of the current landscape of RNA-based therapies for the treatment of cardiovascular disease. The review describes the large number of RNA molecules that exist with a discussion of the clinical development of each RNA type. In addition, the review also presents a number of avenues for future development.
Collapse
Affiliation(s)
- Victor J Dzau
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (V.J.D., C.P.H.)
- National Academy of Medicine, Washington, DC (V.J.D.)
| | - Conrad P Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (V.J.D., C.P.H.)
| |
Collapse
|
3
|
Visone R, Paoletti C, Cordiale A, Nicoletti L, Divieto C, Rasponi M, Chiono V, Occhetta P. In Vitro Mechanical Stimulation to Reproduce the Pathological Hallmarks of Human Cardiac Fibrosis on a Beating Chip and Predict The Efficacy of Drugs and Advanced Therapies. Adv Healthc Mater 2024; 13:e2301481. [PMID: 37941521 PMCID: PMC11468947 DOI: 10.1002/adhm.202301481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Cardiac fibrosis is one of the main causes of heart failure, significantly contributing to mortality. The discovery and development of effective therapies able to heal fibrotic pathological symptoms thus remain of paramount importance. Micro-physiological systems (MPS) are recently introduced as promising platforms able to accelerate this finding. Here a 3D in vitro model of human cardiac fibrosis, named uScar, is developed by imposing a cyclic mechanical stimulation to human atrial cardiac fibroblasts (AHCFs) cultured in a 3D beating heart-on-chip and exploited to screen drugs and advanced therapeutics. The sole provision of a cyclic 10% uniaxial strain at 1 Hz to the microtissues is sufficient to trigger fibrotic traits, inducing a consistent fibroblast-to-myofibroblast transition and an enhanced expression and production of extracellular matrix (ECM) proteins. Standard of care anti-fibrotic drugs (i.e., Pirfenidone and Tranilast) are confirmed to be efficient in preventing the onset of fibrotic traits in uScar. Conversely, the mechanical stimulation applied to the microtissues limit the ability of a miRNA therapy to directly reprogram fibroblasts into cardiomyocytes (CMs), despite its proved efficacy in 2D models. Such results demonstrate the importance of incorporating in vivo-like stimulations to generate more representative 3D in vitro models able to predict the efficacy of therapies in patients.
Collapse
Affiliation(s)
- Roberta Visone
- BiomimX SrlMilan20157Italy
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| | - Camilla Paoletti
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Alessandro Cordiale
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| | - Letizia Nicoletti
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca MetrologicaDivision of Advanced Materials and Life SciencesTurin10135Italy
| | - Marco Rasponi
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Paola Occhetta
- BiomimX SrlMilan20157Italy
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| |
Collapse
|
4
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
5
|
Perveen S, Vanni R, Lo Iacono M, Rastaldo R, Giachino C. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration. Cells 2023; 12:1166. [PMID: 37190075 PMCID: PMC10136631 DOI: 10.3390/cells12081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.
Collapse
Affiliation(s)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | | | | | | |
Collapse
|