1
|
Toufanian S, Sharma M, Xu F, Tayebi SS, McCabe C, Piliouras E, Hoare T. Electrospun "Hard-Soft" Interpenetrating Nanofibrous Tissue Scaffolds Facilitating Enhanced Mechanical Strength and Cell Proliferation. ACS Biomater Sci Eng 2024; 10:6887-6902. [PMID: 39367819 DOI: 10.1021/acsbiomaterials.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Mya Sharma
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Seyed Saeid Tayebi
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Christina McCabe
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Elaina Piliouras
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
3
|
Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4792. [PMID: 39410363 PMCID: PMC11477805 DOI: 10.3390/ma17194792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. Initially, the chemical composition and intrinsic properties of both natural and synthetic hydrogels are discussed, highlighting their biocompatibility and biodegradability. The manuscript then probes into innovative scaffold designs and fabrication techniques such as 3D printing, electrospinning, and self-assembly methods, emphasizing their applications in regenerating bone, cartilage, skin, and neural tissues. In the realm of biosensing, hydrogels' responsive nature is explored through their integration into optical, electrochemical, and piezoelectric sensors. These sensors are instrumental in medical diagnostics for glucose monitoring, pathogen detection, and biomarker identification, as well as in environmental and industrial applications like pollution and food quality monitoring. Furthermore, the review explores cross-disciplinary innovations, including the use of hydrogels in wearable devices, and hybrid systems, and their potential in personalized medicine. By addressing current challenges and future directions, this review aims to underscore the transformative impact of hydrogel technologies in advancing healthcare and industrial practices, thereby providing a vital resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
4
|
de Mello Innocentini M, Fuzatto Bueno BR, Urbaś A, Morawska-Chochół A. Microstructural, Fluid Dynamic, and Mechanical Characterization of Zinc Oxide and Magnesium Chloride-Modified Hydrogel Scaffolds. ACS Biomater Sci Eng 2024; 10:4791-4801. [PMID: 39012256 PMCID: PMC11322906 DOI: 10.1021/acsbiomaterials.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Scaffolds for the filling and regeneration of osteochondral defects are a current challenge in the biomaterials field, and solutions with greater functionality are still being sought. The novel approach of this work was to obtain scaffolds with biologically active additives possessing microstructural, permeability, and mechanical properties, mimicking the complexity of natural cartilage. Four types of scaffolds with a gelatin/alginate matrix modified with hydroxyapatite were obtained, and the relationship between the modifiers and substrate properties was evaluated. They differed in the type of second modifier used, which was hydrated MgCl2 in two proportions, ZnO, and nanohydroxyapatite. The samples were obtained by freeze-drying by using two-stage freezing. Based on microstructural observations combined with X-ray microanalysis, the microstructure of the samples and the elemental content were assessed. Permeability and mechanical tests were also performed. The scaffolds exhibited a network of interconnected pores and complex microarchitecture, with lower porosity at the surface (15 ± 7 to 29 ± 6%) and higher porosity at the center (67 ± 8 to 75 ± 8%). The additives had varying effects on the pore sizes and permeabilities of the samples. ZnO yielded the most permeable scaffolds (5.92 × 10-11 m2), whereas nanohydroxyapatite yielded the scaffold with the lowest permeability (1.18 × 10-11 m2), values within the range reported for trabecular bone. The magnesium content had no statistically significant effect on the permeability. The best mechanical parameters were obtained for ZnO samples and those containing hydrated MgCl2. The scaffold's properties meet the criteria for filling osteochondral defects. The developed scaffolds follow a biomimetic approach in terms of hierarchical microarchitecture and mechanical parameters as well as chemical composition. The obtained composite materials have the potential as biomimetic scaffolds for the regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Murilo
Daniel de Mello Innocentini
- Course
of Chemical Engineering, University of Ribeirão
Preto, Avenida Costabile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
- Department
of Architecture and Civil Engineering, Centre for Regenerative Design
and Engineering for a Net Positive World (RENEW), University of Bath, Bath BA2 7AY, U.K.
| | - Bruno Ribeiro Fuzatto Bueno
- Course
of Chemical Engineering, University of Ribeirão
Preto, Avenida Costabile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Agnieszka Urbaś
- Faculty
of Electrical Engineering, Automatics, Computer Science and Biomedical
Engineering, AGH University of Krakow, 30-059 Kraków, Poland
| | - Anna Morawska-Chochół
- Faculty
of Materials Science and Ceramics, Department of Biomaterials and
Composites, AGH University of Krakow, 30-059 Kraków, Poland
| |
Collapse
|
5
|
Hwang HS, Lee CS. Nanoclay-Composite Hydrogels for Bone Tissue Engineering. Gels 2024; 10:513. [PMID: 39195042 DOI: 10.3390/gels10080513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Nanoclay-composite hydrogels represent a promising avenue for advancing bone tissue engineering. Traditional hydrogels face challenges in providing mechanical strength, biocompatibility, and bioactivity necessary for successful bone regeneration. The incorporation of nanoclay into hydrogel matrices offers a potential unique solution to these challenges. This review provides a comprehensive overview of the fabrication, physico-chemical/biological performance, and applications of nanoclay-composite hydrogels in bone tissue engineering. Various fabrication techniques, including in situ polymerization, physical blending, and 3D printing, are discussed. In vitro and in vivo studies evaluating biocompatibility and bioactivity have demonstrated the potential of these hydrogels for promoting cell adhesion, proliferation, and differentiation. Their applications in bone defect repair, osteochondral tissue engineering and drug delivery are also explored. Despite their potential in bone tissue engineering, nanoclay-composite hydrogels face challenges such as optimal dispersion, scalability, biocompatibility, long-term stability, regulatory approval, and integration with emerging technologies to achieve clinical application. Future research directions need to focus on refining fabrication techniques, enhancing understanding of biological interactions, and advancing towards clinical translation and commercialization. Overall, nanoclay-composite hydrogels offer exciting opportunities for improving bone regeneration strategies.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
6
|
Zhang C, Kwon SH, Dong L. Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310110. [PMID: 38329191 DOI: 10.1002/smll.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| |
Collapse
|
7
|
Ebrahimi M, Arreguín-Campos M, Dookhith AZ, Aldana AA, Lynd NA, Sanoja GE, Baker MB, Pitet LM. Tailoring Network Topology in Mechanically Robust Hydrogels for 3D Printing and Injection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38712527 DOI: 10.1021/acsami.4c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry. We systematically vary polymer concentration, constituent molar mass, and cross-linking protocols to understand the impact of architecture on hydrogel mechanical properties. The network architecture was resolved within the molecular model of Rubinstein-Panyukov to obtain the densities of chemical cross-links and entanglements. We employed both nucleophilic and radical pathways, uncovering notable differences in mechanical response, which highlight a remarkable degree of versatility achievable by tuning readily accessible parameters. Our approach yielded hydrogels with good cell viability and remarkably robust tensile and compression profiles. Finally, the hydrogels are shown to be amenable to advanced processing techniques by demonstrating injection- and extrusion-based 3D printing. Tuning the mechanism and network regularity during the cell-compatible formation of hydrogels is an emerging strategy to control the properties and processability of hydrogel biomaterials by making simple and rational design choices.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Mariana Arreguín-Campos
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Aaliyah Z Dookhith
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ana A Aldana
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew B Baker
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Louis M Pitet
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
8
|
Imani KBC, Dodda JM, Yoon J, Torres FG, Imran AB, Deen GR, Al‐Ansari R. Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306784. [PMID: 38240470 PMCID: PMC10987148 DOI: 10.1002/advs.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 04/04/2024]
Abstract
Conductive hydrogels (CHs) have received significant attention for use in wearable devices because they retain their softness and flexibility while maintaining high conductivity. CHs are well suited for applications in skin-contact electronics and biomedical devices owing to their high biocompatibility and conformality. Although highly conductive hydrogels for smart wearable devices are extensively researched, a detailed summary of the outstanding results of CHs is required for a comprehensive understanding. In this review, the recent progress in the preparation and fabrication of CHs is summarized for smart wearable devices. Improvements in the mechanical, electrical, and functional properties of high-performance wearable devices are also discussed. Furthermore, recent examples of innovative and highly functional devices based on CHs that can be seamlessly integrated into daily lives are reviewed.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West Bohemia, Univerzitní 8Pilsen301 00Czech Republic
| | - Jinhwan Yoon
- Graduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsSustainable Utilization of Photovoltaic Energy Research CenterPusan National UniversityBusan46241Republic of Korea
| | - Fernando G. Torres
- Department of Mechanical EngineeringPontificia Universidad Catolica del Peru. Av. Universitaria 1801Lima15088Peru
| | - Abu Bin Imran
- Department of ChemistryBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - G. Roshan Deen
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| | - Renad Al‐Ansari
- Materials for Medicine Research GroupSchool of MedicineThe Royal College of Surgeons in Ireland (RCSI)Medical University of BahrainBusaiteen15503Kingdom of Bahrain
| |
Collapse
|
9
|
Tie BSH, Manaf E, Halligan E, Zhuo S, Keane G, Geever J, Geever L. The Effects of Incorporating Nanoclay in NVCL-NIPAm Hydrogels on Swelling Behaviours and Mechanical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:597. [PMID: 38607131 PMCID: PMC11013429 DOI: 10.3390/nano14070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Following the formulation development from a previous study utilising N-vinylcaprolactam (NVCL) and N-isopropylacrylamide (NIPAm) as monomers, poly(ethylene glycol) dimethacrylate (PEGDMA) as a chemical crosslinker, and Irgacure 2959 as photoinitiator, nanoclay (NC) is now incorporated into the selected formulation for enhanced mechanical performance and swelling ability. In this research, two types of NC, hydrophilic bentonite nanoclay (NCB) and surface-modified nanoclay (NCSM) of several percentages, were included in the formulation. The prepared mixtures were photopolymerised, and the fabricated gels were characterised through Fourier transform infrared spectroscopy (FTIR), cloud-point measurements, ultraviolet (UV) spectroscopy, pulsatile swelling, rheological analysis, and scanning electron microscopy (SEM). Furthermore, the effect of swelling temperature, NC types, and NC concentration on the hydrogels' swelling ratio was studied through a full-factorial design of experiment (DOE). The successful photopolymerised NC-incorporated NVCL-NIPAm hydrogels retained the same lower critical solution temperature (LCST) as previously. Rheological analysis and SEM described the improved mechanical strength and polymer orientation of gels with any NCB percentage and low NCSM percentage. Finally, the temperature displayed the most significant effect on the hydrogels' swelling ability, followed by the NC types and NC concentration. Introducing NC to hydrogels could potentially make them suitable for applications that require good mechanical performance.
Collapse
Affiliation(s)
- Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland; (E.H.); (S.Z.)
| | - Eyman Manaf
- Department of Mechanical, Polymer Engineering & Design, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland; (E.M.); (J.G.)
| | - Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland; (E.H.); (S.Z.)
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland; (E.H.); (S.Z.)
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland;
| | - Joseph Geever
- Department of Mechanical, Polymer Engineering & Design, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland; (E.M.); (J.G.)
| | - Luke Geever
- Applied Polymer Technologies Gateway, Materials Research Institute, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
10
|
Xu Y, Tan C, He Y, Luo B, Liu M. Chitin nanocrystals stabilized liquid metal for highly stretchable and anti-freeze hydrogels as flexible strain sensor. Carbohydr Polym 2024; 328:121728. [PMID: 38220327 DOI: 10.1016/j.carbpol.2023.121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Conductive hydrogels show extensive applications in flexible electronics and biomedical areas, but it is a challenge to simultaneously achieve high mechanical properties, satisfied electrical conductivity, good biocompatibility, self-recovery and anti-freezing properties through a simple preparation method. Herein, chitin nanocrystals (ChNCs) were employed to encapsulate liquid metal nanoparticles (LMNPs) to ensure the dispersion stability of LMNPs in a hydrogel system composed of polyacrylamide (PAM) and polyvinyl alcohol (PVA). The synergistic effect of ChNCs-stabilized LMNPs imparts remarkable conductivity to the hydrogel, making it an effective strain sensor for human motion. With 1 % LMNPs, the composite hydrogel stretches up to 2100 %, showing excellent stretchability. Under 10 cycles of 200 % strain, hysteresis loop curves overlap, indicating outstanding fatigue resistance. The hydrogel exhibits remarkable self-recovery, enduring 1400 % deformation without rupture. In addition, its effective antifreeze properties result from immersion in a glycerol-water solvent. Even at -20 °C and 60 °C, the hydrogel maintains stable, reproducible resistance changes at 150 % tensile strain. Therefore, the high-performance conductive hydrogel containing ChNCs stabilized LM has promising applications in flexible wearable sensing devices.
Collapse
Affiliation(s)
- Yuqian Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Cuiying Tan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China; Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
11
|
Meng J, Sheng T, Zhou X, Huang Q, He F, Li Y, Wang Z. Facilely and efficiently constructing anti-oil-fouling zwitterionic coatings on membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2024; 60:1766-1769. [PMID: 38252023 DOI: 10.1039/d3cc05732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A facile and efficient strategy for constructing anti-oil-fouling zwitterionic coatings on membranes is developed. The resultant membrane exhibits excellent anti-oil-fouling ability even in a dry state, and has a high efficiency for emulsion separation with a high flux of 5800 L m-2 h-1 bar-1 and an oil rejection of up to 99.6%.
Collapse
Affiliation(s)
- Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Tong Sheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Xue Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Qiong Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Yuexiang Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| |
Collapse
|
12
|
Dalei G, Jena D, Das BR, Das S. Bio-valorization of Tagetes floral waste extract in fabrication of self-healing Schiff-base nanocomposite hydrogels for colon cancer remedy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4330-4347. [PMID: 38097839 DOI: 10.1007/s11356-023-31392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
The drastic boom in floriculture and social events in religious and recreational places has inevitably led to generation of tremendous floral waste across the globe. Marigold (Tagetes erecta) is one of the most common loose flowers offered for the same. Generally discarded, these Tagetes floral wastes could be valorized for biogenic syntheses. In this study, we have utilized the floral extract towards green synthesis of nano ZnO, the formation of which was affirmed from different analytical techniques. Bionanocomposite Schiff-base hydrogel composed of chitosan and dialdehyde pectin was fabricated by the facile strategy of in situ polymer cross-linking, and the ZnO nanoparticles were embedded in the hydrogel matrix. The hydrogel exhibited remarkable self-healing ability. The antioxidant and anti-inflammatory activities were enhanced owing to nano ZnO. Furthermore, it was hemocompatible and biodegradable. A controlled release drug profile for 5-fluorouracil from the hydrogel was accomplished in the colorectum. The exposure of the drug-loaded nanocomposite hydrogel demonstrated improved anticancer effects in HT-29 colon cancer cells. The findings of this study altogether put forth the successful biovalorization of Tagetes floral waste extract for colon cancer remedy.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Debasish Jena
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India.
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India.
| |
Collapse
|
13
|
Leow Y, Boo YJ, Lin M, Tan YC, Goh RZR, Zhu Q, Loh XJ, Xue K, Kai D. Coconut husk-derived nanocellulose as reinforcing additives in thermal-responsive hydrogels. Carbohydr Polym 2024; 323:121453. [PMID: 37940313 DOI: 10.1016/j.carbpol.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has been widely used as a reinforcing agent for hydrogel systems, but its functions on thermal responsive hydrogels are rarely investigated. In this study, we extracted cellulose nanofibers (CNFs) from coconut biomass (coir fibers and piths, respectively) and aimed to study their effects on the material properties on a new class of thermogel (poly(PCL/PEG/PPG urethane). The CNFs extracted from fiber (FF) and piths (FP) showed different morphology and fiber lengths. FF are uniformed individual fibrous networks with a fiber length of 664 ± 416 nm, while FP display a hybrid structure consisting of individual fiber and large bundles with a relative shorter fiber length of 443 ± 184 nm. Integrating both CNFs into thermogels remained the thermal-responsive characteristics with an enhanced rheological property. The results showed that gels with FF resulted in a higher storage modulus and lower Tan δ value compared to those with FP, indicating that the CNFs with a longer length could form a more intertwined network interacting with the thermogel matrix. Furthermore, we demonstrated the improved capabilities of the nanocomposite thermogels for sustained drug delivery in vitro. This study not only value-adds lignocellulose valorization but also elevates the versatility of thermogels.
Collapse
Affiliation(s)
- Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Rubayn Zhi Rong Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
14
|
Stan D, Ruta LL, Bocancia-Mateescu LA, Mirica AC, Stan D, Micutz M, Brincoveanu O, Enciu AM, Codrici E, Popescu ID, Popa ML, Rotaru F, Tanase C. Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles. Pharmaceutics 2023; 15:2696. [PMID: 38140037 PMCID: PMC10747233 DOI: 10.3390/pharmaceutics15122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lavinia Liliana Ruta
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania
| | | | - Andreea-Cristina Mirica
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Dana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Marin Micutz
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania;
- Research Institute, The University of Bucharest, 060102 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Maria Linda Popa
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flaviana Rotaru
- Polytechnic University of Bucharest, Splaiul Independenței 54, 030167 Bucharest, Romania;
- Rohealth—Health and Bioeconomy Cluster, Calea Griviţei 6-8, 010731 Bucharest, Romania
- Frontier Management Consulting, Calea Griviţei6-8, 010731 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Clinical Biochemistry, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
15
|
Negut I, Bita B. Exploring the Potential of Artificial Intelligence for Hydrogel Development-A Short Review. Gels 2023; 9:845. [PMID: 37998936 PMCID: PMC10670215 DOI: 10.3390/gels9110845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
AI and ML have emerged as transformative tools in various scientific domains, including hydrogel design. This work explores the integration of AI and ML techniques in the realm of hydrogel development, highlighting their significance in enhancing the design, characterisation, and optimisation of hydrogels for diverse applications. We introduced the concept of AI train hydrogel design, underscoring its potential to decode intricate relationships between hydrogel compositions, structures, and properties from complex data sets. In this work, we outlined classical physical and chemical techniques in hydrogel design, setting the stage for AI/ML advancements. These methods provide a foundational understanding for the subsequent AI-driven innovations. Numerical and analytical methods empowered by AI/ML were also included. These computational tools enable predictive simulations of hydrogel behaviour under varying conditions, aiding in property customisation. We also emphasised AI's impact, elucidating its role in rapid material discovery, precise property predictions, and optimal design. ML techniques like neural networks and support vector machines that expedite pattern recognition and predictive modelling using vast datasets, advancing hydrogel formulation discovery are also presented. AI and ML's have a transformative influence on hydrogel design. AI and ML have revolutionised hydrogel design by expediting material discovery, optimising properties, reducing costs, and enabling precise customisation. These technologies have the potential to address pressing healthcare and biomedical challenges, offering innovative solutions for drug delivery, tissue engineering, wound healing, and more. By harmonising computational insights with classical techniques, researchers can unlock unprecedented hydrogel potentials, tailoring solutions for diverse applications.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| |
Collapse
|
16
|
Lee DN, Park JY, Seo YW, Jin X, Hong J, Bhattacharyya A, Noh I, Choi SH. Photo-crosslinked gelatin methacryloyl hydrogel strengthened with calcium phosphate-based nanoparticles for early healing of rabbit calvarial defects. J Periodontal Implant Sci 2023; 53:321-335. [PMID: 36919004 PMCID: PMC10627735 DOI: 10.5051/jpis.2203220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. METHODS Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. RESULTS Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. CONCLUSIONS There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.
Collapse
Affiliation(s)
- Da-Na Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Medical & Dental Devices Usability Test Center, Yonsei University Dental Hospital, Seoul, Korea
| | - Young-Wook Seo
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Xiang Jin
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jongmin Hong
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Korea
| | - Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Medical & Dental Devices Usability Test Center, Yonsei University Dental Hospital, Seoul, Korea.
| |
Collapse
|
17
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
18
|
Guo Y, Xie B, Jiang M, Yuan L, Jiang X, Li S, Cai R, Chen J, Jiang X, He Y, Tao G. Facile and eco-friendly fabrication of biocompatible hydrogel containing CuS@Ser NPs with mechanical flexibility and photothermal antibacterial activity to promote infected wound healing. J Nanobiotechnology 2023; 21:266. [PMID: 37563585 PMCID: PMC10416498 DOI: 10.1186/s12951-023-02035-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Bacterial infections can significantly impede wound healing and pose a serious threat to the patient's life. The excessive use of antibiotics to combat bacterial infections has led to the emergence of multi-drug-resistant bacteria. Therefore, there is a pressing need for alternative approaches, such as photothermal therapy (PTT), to address this issue. In this study, for the first time, CuS NPs with photothermal properties were synthesized using sericin as a biological template, named CuS@Ser NPs. This method is simple, green, and does not produce toxic and harmful by-products. These nanoparticles were incorporated into a mixture (XK) of xanthan gum and konjac glucomannan (KGM) to obtain XK/CuS NPs composite hydrogel, which could overcome the limitations of current wound dressings. The composite hydrogel exhibited excellent mechanical flexibility, photothermal response, and biocompatibility. It also demonstrated potent antibacterial properties against both Gram-positive and negative bacteria via antibacterial experiments and accelerated wound healing in animal models. Additionally, it is proved that the hydrogel promoted tissue regeneration by stimulating collagen deposition, angiogenesis, and reducing inflammation. In summary, the XK/CuS NPs composite hydrogel presents a promising alternative for the clinical management of infected wounds, offering a new approach to promote infected wound healing.
Collapse
Affiliation(s)
- Ye Guo
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Bingqing Xie
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Min Jiang
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueyu Jiang
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Silei Li
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Gang Tao
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
19
|
Marin MM, Gifu IC, Pircalabioru GG, Albu Kaya M, Constantinescu RR, Alexa RL, Trica B, Alexandrescu E, Nistor CL, Petcu C, Ianchis R. Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing. Gels 2023; 9:gels9050425. [PMID: 37233016 DOI: 10.3390/gels9050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide's polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
Collapse
Affiliation(s)
- Maria Minodora Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), University of Bucharest, 030018 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Madalina Albu Kaya
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rebeca Leu Alexa
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Bogdan Trica
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Raluca Ianchis
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
20
|
Zhang J, Yan D, Qi S. Microphase behaviors and shear moduli of double-network gels: The effect of crosslinking constraints and chain uncrossability. J Chem Phys 2023; 158:114906. [PMID: 36948820 DOI: 10.1063/5.0141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
By performing coarse-grained molecular dynamics simulations, we study the effect of crosslinking and chain uncrossability on the microphase behaviors and mechanical properties of the double-network gels. The double-network systems can be viewed as two separate networks interpenetrating each other uniformly, and the crosslinks in each network are generated, forming a regular cubic lattice. The chain uncrossability is confirmed by appropriately choosing the bonded and nonbonded interaction potentials. Our simulations reveal a close relation between the phase and mechanical properties of the double-network systems and their network topological structures. Depending on the lattice size and the solvent affinity, we have observed two different microphases: one is the aggregation of solvophobic beads around the crosslinking points, which leads to locally polymer-rich domains, and the other is the bunching of polymer strands, which thickens the network edges and thus changes the network periodicity. The former is a representation of the interfacial effect, while the latter is determined by the chain uncrossability. The coalescence of network edges is demonstrated to be responsible for the large relative increase in the shear modulus. Compressing and stretching induced phase transitions are observed in the current double-network systems, and the sharp discontinuous change in the stress that appears at the transition point is found to be related to the bunching or debunching of the network edges. The results suggest that the regulation of network edges has a strong influence on the network mechanical properties.
Collapse
Affiliation(s)
- Jinrong Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Shuanhu Qi
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
21
|
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023; 229:105-122. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The development of multifunctional wearable electronic devices has received considerable attention because of their attractive applications. However, integrating multifunctional abilities into one component remains a challenge. To address this, we have developed a tannic acid-functionalized spherical nanocellulose/polyvinyl alcohol composite hydrogel using borax as a crosslinking agent for strain-sensing applications. The hydrogel demonstrates improved mechanical and recovery strengths and maintains its mechanical strength under freezing conditions. The hydrogels show ultra-stretching, adhesive, self-healing, and conductive properties, making them ideal candidates for developing strain-based wearable devices. The hydrogel exhibits good sensitivity with a 4.75 gauge factor. The cytotoxicity of the developed hydrogels was monitored with human dermal fibroblast cells by WST-8 assay in vitro. The antibacterial potential of the hydrogels was evaluated using Escherichia coli. The hydrogels demonstrate enhanced antibacterial ability than the control. Therefore, the developed multifunctional hydrogels with desirable properties are promising platforms for strain sensor devices.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
22
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
23
|
Amukarimi S, Rezvani Z, Eghtesadi N, Mozafari M. Smart biomaterials: From 3D printing to 4D bioprinting. Methods 2022; 205:191-199. [PMID: 35810960 DOI: 10.1016/j.ymeth.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
This century is blessed with enhanced medical facilities on the grounds of the development of smart biomaterials. The rise of the four-dimensional (4D) bioprinting technology is a shining example. Using inert biomaterials as the bioinks for the three-dimensional (3D) printing process, static objects that might not be able to mimic the dynamic nature of tissues would be fabricated; by contrast, 4D bioprinting can be used for the fabrication of stimuli-responsive cell-laden structures that can evolve with time and enable engineered tissues to undergo morphological changes in a pre-planned way. For all the aptitude of 4D bioprinting technology in tissue engineering, it is imperative to select suitable stimuli-responsive biomaterials with cell-supporting functionalities and responsiveness; as a result, in this article, recent advances and challenges in smart biomaterials for 4D bioprinting are briefly discussed. An overview perspective concerning the latest developments in 4D-bioprinting is also provided.
Collapse
Affiliation(s)
- Shukufe Amukarimi
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezvani
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milano, Italy
| | - Neda Eghtesadi
- Inorganic Chemistry Group, University of Turku, Turku, Finland
| | - Masoud Mozafari
- Faculty of Advanced Technologies in Medicine, Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Han N, Zhao X, Thakur VK. Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Pal K, Sarkar P, Anis A, Wiszumirska K, Jarzębski M. Polysaccharide-Based Nanocomposites for Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5549. [PMID: 34639945 PMCID: PMC8509663 DOI: 10.3390/ma14195549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The article presents a review of the literature on the use of polysaccharide bionanocomposites in the context of their potential use as food packaging materials. Composites of this type consist of at least two phases, of which the outer phase is a polysaccharide, and the inner phase (dispersed phase) is an enhancing agent with a particle size of 1-100 nm in at least one dimension. The literature review was carried out using data from the Web of Science database using VosViewer, free software for scientometric analysis. Source analysis concluded that polysaccharides such as chitosan, cellulose, and starch are widely used in food packaging applications, as are reinforcing agents such as silver nanoparticles and cellulose nanostructures (e.g., cellulose nanocrystals and nanocellulose). The addition of reinforcing agents improves the thermal and mechanical stability of the polysaccharide films and nanocomposites. Here we highlighted the nanocomposites containing silver nanoparticles, which exhibited antimicrobial properties. Finally, it can be concluded that polysaccharide-based nanocomposites have sufficient properties to be tested as food packaging materials in a wide spectrum of applications.
Collapse
Affiliation(s)
- Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
| | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Karolina Wiszumirska
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| |
Collapse
|