1
|
Jiang D, Zhang J, Shen W, Sun Y, Wang Z, Wang J, Zhang J, Zhang G, Zhang G, Wang Y, Cai S, Zhang J, Wang Y, Liu R, Bai T, Sun Y, Yang S, Ma Z, Li Z, Li J, Ma C, Cheng L, Sun B, Yang K. DNA Vaccines Encoding HTNV GP-Derived Th Epitopes Benefited from a LAMP-Targeting Strategy and Established Cellular Immunoprotection. Vaccines (Basel) 2024; 12:928. [PMID: 39204051 PMCID: PMC11359959 DOI: 10.3390/vaccines12080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Vaccines has long been the focus of antiviral immunotherapy research. Viral epitopes are thought to be useful biomarkers for immunotherapy (both antibody-based and cellular). In this study, we designed a novel vaccine molecule, the Hantaan virus (HTNV) glycoprotein (GP) tandem Th epitope molecule (named the Gnc molecule), in silico. Subsequently, computer analysis was used to conduct a comprehensive and in-depth study of the various properties of the molecule and its effects as a vaccine molecule in the body. The Gnc molecule was designed for DNA vaccines and optimized with a lysosomal-targeting membrane protein (LAMP) strategy. The effects of GP-derived Th epitopes and multiepitope vaccines were initially verified in animals. Our research has resulted in the design of two vaccines based on effective antiviral immune targets. The effectiveness of molecular therapies has also been preliminarily demonstrated in silico and in laboratory animals, which lays a foundation for the application of a vaccines strategy in the field of antivirals.
Collapse
Affiliation(s)
- Dongbo Jiang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China;
| | - Junqi Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Wenyang Shen
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yubo Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Zhenjie Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jiawei Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jinpeng Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Guanwen Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Gefei Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yueyue Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Sirui Cai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jiaxing Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yongkai Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Ruibo Liu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Tianyuan Bai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yuanjie Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Shuya Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Zilu Ma
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Zhikui Li
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jijin Li
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Chenjin Ma
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Linfeng Cheng
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China;
| | - Baozeng Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
- Yingtan Detachment, Jiangxi General Hospital, Chinese People’s Armed Police Force, Nanchang 330001, China
| | - Kun Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| |
Collapse
|
2
|
Antonyan T, Chilingaryan G, Zagorski K, Ghazaryan M, Hovakimyan A, Davtyan H, Petrushina I, King O, Kniazev R, Petrovsky N, Ghochikyan A. MultiTEP-Based Vaccines Targeting SARS-CoV-2 Spike Protein IgG Epitopes Elicit Robust Binding Antibody Titers with Limited Virus-Neutralizing Activity. Pathogens 2024; 13:520. [PMID: 38921817 PMCID: PMC11206316 DOI: 10.3390/pathogens13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the universal platform for vaccine development, MultiTEP, which has been utilized in this study to generate a range of SARS-CoV-2 epitope vaccine candidates. We prepared and characterized 18 vaccines incorporating small peptide fragments from SARS-CoV-2 Spike protein fused with the MultiTEP sequence using overlapping PCR. Wild-type mice were immunized intramuscularly with the immunogen formulated in AdvaxCpG adjuvant. Serum antibodies were detected by ELISA, surrogate neutralization, and pseudovirus neutralization assays. Finally, the most promising vaccine candidate was administered to three non-human primates. All vaccines generated high titers of spike-binding IgG antibodies. However, only three vaccines generated antibodies that blocked RBD binding to the ACE2 receptor in a surrogate virus neutralization assay. However, none of the vaccines induced antibodies able to neutralize pseudotype viruses, including after the administration of the lead vaccine to NHPs. MultiTEP-based COVID-19 vaccines elicited robust, IgG-binding responses against the Spike protein in mice and non-human primates, but these antibodies were not neutralizing, underscoring the need to refine this approach further.
Collapse
Affiliation(s)
- Tatevik Antonyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Garri Chilingaryan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Karen Zagorski
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Manush Ghazaryan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Armine Hovakimyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Hayk Davtyan
- Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Olga King
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Roman Kniazev
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | | | - Anahit Ghochikyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| |
Collapse
|
3
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|