1
|
Song B, Zhang E, Shi Y, Zhu H, Wang W, Gallagher SJ, Cao Z. A Paintable, Scalable, and Durable Zwitterionic Hydrogel Coating for Enhanced Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39893696 DOI: 10.1021/acs.langmuir.4c04595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Marine biofouling has been a severe challenge since the increase of maritime trade, significantly impacting the efficiency of ships by increasing drag, fuel consumption, hull corrosion, and even problems related to navigational safety and biological invasions. Commercial antifouling coatings have been developed for many years, but a satisfactory solution has yet to be found due to problems, such as high toxicity, environmental pollution, or high costs. Zwitterionic materials, with their superhydrophilic properties, demonstrate excellent resistance to nonspecific adhesion alongside good biocompatibility, making them promising candidates for marine antifouling applications. However, their superhydrophilic nature makes it difficult to anchor onto hydrophobic substrates, limiting their use. In this study, we presented a paintable, scalable, and durable antifouling coating system made by zwitterionic hydrogel (PSDA-Z), which was covalently attached to substrates through an acrylated epoxy resin primer coat and maintained antifouling performance even after 3 months of high-speed water shearing, high-pressure sandpaper abrasion, and sharp scratching. This PSDA-Z could also easily be applied on various substrates without specific treatments, including epoxy resin, poly(vinyl chloride) (PVC), polyurethane (PU), and wood. More importantly, this coating system achieved excellent antifouling performance comparable to self-polishing coatings (SPCs), the current industry standard in marine antifouling coating, in the Atlantic Ocean field tests for 3 months, suggesting its promise as an effective and ecofriendly alternative for marine antifouling applications.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Wei Wang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Sheu-Jane Gallagher
- Repela Tech, LLC, 2222 W Grand River Ave, Ste A, Okemos, Michigan 48864, United States
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Nassar RUD, Alamara K, Balachandra A, Soroushian P, Ghebrab T. Performance evaluation of innovative self-healing corrosion protection coatings for prestressing strands. Heliyon 2024; 10:e40681. [PMID: 39698085 PMCID: PMC11652908 DOI: 10.1016/j.heliyon.2024.e40681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
This study presents the design and experimental evaluation of advanced corrosion protection coatings for application on prestressing strands which are the core constituents of prestressed concrete structures such as bridges. Variety of self-heal coatings embodying corrective and protective phenomena in response to the degrading effects of corrosion have been designed and tested in simulated aggressive weathering conditions. Standard 7-wire prestressing strands coated with self-heal epoxy, self-heal toughened epoxy and hybrid epoxy coating systems were subjected to salt fog spray up to a duration of 2500 h, and 3M CalCl2, 3M NaOH, saturated Ca(OH)2 solutions and distilled water up to 45 days duration. Furthermore, rust creepage of the coated prestressing strands was measured after extended exposure to aggressive corrosive environment. Bond strength of the self-heal epoxy coated prestressing strands was evaluated through pullout test using high-strength concrete. Significant improvement in corrosion resistance, hydrolytic stability, marked reduction in rust creepage, and improved bond strength, brought about by the innovative self-heal epoxy coatings were recorded in laboratory tests. Furthermore, electrochemical impedance spectroscopy (EIS) data proved excellent corrosion protection qualities of self-healing coatings. The ATR-FTIR spectra of various self-heal epoxy coating systems and optic microscopic images of the coatings further verified these findings.
Collapse
Affiliation(s)
- Roz-Ud-Din Nassar
- Department of Civil and Infrastructure Engineering, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Kadhim Alamara
- Department of Mechanical and Industrial Engineering, Liwa College, Abu Dhabi, United Arab Emirates
| | - Anagi Balachandra
- Research Development, College of Engineering, University of Michigan, USA
| | - Parviz Soroushian
- Emeritus of Civil and Environmental Engineering Department, Michigan State University, USA
| | - Tewodros Ghebrab
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, USA
| |
Collapse
|
3
|
Udoh II, Ekerenam OO, Daniel EF, Ikeuba AI, Njoku DI, Kolawole SK, Etim IIN, Emori W, Njoku CN, Etim IP, Uzoma PC. Developments in anticorrosive organic coatings modulated by nano/microcontainers with porous matrices. Adv Colloid Interface Sci 2024; 330:103209. [PMID: 38848645 DOI: 10.1016/j.cis.2024.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The durability and functionality of many metallic structures are seriously threatened by corrosion, which makes the development of anticorrosive coatings imperative. This state-of-the-art survey explores the recent developments in the field of anticorrosive organic coatings modulated by innovations involving nano/microcontainers with porous matrices. The integration of these cutting-edge delivery systems seeks to improve the protective properties of coatings by enabling controlled release, extended durability, targeted application of corrosion inhibitors, and can be co-constructed to achieve defect filling by polymeric materials. The major highlight of this review is an in-depth analysis of the functionalities provided by porous nano/microcontainers in the active protection and self-healing of anticorrosive coatings, including their performance evaluation. In one case, after 20 days of immersion in 0.1 M NaCl, a scratched coating containing mesoporous silica nanoparticles loaded with an inhibitor benzotriazole and shelled with polydopamine (MSNs-BTA@PDA) exhibited coating restoration indicated by a sustained corrosion resistance rise over an extended period monitored by impedance values at 0.01 Hz frequency, rising from 8.3 × 104 to 7.0 × 105 Ω cm2, a trend assigned to active protection by the release of inhibitors and self-healing capabilities. Additionally, some functions related to anti-fouling and heat preservation by nano/microcontainers are highlighted. Based on the literature survey, some desirable properties, current challenges, and prospects of anticorrosive coatings doped with nano/microcontainers have been summarized. The knowledge gained from this survey will shape future research directions and applications in a variety of industrial areas, in addition to advancing smart corrosion prevention technology.
Collapse
Affiliation(s)
- Inime I Udoh
- The Hempel Foundation Coatings Science and Technology Centre (CoaST), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria.
| | - Okpo O Ekerenam
- Department of Biochemistry, School of Pure & Applied Sciences, Federal University of Technology, Ikot Abasi, Akwa Ibom State, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Enobong F Daniel
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Alexander I Ikeuba
- Materials Chemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria.
| | - Demian I Njoku
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, SAR, China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria; Centre for Corrosion and Protection of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Department of Industrial Chemistry, Madonna University, Elele, Nigeria.
| | - Sharafadeen K Kolawole
- Mechanical Engineering Department, School of Engineering and Technology, Federal Polytechnic, P.M.B 420 Offa, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria.
| | - Ini-Ibehe N Etim
- Marine Chemistry and Corrosion Research Group, Department of Marine Science, Akwa Ibom State University, P. M. B. 1167, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| | - Wilfred Emori
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, PR China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Chigoziri N Njoku
- Environmental, Composite and Optimization Research Group, Department of Chemical Engineering, Federal University of Technology, PMB 1526 Owerri, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria.
| | - Iniobong P Etim
- Department of Physics, University of Calabar, Calabar, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Paul C Uzoma
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Department of Polymer and Textile Engineering, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria
| |
Collapse
|
4
|
Xu Y, Li J, Liu Y, Wu W. Construction and Curing Behavior of Underwater In Situ Repairing Coatings for Offshore Structures. Polymers (Basel) 2024; 16:306. [PMID: 38337196 DOI: 10.3390/polym16030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The development of polymeric materials for the repair and reinforcement of damaged sites in water has many practical applications, especially in ocean engineering. However, it is difficult to construct an anticorrosion coating in water. In addition, curing kinetics, which are the key to enhance the performance of coatings, seem to hardly be observed and regulated in an underwater condition. Herein, a novel underwater in situ repairing coating was prepared. Meanwhile, electrochemical impedance spectroscopy (EIS) was applied to observe its curing behavior underwater. Adhesion tests showed that the coatings cured underwater had good adhesion to different substrate surfaces and the ideal ratio of curing agent to epoxy resin was 0.6. Long-term anticorrosive tests demonstrated that the coatings had an excellent anti-corrosion performance. The viscosity changes in different curing stages were well reflected by frequency response characteristics from Bode and Nyquist curves by EIS. Two equivalent electrical circuits were selected to simulate the impedance date at the initial and final curing stage. A formula was put forward to evaluate the curing degree during the curing process. Finally, the effects of temperature and the ingredient ratio on the reaction rate and curing degree were also investigated here. This underwater in situ repairing coating may find applications in many offshore engineering structures in marine environments, and the EIS technique has attractive development and application prospects when observing the curing information of thermosetting resin systems under special circumstances.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Key Laboratory of Engineering Materials of Ministry of Water Resources, Beijing 100038, China
| | - Jiangbo Li
- Engineering Center for Superlubricity, Jihua Laboratory, Foshan 528200, China
| | - Yanxia Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Key Laboratory of Engineering Materials of Ministry of Water Resources, Beijing 100038, China
| | - Wei Wu
- Engineering Center for Superlubricity, Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
5
|
Pulikkalparambil H, Babu A, Thilak A, Vighnesh N, Mavinkere Rangappa S, Siengchin S. A review on sliding wear properties of sustainable biocomposites: Classifications, fabrication and discussions. Heliyon 2023; 9:e14381. [PMID: 36942256 PMCID: PMC10023965 DOI: 10.1016/j.heliyon.2023.e14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Biocomposites have gained huge attention in the field of manufacturing. They are widely accepted over conventional petroleum-based composites due to less environmental footprint and safer living habitats, abundance, availability, recyclability, reusability, and end-life disposals. The potential applications of biocomposites are now widely accepted in key engineering areas such as automotive, construction, consumer products, and aerospace industries. Concurrently, tribological properties for biopolymer composites are an appealing research direction. In this review article, a comprehensive literature survey of recent progress made in sliding wear properties of biocomposites are discussed in detail. It summarizes natural and synthetic ways to attain tribological performances in biocomposites such as biopolymers with bio-fillers, biopolymers with synthetic/inorganic fillers, and non-biopolymers with bio-fillers. The study gives a deeper understanding of the crucial informations regarding sliding wear properties of biocomposites and thereby aid in the future research in the design and preparation of similar composites.
Collapse
Affiliation(s)
- Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Ajish Babu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta, Patna-801106, India
| | - Anusree Thilak
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala 682022, India
| | - N.P. Vighnesh
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kochi, Kerala 682022, India
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
- Corresponding author.
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
6
|
Self-Healing Polymer Coating with efficient delivery for Alginates and Calcium Nitrite to Provide Corrosion Protection for Carbon Steel. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Kausar A. Self-healing aeronautical nanocomposites. POLYMERIC NANOCOMPOSITES WITH CARBONACEOUS NANOFILLERS FOR AEROSPACE APPLICATIONS 2023:263-296. [DOI: 10.1016/b978-0-323-99657-0.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
A state-of-the-art review of self-healing stimuli-responsive microcapsules in cementitious materials. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Zuo R, Yu Y, Song C, Liang M, Lu X, Ren D, Wu X, Zan F. Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes. MEMBRANES 2022; 12:1085. [PMID: 36363638 PMCID: PMC9699148 DOI: 10.3390/membranes12111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Continual aeration, a fouling control strategy that causes high energy consumption, is the major obstacle in the deployment of membrane bioreactors (MBRs) for wastewater treatment. In recent years, a technology has been developed which adopts mechanical reciprocity for membrane vibration, and it has been proven efficient for membrane scouring, as well as for saving energy: the low-energy POREFLON non-aerated membrane bioreactor (LEP-N-MBR). In this study, a pilot-scale LEP-N-MBR system was designed, established, and operated at various frequencies and amplitudes, and with various membrane models, so as to evaluate energy usage and membrane fouling. The results showed that a slower TMP rise occurred when the frequency and amplitude were set to 0.5 Hz and 10 cm, respectively. Under a suitable frequency and amplitude, the TMP increasing rate of model B (sealed only with epoxy resin) was slower than that of model A (sealed with a combination of polyurethane and epoxy resin). The average specific energy demand (SED) of the LEP-N-MBR was 0.18 kWh·m-3, much lower than the aerated MBR with 0.43 kWh·m-3 (obtained from a previous study), indicating a significant decrease of 59.54% in the SED. However, the uneven distribution of sludge within the membrane tank indicated that the poor hydraulic mixing in the reactor may result in sludge accumulation, which requires further operational optimization. The findings of this pilot-scale study suggest that the LEP-N-MBR system is promising and effective for municipal wastewater treatment with a much lower level of energy usage. More research is needed to further optimize the operation of the LEP-N-MBR for wide application.
Collapse
Affiliation(s)
- Runzhang Zuo
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Yubin Yu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
- Suke Environmental Protection Technology Co., Ltd., Suzhou 215026, China
| | - Canhui Song
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
- Suke Environmental Protection Technology Co., Ltd., Suzhou 215026, China
| | - Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| |
Collapse
|
10
|
Study on the Mechanical and Toughness Behavior of Epoxy Nano-Composites with Zero-Dimensional and Two-Dimensional Nano-Fillers. Polymers (Basel) 2022; 14:polym14173618. [PMID: 36080694 PMCID: PMC9459796 DOI: 10.3390/polym14173618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanical properties of epoxy resin can be enhanced by adding nanofillers into its matrix. This study researches and compares the impacts of adding nanofillers with different dimensions, including two-dimensional boron nitride and zero-dimensional silica, on the mechanical and toughness properties of epoxy resin. At low fractions (0–2.0 wt%), 2DBN/epoxy composites have a higher Young’s modulus, fracture toughness and critical strain energy release rate compared to SiO2/epoxy composites. However, the workability deteriorated drastically for BN/epoxy composites above a specific nanofiller concentration (2.0–3.0 wt%). BN prevents crack growth by drawing and bridging. SiO2 enhances performance by deflecting the crack direction and forming voids. Additionally, the dimension and content of nanofiller also influence glass transition temperature and storage modulus significantly.
Collapse
|
11
|
Damej M, Molhi A, Lgaz H, Hsissou R, Aslam J, Benmessaoud M, Rezki N, Lee HS, Lee DE. Performance and interaction mechanism of a new highly efficient benzimidazole-based epoxy resin for corrosion inhibition of carbon steel in HCl: A study based on experimental and first-principles DFTB simulations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
He S, Bouzy P, Stone N, Ward C, Hamerton I. Analysis of the Chemical Distribution of Self-Assembled Microdomains with the Selective Localization of Amine-Functionalized Graphene Nanoplatelets by Optical Photothermal Infrared Microspectroscopy. Anal Chem 2022; 94:11848-11855. [PMID: 35972471 PMCID: PMC9434550 DOI: 10.1021/acs.analchem.2c02306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
By incorporating 1-(2-aminoethyl)piperazine (AEPIP) into
a commercial
epoxy blend, a bicontinuous microstructure is produced with the selective
localization of amine-functionalized graphene nanoplatelets (A-GNPs).
This cured blend underwent self-assembly, and the morphology and topology
were observed via spectral imaging techniques. As
the selective localization of nanofillers in thermoset blends is rarely
achieved, and the mechanism remains largely unknown, the optical photothermal
infrared (O-PTIR) spectroscopy technique was employed to identify
the compositions of microdomains. The A-GNP tends to be located in
the region containing higher concentrations of both secondary amine
and secondary alcohol; additionally, the phase morphology was found
to be influenced by the amine concentration. With the addition of
AEPIP, the size of the graphene domains becomes smaller and secondary
phase separation is detected within the graphene domain evidenced
by the chemical contrast shown in the high-resolution chemical map.
The corresponding chemical mapping clearly shows that this phenomenon
was mainly induced by the chemical contrast in related regions. The
findings reported here provide new insight into a complicated, self-assembled
nanofiller domain formed in a multicomponent epoxy blend, demonstrating
the potential of O-PTIR as a powerful and useful approach for assessing
the mechanism of selectively locating nanofillers in the phase structure
of complex thermoset systems.
Collapse
Affiliation(s)
- Suihua He
- Bristol Composites Institute, Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical, Engineering, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, U.K
| | - Pascaline Bouzy
- Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, U.K
| | - Nicholas Stone
- Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, U.K
| | - Carwyn Ward
- Bristol Composites Institute, Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical, Engineering, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, U.K
| | - Ian Hamerton
- Bristol Composites Institute, Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical, Engineering, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, U.K
| |
Collapse
|
13
|
Rahmani M, Dehghani A, Bahlakeh G, Ramezanzadeh B. Introducing GO-based 2D-platform modified via Phytic acid molecules decorated by zeolite imidazole ZIF-9 MOFs for designing multi-functional polymeric anticorrosive system; DFT-D computations and experimental studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Chitosan biomolecules-modified graphene oxide nano-layers decorated by mesoporous ZIF-9 nanocrystals for the construction of a smart/pH-triggered anti-corrosion coating system. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Azamian I, Allahkaram SR, Rezaee S. Autonomous-healing and smart anti-corrosion mechanism of polyurethane embedded with a novel synthesized microcapsule containing sodium dodecyl sulfate as a corrosion inhibitor. RSC Adv 2022; 12:14299-14314. [PMID: 35558831 PMCID: PMC9092960 DOI: 10.1039/d2ra01131j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The self-healing and smart anti-corrosion behavior of a polyurethane coating enhanced with micro-sized capsules have been investigated. An in situ polymerization technique was employed to synthesize a novel microcapsule containing sodium dodecyl sulfate (SDS) as a corrosion inhibitor in linseed oil (LO). FE-SEM, FT-IR and TG analysis were used to characterize the prepared microcapsules. The capsules were separately embedded in polyurethane at 1, 4 and 7 wt% and the coating properties were investigated through the water absorption rate and pull-off adhesion strength. The scratched coating was then subjected to 3.5 wt% NaCl solution to investigate the self-healing ability. Electrochemical measurements were carried out by means OCP, EIS and potentiodynamic polarization and the inhibition mechanism of SDS was discussed in terms of interfacial interactions. Despite the adhesion strength, a positive effect was observed for the water uptake, after addition of the microcapsules. 4 wt% of LO/SDS microcapsules showed the best results as its inhibition efficiency was more than 90% compared to single linseed oil capsules. EDS mapping was also employed to verify the successful release and distribution of the SDS, when subjected to scratching.
Collapse
Affiliation(s)
- Iman Azamian
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Saeed Reza Allahkaram
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Sadegh Rezaee
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran Tehran Iran
| |
Collapse
|
16
|
Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, Thomas S. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr Polym 2022; 282:119123. [DOI: 10.1016/j.carbpol.2022.119123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
|
17
|
Affiliation(s)
- Ulrich Schubert
- Institut für Materialchemie TU Wien Getreidemarkt 9 1060 Wien Österreich
| |
Collapse
|
18
|
Nano-SiO 2 and Silane Coupling Agent Co-Decorated Graphene Oxides with Enhanced Anti-Corrosion Performance of Epoxy Composite Coatings. Int J Mol Sci 2021; 22:ijms222011087. [PMID: 34681743 PMCID: PMC8537813 DOI: 10.3390/ijms222011087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Coatings are of great significance for irons and steels in regards to the harsh marine environment. Graphene oxides (GO) have been considered as an ideal filler material of epoxy coating. However, the undesired dispersion in the epoxy together with easy agglomeration and stacking remain great problems for practical application of GO composited epoxy coatings. A method that can effectively solve both self-aggregation and poor dispersion of GO is highly desired. Herein, we present a high dispersion strategy of graphene oxides in epoxy by co-decoration of nano-SiO2 and silane coupling agent. The co-decorated GO filled epoxy coating exhibits high anti-corrosion performance, including high electrochemical impedance, high self-corrosive potential, low self-corrosive current, and superior electrochemical impedance stability for ten days to Q235 carbon steel. This work displays new possibilities for designing novel coating materials with high performance toward practical marine anti-corrosion applications.
Collapse
|
19
|
Banerjee P, Raj R, Kumar S, Bose S. Tuneable chemistry at the interface and self-healing towards improving structural properties of carbon fiber laminates: a critical review. NANOSCALE ADVANCES 2021; 3:5745-5776. [PMID: 36132674 PMCID: PMC9419231 DOI: 10.1039/d1na00294e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 06/15/2023]
Abstract
Carbon fiber reinforced epoxy (CFRE) laminates have become a significant component in aircraft industries over the years due to their superior mechanical and highly tunable properties. However, the interfacial area between the fibers and the matrix continues to pose a significant challenge in debonding and delamination, leading to significant failures in such components. Therefore, since the advent of such laminated structures, researchers have worked on several interfacial modifications to better the mechanical properties and enhance such laminated systems' service life. These methods have primarily consisted of fiber sizing or matrix modifications, while effective fiber surface treatment has utilized the concept of surface energy to form an effective matrix locking mechanism. In recent times, with the advent of self-healing technology, research is being directed towards novel methods of self-healing interfacial modifications, which is a promising arena. In this review, we have provided comprehensive insight into the significance, historical advances, and latest developments of the interface of CFRE laminates. We have analysed the significant research work undertaken in recent years, which has shown a considerable shift in engineering the interface for mechanical property enhancement. Keeping in view the latest developments in self-healing technology, we have discussed reversible interfacial modifications and their impact on future improvements to service life.
Collapse
Affiliation(s)
- Poulami Banerjee
- Department of Materials Engineering, Indian Institute of Science Bangalore - 560012 India
| | - Rishi Raj
- Department of Materials Engineering, Indian Institute of Science Bangalore - 560012 India
| | - S Kumar
- Department of Materials Engineering, Indian Institute of Science Bangalore - 560012 India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore - 560012 India
| |
Collapse
|
20
|
Shahini M, Taheri N, Mohammadloo HE, Ramezanzadeh B. A comprehensive overview of nano and micro carriers aiming at curtailing corrosion progression. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Hsissou R. Review on epoxy polymers and its composites as a potential anticorrosive coatings for carbon steel in 3.5% NaCl solution: Computational approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116307] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Ekeocha J, Ellingford C, Pan M, Wemyss AM, Bowen C, Wan C. Challenges and Opportunities of Self-Healing Polymers and Devices for Extreme and Hostile Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008052. [PMID: 34165832 DOI: 10.1002/adma.202008052] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Indexed: 06/13/2023]
Abstract
Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research.
Collapse
Affiliation(s)
- James Ekeocha
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Alan M Wemyss
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
23
|
Hammi M, Ziat Y, Zarhri Z, Laghlimi C, Moutcine A. Epoxy/alumina composite coating on welded steel 316L with excellent wear and anticorrosion properties. Sci Rep 2021; 11:12928. [PMID: 34155236 PMCID: PMC8217265 DOI: 10.1038/s41598-021-91741-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
The main purpose of this study is to elaborate anticorrosive coatings for the welded steel 316L, since this later is widely used in industrial field. Hence, within this work we have studied the electrochemical behaviour of different zones of the welded steel 316 in 1 M HCl media. The macrography study of the welded steel has revealed the different areas with a good contrast. We have stated three different zones, namely; melted zone (MZ), heat affected zone (HAZ) and base metal zone (BM). Impedance studies on welded steel 316L were conducted in 1 M HCl solution, coating of Epoxy/Alumina composite was applied on different zones, in order to reveal the anti-corrosion efficiency in each zone. Scanning electron microscopy (SEM) analysis was undertaken in order to check how far the used coating in such aggressive media protects the studied zones and these findings were assessed by water contact angle measurements. The choice of this coating is based on the cost and the safety. We concluded that the Epoxy/Alumina composite has a good protecting effect regarding welded steel in aggressive media.
Collapse
Affiliation(s)
- Maryama Hammi
- Laboratory of Materials, Nanotechnologies and Environnement, Department of Chemistry, Faculty of Sciences, University of Mohammed V-Rabat, BP1014, Rabat, Morocco.
| | - Younes Ziat
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Zakaryaa Zarhri
- CONACYT-Tecnológico Nacional de México/I.T. Chetumal, Insurgentes 330, 77013, Chetumal, QR, Mexico
| | - Charaf Laghlimi
- Applied Chemistry Team, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaadi University, Al Hoceima, Morocco
| | - Abdelaziz Moutcine
- Molecular Electrochemistry and Inorganic Materials Team, Beni Mellal, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
24
|
Self-Healing Performance of Smart Polymeric Coatings Modified with Tung Oil and Linalyl Acetate. Polymers (Basel) 2021; 13:polym13101609. [PMID: 34067528 PMCID: PMC8157197 DOI: 10.3390/polym13101609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
This work focuses on the synthesis and characterization of polymeric smart self-healing coatings. A comparison of structural, thermal, and self-healing properties of two different polymeric coatings comprising distinct self-healing agents (tung oil and linalyl acetate) is studied to elucidate the role of self-healing agents in corrosion protection. Towards this direction, urea-formaldehyde microcapsules (UFMCs) loaded with tung oil (TMMCs) and linalyl acetate (LMMCs) were synthesized using the in-situ polymerization method. The synthesis of both LMMCs and TMMCs under identical experimental conditions (900 rpm, 55 °C) has resulted in a similar average particle size range (63-125 µm). The polymeric smart self-healing coatings were developed by reinforcing a polymeric matrix separately with a fixed amount of LMMCs (3 wt.% and 5 wt.%), and TMMCs (3 wt.% and 5 wt.%) referred to as LMCOATs and TMCOATs, respectively. The development of smart coatings (LMCOATs and TMCOATs) contributes to achieving decent thermal stability up to 450 °C. Electrochemical impedance spectroscopy (EIS) analysis indicates that the corrosion resistance of smart coatings increases with increasing concentration of the microcapsules (TMMCs, LMMCs) in the epoxy matrix reaching ~1 GΩ. As a comparison, LMCOATs containing 5 wt.% LMMCs demonstrate the best stability in the barrier properties than other developed coatings and can be considered for many potential applications.
Collapse
|
25
|
Pereyra RB, Fernández Leyes MD, Silbestri GF, Durand GA, Schulz PC, Ritacco HA, Schulz EP. Experimental and thermodynamic analysis of mixed micelles formed by dodecylethylmethacrylatedimethylammonium bromide and tetradecyltrimethylammonium bromide. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Zou T, Sipponen MH, Henn A, Österberg M. Solvent-Resistant Lignin-Epoxy Hybrid Nanoparticles for Covalent Surface Modification and High-Strength Particulate Adhesives. ACS NANO 2021; 15:4811-4823. [PMID: 33593063 PMCID: PMC8023795 DOI: 10.1021/acsnano.0c09500] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/01/2021] [Indexed: 05/19/2023]
Abstract
Fabrication of spherical lignin nanoparticles (LNPs) is opening more application opportunities for lignin. However, dissolution of LNPs at a strongly alkaline pH or in common organic solvent systems has prevented their surface functionalization in a dispersion state as well as processing and applications that require maintaining the particle morphology under harsh conditions. Here, we report a simple method to stabilize LNPs through intraparticle cross-linking. Bisphenol A diglycidyl ether (BADGE), a cross-linker that, like lignin, contains substituted benzene rings, is coprecipitated with softwood Kraft lignin to form hybrid LNPs (hy-LNPs). The hy-LNPs with a BADGE content ≤20 wt % could be intraparticle cross-linked in the dispersion state without altering their colloidal stability. Atomic force microscopy and quartz crystal microbalance with dissipation monitoring were used to show that the internally cross-linked particles were resistant to dissolution under strongly alkaline conditions and in acetone-water binary solvent that dissolved unmodified LNPs entirely. We further demonstrated covalent surface functionalization of the internally cross-linked particles at pH 12 through an epoxy ring-opening reaction to obtain particles with pH-switchable surface charge. Moreover, the hy-LNPs with BADGE content ≥30% allowed both inter- and intraparticle cross-linking at >150 °C, which enabled their application as waterborne wood adhesives with competitive dry/wet adhesive strength (5.4/3.5 MPa).
Collapse
Affiliation(s)
- Tao Zou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Mika Henrikki Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Alexander Henn
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| |
Collapse
|
27
|
Musa A, Alamry K, Hussein M. Polybenzoxazine-modified epoxy resin: thermal properties and coating performance. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2020.1867390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abdulrahman Musa
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Synthetic Polymer Lab. 122, Assiut University, Assiut, Egypt
| |
Collapse
|
28
|
Baig MMA, Samad MA. Epoxy\Epoxy Composite\Epoxy Hybrid Composite Coatings for Tribological Applications-A Review. Polymers (Basel) 2021; 13:polym13020179. [PMID: 33419106 PMCID: PMC7825423 DOI: 10.3390/polym13020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/02/2023] Open
Abstract
Epoxy composite coating systems generally find their usage in applications such as, fluid handling systems to protect components from corrosive media. However, their use in demanding tribological applications such as, in sliding components of machines, are known to be limited. This is often attributed to their low load bearing capacity combined with poor thermal stability under severe p-v regimes. Researchers have tried to enhance the tribological properties of the epoxy coatings using a combination of several types of micro/nano sized fillers to produce composite or hybrid composite coatings. Hence, this review paper aims to focus on the recent advances made in developing the epoxy coating systems. Special attention would be paid to the types and properties of nano-fillers that have been commonly used to develop these coatings, different dispersion techniques adopted and the effects that each of these fillers (and their combinations) have on the tribological properties of these coatings.
Collapse
|
29
|
Abstract
The present review outlines the most recent advance in the field of anticorrosive coatings based on graphene oxide nanostructures as active filler. This carbonaceous material was extensively used in the last few years due to its remarkable assets and proved to have a significant contribution to composite materials. Concerning the graphene-based coatings, the synthesis methods, protective function, anticorrosion mechanism, feasible problems, and some methods to improve the overall properties were highlighted. Regarding the contribution of the nanostructure used to improve the capability of the material, several modification strategies for graphene oxide along with the synergistic effect exhibited when functionalized with other compounds were mainly discussed.
Collapse
|
30
|
Thiangpak P, Rodchanarowan A. Self-Healing Abilities of Shape-Memory Epoxy-Contained Polycaprolactone Microspheres Filled with Cerium(III) Nitrate Coated on Aluminum 2024-T3. ACS OMEGA 2020; 5:25647-25654. [PMID: 33073090 PMCID: PMC7557243 DOI: 10.1021/acsomega.0c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
The shape-memory epoxy (SME) mixed with 10 wt % polycaprolactone (PCL) microspheres containing 5% cerium(III) nitrate (Ce(NO3)3) (PCL5Ce) was coated on an aluminum plate 2024-T3 to investigate the self-healing property. The coating was scratched and heated at 80 °C for 30 min to activate the self-healing mechanism and compare with a nonscratched coating. Surface morphology was investigated by scanning electron microscopy. The scratch was completely healed by the PCL5Ce via a thermally assisted self-healing process. Based on electrochemical impedance spectroscopy, the postheated scratched coating had shown impedance values close to the nonscratched coating, which indicated that corrosion resistivity was restored. Ce(NO3)3 content at the scratched area was analyzed by focused ion beam-scanning electron microscopy. The scratch width was healed and filled with Ce(NO3)3. Therefore, PCL5Ce is capable of being used as an enhancing additive for the self-healing performance in SME coating.
Collapse
|
31
|
Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations. J Colloid Interface Sci 2020; 574:43-60. [DOI: 10.1016/j.jcis.2020.04.022] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
|
32
|
Hsissou R, Benhiba F, Abbout S, Dagdag O, Benkhaya S, Berisha A, Erramli H, Elharfi A. Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107858] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Tzavidi S, Zotiadis C, Porfyris A, Korres DM, Vouyiouka S. Epoxy loaded poly(urea‐formaldehyde) microcapsules via in situ polymerization designated for self‐healing coatings. J Appl Polym Sci 2020. [DOI: 10.1002/app.49323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sofia Tzavidi
- Laboratory of Polymer Technology, School of Chemical EngineeringNational Technical University of Athens Athens Greece
| | - Christos Zotiadis
- Laboratory of Polymer Technology, School of Chemical EngineeringNational Technical University of Athens Athens Greece
| | - Athanasios Porfyris
- Laboratory of Polymer Technology, School of Chemical EngineeringNational Technical University of Athens Athens Greece
| | - Dimitrios M. Korres
- Laboratory of Polymer Technology, School of Chemical EngineeringNational Technical University of Athens Athens Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical EngineeringNational Technical University of Athens Athens Greece
| |
Collapse
|
34
|
Surendran A, Joy J, Parameswaranpillai J, Anas S, Thomas S. An overview of viscoelastic phase separation in epoxy based blends. SOFT MATTER 2020; 16:3363-3377. [PMID: 32215406 DOI: 10.1039/c9sm02361e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The viscoelastic effects during reaction induced phase separation play an important role in toughening epoxy-based blends. The large difference in molecular weight/glass transition temperature between the blend components before the curing reaction results in dynamic asymmetry, causing viscoelastic effects during phase separation accompanying the curing reaction. This review will focus on the key factors responsible for viscoelastic phase separation in epoxy-based blends and hybrid nanocomposites. Time-resolved characterization techniques such as rheometry, small angle laser light scattering, optical microscopy etc., are mainly used for monitoring the viscoelastic effects during phase separation. Incorporation of nanofillers in epoxy thermoplastic blends enhances the viscoelastic phase separation due to the increase in dynamic asymmetry. Different theoretical models are identified for the determination of processing parameters such as temperature, viscosity, phase domain size, and other parameters during the viscoelastic phase separation process. The effect of viscoelastic phase separation has a very strong influence on the domain parameters of the blends and thereby on the ultimate properties and applications.
Collapse
Affiliation(s)
- Anu Surendran
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | | | | | | | | |
Collapse
|
35
|
Yap JY, Mat Yaakob S, Rabat NE, Shamsuddin MR, Man Z. Release kinetics study and anti-corrosion behaviour of a pH-responsive ionic liquid-loaded halloysite nanotube-doped epoxy coating. RSC Adv 2020; 10:13174-13184. [PMID: 35492118 PMCID: PMC9051460 DOI: 10.1039/d0ra01215g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
This study focuses on the release kinetics of inhibitor-loaded nanocontainers and the anti-corrosive properties of epoxy coatings doped and undoped with the nanocontainers. In this work, 1-butyl-3-methylimidazolium chloride [Bmim][Cl] was loaded into halloysite nanotubes (HNTs), and the loaded HNTs were encapsulated with polyethyleneimine (PEI)/polyacrylic acid (PAA) and poly(diallyldimethylammonium chloride) (PDADMAC)/polyacrylic acid (PAA) to allow controlled release upon pH stimuli. The polyelectrolyte layer deposition was characterized using zeta potential analysis, and the release profiles were evaluated in neutral, acidic, and alkaline media. The release kinetics was studied and found to conform to the Ritger-Peppas and Korsmeyer-Peppas model, and the results proved that the combination of weak polyelectrolytes (PEI and PAA) provided a good response for up to 50% release of [Bmim][Cl] in acidic and alkaline media after 72 hours. The loaded HNTs encapsulated with the PEI/PAA combination were incorporated into an epoxy coating matrix and applied on an X52 steel substrate. The corrosion resistance of the coated and uncoated substrates was evaluated using electrochemical impedance spectroscopy (EIS) after immersion in a 3.5 wt% NaCl solution up to 72 hours. An artificial defect was created on the coating prior to immersion to evaluate the active corrosion inhibition ability. The coating doped with the smart pH-responsive halloysite nanotubes showed promising results in corrosion protectiveness even after 72 hours of exposure to a salt solution through EIS and SEM.
Collapse
Affiliation(s)
- Jen Yang Yap
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Bandar Seri Iskandar 32610 Perak Malaysia
| | - Sarini Mat Yaakob
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Bandar Seri Iskandar 32610 Perak Malaysia
| | - Nurul Ekmi Rabat
- Centre for Contaminant Control and Utilization (CencoU), Institute of Contaminant Management, Universiti Teknologi PETRONAS Bandar Seri Iskandar 32610 Perak Malaysia
| | - Muhammad Rashid Shamsuddin
- Center for Biofuel and Biochemical Research (CBBR), Institute for Sustainable Living, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Malaysia
| | - Zakaria Man
- Centre for Contaminant Control and Utilization (CencoU), Institute of Contaminant Management, Universiti Teknologi PETRONAS Bandar Seri Iskandar 32610 Perak Malaysia
| |
Collapse
|
36
|
Oladapo BI, Oshin EA, Olawumi AM. Nanostructural computation of 4D printing carboxymethylcellulose (CMC) composite. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100423] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Poly (Vinyl Butyral-Co-Vinyl Alcohol-Co-Vinyl Acetate) Coating Performance on Copper Corrosion in Saline Environment. Molecules 2020; 25:molecules25030439. [PMID: 31973085 PMCID: PMC7037414 DOI: 10.3390/molecules25030439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) named further PVBA was investigated as a protective coating for copper corrosion in 0.9% NaCl solution using electrochemical measurements such as, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization associated with atomic force microscopy (AFM). The PVBA coating on the copper surface (Cu-PVBA) was modeled in methanol containing PVBA. Its inhibitory properties against corrosion was comparatively discussed with those of the copper sample treated in methanol without polymer (Cu-Me) and of untreated sample (standard copper). A protective performance of PVBA coating of 80% was computed from electrochemical measurements, for copper corrosion in NaCl solution. Moreover, AFM images designed a specific surface morphology of coated surface with PVBA, clearly highlighting a polymer film adsorbed on the copper surface, which presents certain deterioration after corrosion, but the metal surface was not significantly affected compared to those of untreated samples or treated in methanol, in the absence of PVBA.
Collapse
|
38
|
Hsissou R, Dagdag O, Berradi M, El Bouchti M, Assouag M, Elharfi A. Development rheological and anti-corrosion property of epoxy polymer and its composite. Heliyon 2019; 5:e02789. [PMID: 31844721 PMCID: PMC6895731 DOI: 10.1016/j.heliyon.2019.e02789] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022] Open
Abstract
Epoxy polymer, namely, decaglycidyl pentamethylene dianiline of phosphorus (DGPMDAP) was synthesized in three steps. The synthesis of epoxy polymer DGPMDAP was investigated by nuclear magnetic resonance spectroscopy, rheological analysis, scanning electron microscope (SEM), stationary and transient electrochemical methods (PDP and EIS), respectively. The rheological properties of composite (DGPMDAP/MDA/TiO2) without and with different percentages of titanium dioxide (0%, 5%, 10% and 15%) increase with both the increase in frequency and with rate of load of titanium dioxide. Besides, SEM micrographs shows a good dispersion of the titanium dioxide charge in the composite (DGPMDAP/MDA/TiO2) elaborated. The results of PDP show that epoxy polymer DGPMDAP acts as mixed type inhibitor and reaches maximum corrosion inhibition efficiency reaches 92 % at 10−3 M. Besides, EIS results indicate that DGPMDAP act as good inhibitor for carbon steel in 1 M HCl solution and its efficiency reaches 91 % at 10−3 M of DGPMDAP. Furthermore, the adsorption of DGPMDAP on carbon steel surface obeyed Langmuir isotherm.
Collapse
Affiliation(s)
- Rachid Hsissou
- Laboratory of Agricultural Resources, Polymers and Process Engineering, Ibn Tofail University, Faculty of Sciences, BP 133, 14000, Kenitra, Morocco.,Team of Innovative Materials and Mechanical Manufacturing Process, ENSAM, University Moulay Ismail, B.P. 15290, Al Mansour, Meknes, Morocco
| | - Omar Dagdag
- Laboratory of Agricultural Resources, Polymers and Process Engineering, Ibn Tofail University, Faculty of Sciences, BP 133, 14000, Kenitra, Morocco
| | - Mohamed Berradi
- Laboratory REMTEX, ESITH (Hight School of Textile and Clothing Industries), Casablanca, Morocco
| | - Mehdi El Bouchti
- Laboratory REMTEX, ESITH (Hight School of Textile and Clothing Industries), Casablanca, Morocco
| | - Mohammed Assouag
- Team of Innovative Materials and Mechanical Manufacturing Process, ENSAM, University Moulay Ismail, B.P. 15290, Al Mansour, Meknes, Morocco
| | - Ahmed Elharfi
- Laboratory of Agricultural Resources, Polymers and Process Engineering, Ibn Tofail University, Faculty of Sciences, BP 133, 14000, Kenitra, Morocco
| |
Collapse
|
39
|
Senchukova AS, Mikhailova ME, Gubarev AS, Lezov AA, Lebedeva EV, Makarov IA, Zorin IM, Tsvetkov NV. Molecular characteristics of polymerized surfactants: influence of introduced crosslinking agent and monomer concentration. POLYM INT 2019. [DOI: 10.1002/pi.5923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anna S Senchukova
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Mariya E Mikhailova
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Alexander S Gubarev
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Alexey A Lezov
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Elena V Lebedeva
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| | - Ivan A Makarov
- Department of Macromolecular Chemistry, Institute of ChemistrySt Petersburg State University St Petersburg Russia
| | - Ivan M Zorin
- Department of Macromolecular Chemistry, Institute of ChemistrySt Petersburg State University St Petersburg Russia
| | - Nikolay V Tsvetkov
- Department of Molecular Biophysics and Physics of PolymersSt Petersburg State University St Petersburg Russia
| |
Collapse
|
40
|
Xing H, Gao Y, Zhang P, Wang B, Yu Y, Cao X. Corrosion protection and thermal and mechanical properties for epoxy–thiol–imidazole systems of improved performance. HIGH PERFORM POLYM 2019. [DOI: 10.1177/0954008319854489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epoxy–thiol–imidazole system is promising for microelectronic packaging areas, such as underfills and low-temperature fast curing adhesives, but there is little knowledge on the corrosion resistance of this system. In this article, the anticorrosion and thermal and mechanical properties were characterized by theoretical and experimental methods and were understood from a fundamental perspective of structure. The cure behaviors were evaluated by differential scanning calorimeter. The mechanical and thermal properties were characterized by dynamic mechanical, thermomechanical, and thermos-gravimetric methods. The water absorption process was monitored using gravimetric measurement. Results show that among compositions of variable thiol–epoxy molar ratios, the one with ratio 0.25 has the best anticorrosion property and improved mechanical property, as well as good water resistance at room temperature. Both the average tensile strength and modulus increased initially and then declined with the addition of thiol part, while the average peel strength increased to above thrice the value of that of neat epoxy–imidazole system for thiol–epoxy 1:1 system.
Collapse
Affiliation(s)
- Hanxiao Xing
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Baoyi Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|